THE NUMBER OF NONFREE COMPONENTS IN THE DECOMPOSITION OF SYMMETRIC POWERS IN CHARACTERISTIC p

Gert Almkvist

Abstract

If G is the group with p ($=$ prime) elements and k a field of characteristic p let $V_{1}, V_{2}, \cdots, V_{p}$ denote the indecomposable $k[G]$-modules of k-dimension $1,2, \cdots, p$ respectively. Let $e_{n, \nu}$ denote the number of nonfree components of the decomposition of the symmetric power $S^{\nu} V_{n+1}$. Then the following symmetry relation is proved $$
e_{n, p-n-\nu-1}=e_{n, \nu} .
$$

As a corollary we find that $S^{r} V_{n+1}$ has exactly one nonfree component when $n+r=p-2$ thus solving a problem in a previous paper by R. Fossum and the author. An explicit formula for $e_{n, \nu}$ expressed in numbers of restricted partitions is obtained.

Let G be the group with p elements where p is a prime number. Let k be a field of characteristic p. Then there are p indecomposable $k[G]$-modules $V_{1}, V_{2}, \cdots, V_{p}$ where

$$
V_{n} \cong k[x] /(x-1)^{n}
$$

Note that $V_{p}=k[G]$ is free and $\operatorname{dim}_{k} V_{n}=n$.
The symmetric power $S^{\nu} V_{n+1}$ taken over k is again a $k[G]$-module and can be decomposed into a direct sum of the $V_{i}: s$

$$
S^{\nu} V_{n+1}=\bigoplus_{j=1}^{p} c_{\nu, j}(n) V_{j}
$$

where the integer $c_{2, j}(n)$ is the number of times V_{j} is repeated. Let

$$
e_{n, \nu}=\sum_{j=1}^{p-1} c_{\nu, j}(n)
$$

be the number of nonfree components in $S^{\nu} V_{n+1}$.
If we write down these numbers in triangular form we get the following pictures where the number in the $(\nu+1)$ th place in the $(n+1)$ th row from below is $e_{n, 2}$.

$$
P=17
$$

$$
\begin{aligned}
& 1 \\
& 11 \\
& 111 \\
& \begin{array}{llll}
1 & 1 & 1 & 1
\end{array} \\
& \begin{array}{lllll}
1 & 1 & 2 & 1 & 1
\end{array} \\
& \begin{array}{llllll}
1 & 1 & 2 & 2 & 1 & 1
\end{array} \\
& \begin{array}{lllllll}
1 & 1 & 3 & 3 & 3 & 1 & 1
\end{array} \\
& \begin{array}{llllllll}
1 & 1 & 3 & 5 & 5 & 3 & 1 & 1
\end{array} \\
& \begin{array}{lllllllll}
1 & 1 & 4 & 6 & 7 & 6 & 4 & 1 & 1
\end{array} \\
& \begin{array}{llllllllll}
1 & 1 & 4 & 6 & 9 & 9 & 6 & 4 & 1 & 1
\end{array} \\
& \begin{array}{lllllllllll}
1 & 1 & 4 & 6 & 10 & 10 & 10 & 6 & 4 & 1 & 1
\end{array} \\
& \begin{array}{llllllllllll}
1 & 1 & 3 & 6 & 9 & 10 & 10 & 9 & 6 & 3 & 1 & 1
\end{array} \\
& \begin{array}{lllllllllllll}
1 & 1 & 3 & 5 & 7 & 9 & 10 & 9 & 7 & 5 & 3 & 1 & 1
\end{array} \\
& \begin{array}{llllllllllllll}
1 & 1 & 2 & 3 & 5 & 6 & 6 & 6 & 6 & 5 & 3 & 2 & 1 & 1
\end{array} \\
& \begin{array}{lllllllllllllll}
1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 4 & 3 & 3 & 2 & 2 & 1 & 1
\end{array} \\
& \begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array} \\
& \begin{array}{lllllllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \\
& 11 \\
& 111 \\
& \begin{array}{llll}
1 & 1 & 1 & 1
\end{array} \\
& \begin{array}{lllll}
1 & 1 & 2 & 1 & 1
\end{array} \\
& \begin{array}{llllll}
1 & 1 & 2 & 2 & 1 & 1
\end{array} \\
& \begin{array}{lllllll}
1 & 1 & 3 & 3 & 3 & 1 & 1
\end{array} \\
& \begin{array}{llllllll}
1 & 1 & 3 & 4 & 4 & 3 & 1 & 1
\end{array} \\
& \begin{array}{lllllllll}
1 & 1 & 3 & 4 & 5 & 4 & 3 & 1 & 1
\end{array} \\
& \begin{array}{llllllllll}
1 & 1 & 2 & 3 & 4 & 4 & 3 & 2 & 1 & 1
\end{array} \\
& \begin{array}{lllllllllll}
1 & 1 & 2 & 2 & 3 & 3 & 3 & 2 & 2 & 1 & 1
\end{array} \\
& \begin{array}{llllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array} \\
& \begin{array}{lllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
\end{aligned}
$$

```
P=19
                1
            1
            1 1 1
            1}11%11
            1
            1
            1
        1
    1
    1
        1
        1
            1
                        1
                        1
            1
        1
    1
1
```

