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UNIFORM SUBGROUPS AND ERGODIC ACTIONS
OF EXPONENTIAL LIE GROUPS

ROBERT J. ZIMMER

We show that the restriction of an ergodic action of an
exponential solvable Lie group to a uniform subgroup is
still ergodic provided that the restriction to the commutator
subgroup is ergodic. This complements similar results pre-
viously obtained for semi-simple and nilpotent Lie groups.

l Introduction* Suppose G is a locally compact group which
acts ergodically on a standard Borel space with quasi-invariant
measure (S, μ), and that H is a closed subgroup of G. An import-
ant problem in ergodic theory is to determine when the restriction
of the G-action to H is still ergodic. For certain G and H answers
are known completely. For example, let G be a noncompact con-
nected simple Lie group with finite center and H — Γ a lattice sub-
group in G. If S is a transitive G-space, then C. C. Moore [6] has
shown that Γ will be ergodic on S if and only if the stability
groups of the G-action are not compact. If S is properly ergodic;
i.e., ergodic but not transitive (modulo null sets), then the author
has shown in [9] that in all such cases Γ is ergodic on S. If G is
a connected, simply connected, nilpotent Lie group, we also showed
in [9], based on results in [8], that the restriction of an ergodic
G-action to an arbitrary lattice subgroup Γ is ergodic provided that
the restriction to [G, G] is ergodic. The point of this paper is to
provide a similar result for exponential solvable Lie groups. By a
uniform subgroup of G we mean one whose quotient is compact
with a finite G-invariant measure. Our main result is the following.

THEOREM 1. Suppose G is a connected, simply connected, ex-
ponential solvable Lie group. Let S be an ergodic Gspace. If
[G, G] is also ergodic on S, then Γ is ergodic on S for every uniform
subgroup Γ C.G.

In proving the results in [9] stated above concerning simple and
nilpotent Lie groups, we made important use of certain properties
of the space of orbits of unitary representations of such groups.
Results of this type will be equally important for us in the present
situation and these will follow from recent work of R. Howe and
C. C. Moore [5].

2* Protective kernels. In this section we present some results
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on protective kernels of unitary representations that we will need
to prove Theorem 1. We suppose G is a locally compact second
countable group. By a representation of G we shall mean a strongly
continuous unitary representation of G on