The first triangle is in [1] III. 4 (compare also Problem VI. 3.10) and the other ones are computed by using methods explained there. The symmetry of the triangles suggests the following result.

Theorem 1. (1) $e_{n, p-n-\nu-1}=e_{n, \nu}$
(2) $e_{p-n-\nu-1, \nu}=e_{n, \nu}$
(3) $e_{n, \nu}=e_{\nu, n}$
(4) $e_{n, \nu+p}=e_{n, \nu}$.

Proof. The third relation is a consequence of

$$
S^{\nu} V_{n+1} \cong S^{n} V_{\nu+1}
$$

(see [1] III. 2.7b).
The fourth relation follows from (see [1] III. 2.5)

$$
S^{\nu+p} V_{n+1} \cong \text { free } \bigoplus S^{\nu} V_{n+1}
$$

To prove (1) and (2) we are going to find a formula for $e_{n, \nu}$ or rather for the generating function

$$
\eta_{n}(t)=\sum_{\nu=0}^{\infty} e_{n, t^{\nu}}
$$

The proof is rather technical and will use the method of Fourier series. For the notation see [1] Ch. V. 4.

The number $a_{n, r}$ of all components of $S^{r} V_{n+1}$ is up to $r=p-1$ given by the p first coefficients of

$$
\widetilde{\Phi}_{n}=\psi_{n}+\sum_{j=1}^{\infty}\left(u_{n, 2 p_{j}}+u_{n, 2 p_{j+1}}\right)
$$

where

$$
\begin{aligned}
\psi_{n}(t) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} g_{n}(\varphi)(1+\cos \varphi) d \varphi \\
u_{n, j}(t) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} g_{n}(\varphi) \cot \frac{\varphi}{2}(\sin j \varphi-\sin (j-1) \varphi) d \varphi
\end{aligned}
$$

with

$$
g_{n}(\varphi)=\prod_{\nu=0}^{n}\left(1-t e^{i(n-2 \nu) \varphi}\right)^{-1}
$$

By considering the decomposition of $S^{r} V_{n+1}$ into the virtual indecomposable $k[G]$-modules W_{i} for all $i \geqq 0$ (see [1] I. 1.9) we find that the number of free components of $S^{r} V_{n+1}$ (for $r<p$) will be given by the p first coefficients of

$$
u_{n, p}+u_{n, p_{+1}}+u_{n, 3 p}+u_{n, 3 p+1}+u_{n, 5 p}+u_{n, 5 p+1}+\cdots
$$

Hence

$$
\eta_{n}=\psi_{n}+\sum_{\jmath+1}^{\infty}\left(u_{n, 2 j p}+u_{n, 2 j p+1}\right)-\sum_{j=0}^{\infty}\left(u_{n,(2 j+1) p}+u_{n,(2 j+1) p+1}\right)
$$

will give the number $e_{n, r}$ of nonfree components for $r=0,1,2, \cdots$, $p-1$.

The first part

$$
\widetilde{\Phi}_{n}=\psi_{n}+\sum_{j=1}^{\infty}\left(u_{n, 2 j p}+u_{n, 2 j p+1}\right)
$$

is computed in [1] V. 4.7.
The second sum becomes

$$
\begin{aligned}
& \sum_{j=0}^{\infty}\left(u_{n,(2 j+1) p}+u_{n,(2 j+1) p+1}\right) \\
&= \lim _{m \rightarrow \infty} \frac{1}{2 \pi} \int_{-\pi}^{\pi} g_{n}(\varphi) \cot \frac{\varphi}{2} \sum_{j=0}^{m-1}[\sin ((2 j+1) p+1) \varphi \\
&-\sin ((2 j+1) p-1) \varphi] d \varphi \\
&= \lim _{m \rightarrow \infty} \frac{1}{2 \pi} \int_{-\pi}^{\pi} g_{n}(\varphi)(1+\cos \varphi) \frac{\sin 2 m p \varphi}{\sin p \varphi} d \varphi .
\end{aligned}
$$

Using that

$$
\widetilde{\Phi}_{n}=\lim _{m \rightarrow \infty} \frac{1}{2 \pi} \int_{-\pi}^{\pi} g_{n}(\varphi)(1+\cos \varphi) \frac{\sin (2 m+1) p \varphi}{\sin p \varphi} d \varphi
$$

we get

$$
\begin{aligned}
\tilde{\eta}_{n} & =\lim _{m \rightarrow \infty} \frac{1}{2 \pi} \int_{-\pi}^{\pi} g_{n}(\varphi)(1+\cos \varphi) \frac{\sin (2 m+1) p \varphi-\sin (2 m p \varphi)}{\sin p \varphi} d \varphi \\
& =\lim _{m \rightarrow \infty} \frac{1}{2 \pi} \int_{-\pi}^{\pi} g_{n}(\varphi)(1+\cos \varphi) \frac{\cos \left(2 m+\frac{1}{2}\right) p \varphi}{\cos \frac{p \varphi}{2}} d \varphi
\end{aligned}
$$

We want to rewrite this limit as a sum containing the p th roots of unity. Making a linear substitution we get the Dirichlet kernel in the integrand and then we can use Lemma V. 4.8 in [1].

Put $\varphi=\pi+2 \theta$. Then we get

$$
\begin{aligned}
\tilde{\eta}_{n} & =\lim _{m \rightarrow \infty} \frac{1}{2 \pi} \int_{-\pi}^{\pi} g_{n}(\pi+2 \theta)(1-\cos 2 \theta) \frac{\sin (4 m+1) p \theta}{\sin p \theta} d \theta \\
& =\frac{1}{p} \sum_{\mu=0}^{p-1} g_{n}\left(\pi+\frac{2 \mu \pi}{p}\right)\left(1-\cos \frac{2 \mu \pi}{p}\right) \\
& =\frac{1}{2 p} \sum_{\mu=0}^{p-1} \frac{2-\frac{e^{i \mu \mu \pi}}{p}-\frac{e^{-i 2 \mu \pi}}{p}}{\prod_{\nu=0}^{n}\left(1-t e^{i(n-2 \nu)(\pi+(2 \mu \pi / p))}\right)}
\end{aligned}
$$

To get any further we have to treat the cases n even or odd separately.
Case 1. n is even.
Then $e^{i(n-2 \nu) \pi}=1$ and we get with $\alpha=e^{i 2 \pi / p}$

$$
\begin{aligned}
\tilde{\eta}_{n} & =\frac{1}{2 p} \sum_{\mu=0}^{p-1} \frac{2-\alpha^{\mu}-\alpha^{-\mu}}{\prod_{\nu=0}^{n}\left(1-t \alpha^{(n-2 \nu) \mu}\right)} \\
& =\frac{1}{2 p} \sum_{\mu=0}^{p-1}\left(2-\alpha^{\mu}-\alpha^{-\mu}\right) \sum_{\nu=0}^{\infty} G_{n+\nu, n}\left(\alpha^{\mu}, \alpha^{-\mu}\right) t^{\nu} \\
& =\frac{1}{p} \sum_{\gamma \in H}(1-\gamma) \sum_{\nu=0}^{\infty} G_{n+\nu, n}\left(\gamma, \gamma^{-1}\right) t^{\nu}
\end{aligned}
$$

where H is the group of p th roots of unity. $G_{n, r}$ is the homogeneous Gaussian polynomial defined in [1] Ch. II. 4

$$
G_{n, r}(X, Y)=\frac{\left(X^{n}-Y^{n}\right)\left(X^{n-1}-Y^{n-1}\right) \cdots\left(X^{n-r+1}-Y^{n-r+1}\right)}{\left(X^{r}-Y^{r}\right)\left(X^{r-1}-Y^{r-1}\right) \cdots(X-Y)}
$$

We also used the formula II. 4.3 in [1]

$$
\prod_{j=0}^{r}\left(1-X^{n-j} Y^{j} t\right)^{-1}=\sum_{\nu=0}^{\infty} G_{r+\nu, r}(X, Y) t^{\nu}
$$

From the definition of the Gaussian polynomials we get

$$
G_{n+\nu+p, n}\left(\gamma, \gamma^{-1}\right)=G_{n+\nu, n}\left(\gamma, \gamma^{-1}\right)
$$

and

$$
G_{n+\nu, n}\left(\gamma, \gamma^{-1}\right)=0 \quad \text { if } \quad p-n \leqq \nu \leqq p-1 .
$$

Hence

$$
\begin{aligned}
\tilde{\eta}_{n}(t) & =\frac{1}{p\left(1-t^{p}\right)} \sum_{\gamma \in H}(1-\gamma) \sum_{\nu=0}^{p-n-1} G_{n+\nu, n}\left(\gamma, \gamma^{-1}\right) t^{\nu} \\
& =\frac{1}{1-t^{p}} \sum_{\nu=0}^{p-n-1}\left(\frac{1}{p} \sum_{r \in H}(1-\gamma) G_{n+\nu, n}\left(\gamma, \gamma^{-1}\right)\right) t^{\nu} .
\end{aligned}
$$

It follows that

$$
\left(1-t^{p}\right) \tilde{\eta}_{n}(t)=\sum_{\nu=0}^{p-n-1} \widetilde{e}_{n, 2} t^{\nu}
$$

where

$$
\widetilde{e}_{n, \nu}=\frac{1}{p} \sum_{\gamma \in H}(1-\gamma) G_{n+\nu, n}\left(\gamma, \gamma^{-1}\right)
$$

Then $\widetilde{e}_{n, \nu}=e_{n, \nu}$ for $\nu=0,1, \cdots, p-1$. But

$$
\tilde{e}_{n, \nu+p}-\tilde{e}_{n, \nu}=0
$$

and hence $\widetilde{e}_{n, \nu}=e_{n, \nu}$ for all $\nu \geqq 0$ and

$$
\tilde{\eta}_{n}(t)=\eta_{n}(t) .
$$

From (*) we infer that

$$
\eta_{n}\left(t^{-1}\right)=-t^{n+1} \eta_{n}(t)
$$

and $\eta_{n}(t)$ is symmetric in the sense of Stanley (see [1] V. 5.1). Using V. 5.6 in [1] we get

$$
e_{n,-\nu}=e_{n, \nu-n-1} \quad \text { for } \quad \nu>n .
$$

But $e_{n, p-\nu}=e_{n,-\nu}=e_{n, \nu-n-1}$ and replacing ν by $\nu+n+1$ we get

$$
e_{n, p-n-\nu+1}=e_{n, \nu}
$$

which proves (1).
From (3) $e_{n, \nu}=e_{\nu, n}$ we get (2) from (1)

$$
e_{p-n-\nu-1, \nu}=e_{\nu, p-n-\nu-1}=e_{\nu, n}=e_{n, \nu}
$$

and we are done in case n is even.
Case 2. n is odd.
Then $e^{i(n-2 \nu) \pi}=-1$ and

$$
\tilde{\eta}_{n}=\frac{1}{2 p} \sum_{\mu=0}^{p-1} \frac{2-\alpha^{\mu}-\alpha^{-\mu}}{\prod_{\nu=0}^{n}\left(1+t \alpha^{(n-2 \nu) \mu}\right)}=\left(1+t^{p}\right)^{-1} \sum_{\nu=0}^{p-n-1} \widetilde{e}_{n, t^{\prime}} t^{\nu}
$$

We get

$$
\eta_{n}(t)=\frac{1+t^{p}}{1-t^{p}} \tilde{\eta}_{n}=\frac{1+t^{p}}{1-t^{p}} \cdot \frac{1}{2 p} \sum_{\mu=0}^{p-1} \frac{2-\alpha^{\mu}-\alpha^{-\mu}}{\prod_{\nu=0}^{n}\left(1+t \alpha^{(n-2 \nu) \mu}\right)}
$$

and it follows

$$
\eta_{n}\left(t^{-1}\right)=-t^{n+1} \eta_{n}(t)
$$

The proof is then finished as in the even case.
We note that we also have solved problem VI. 3.15 in [1].
Theorem 2. $S^{r} V_{n+1}$ has exactly one nonfree component when $n+r=p-2$. In fact

$$
S^{p-n-2} V_{n+1}=\text { free } \oplus \begin{cases}V_{n+1} & \text { if } n \text { is even } \\ V_{p-n-1} & \text { if } n \text { is odd }\end{cases}
$$

Proof. $\quad e_{p-n-2, n}=e_{n, 1}=1$.
For the actual computation of the numbers $e_{n, \nu}$ we can get a formula involving the number of restricted partitions. By II. 4.6 in [1] we have

$$
G_{n+\nu, n}\left(\gamma, \gamma^{-1}\right)=\sum_{m=0}^{\nu n} A(m, \nu, n) \gamma^{\nu n-2 m}
$$

where $A(m, \nu, n)$ is the number of partitions of m into at most ν parts all of size $\leqq n$.

Proposition 3. We have

$$
(-1)^{n \nu} e_{n, \nu}=\sum_{\substack{m \equiv 0 \\ 2 m \equiv \nu}}^{\nu n} A(m, \nu, n)-\sum_{\substack{m=0 \\ 2 m=\nu n+1}}^{\nu n} A(m, \nu, n)
$$

where the congruences are $\bmod p$.

Proof. By the proof of Theorem 1 we get when n is even

$$
\begin{aligned}
e_{n, \nu} & =\frac{1}{p} \sum_{\gamma \in H}(1-\gamma) G_{n+\nu, n}(\gamma, \gamma)^{-1} \\
& =\frac{1}{p} \sum_{r \in H}(1-\gamma) \sum_{m=0}^{\nu n} A(m, \nu, n) \gamma^{\nu n-2 m} \\
& =\frac{1}{p} \sum_{m=0}^{\nu n} A(m, \nu, n) \sum_{\gamma \in H}\left(\gamma^{\nu n-2 m}-\gamma^{\nu n+1-2 m}\right) .
\end{aligned}
$$

But

$$
\sum_{r \in H} \gamma^{j}=\left\{\begin{array}{lll}
0 & \text { if } & j \neq 0(\bmod p) \\
p & \text { if } & j \equiv 0(\bmod p)
\end{array}\right.
$$

finishes the proof. The case when n is odd is similar.
Example 4. Combining Theorem 1 and Proposition 3 we can write down a purely combinatorial identity equivalent to Theorem 1.

Let n be fixed and define $\nu^{\prime}=p-n-\nu-1$. Then $e_{n, \nu}=e_{n, \nu^{\prime}}$ or

$$
\sum_{2 m \equiv \nu n} A(m, \nu, n)-\sum_{2 m \equiv \nu n+1} A(m, \nu, n)=\sum_{2 m \equiv \nu^{\prime} n} A\left(m, \nu^{\prime}, n\right)-\sum_{2 m \equiv \nu^{\prime} n+1} A\left(m, \nu^{\prime}, n\right)
$$

where the sums run over $0 \leqq m \leqq \nu n$ or $0 \leqq m \leqq \nu^{\prime} n$ respectively.
REMARK 5. Since $\Lambda^{r} V_{r+n} \cong S^{r} V_{n+1}$ we have also computed the number of nonfree components of the exterior powers for which similar symmetry relations are valid.

Example 6. Let us show how to compute the central number $e_{6,6}=18$ in the triangle for $p=19$ (this is the worst case). By the formula in the proposition

$$
e_{6, \mathrm{~B}}=A(18,6,6)-A(9,6,6)-A(28,6,6)=58-22-18=18
$$

As a check we also compute the decomposition

$$
S^{6} V_{7}=2 V_{1}+3 V_{5}+2 V_{7}+4 V_{9}+V_{11}+3 V_{13}+2 V_{15}+V_{17}+40 V_{19}
$$

and we read off $e_{6,6}=2+3+2+4+1+3+2+1=18$.

Acknowledgment. I would like to thank Robert Fossum who in spite of my ironic comments insisted in computing the triangles up to $p=11$. Thus he discovered the nice-looking pattern.

Reference

1. G. Almkvist and R. Fossum, Decompositions of exterior and symmetric powers of indecomposable $\boldsymbol{Z} / \mathrm{p} \boldsymbol{Z}$-modules in characteristic p and relations to invariants, to appear Séminaire P. Dubreil 1976-77, Springer Lecture Notes of Mathematics, No. 641.

Received September 22, 1977.
Lunds Universitets Math. Inst.
Box 725
S-220 07 Lund, Sweden

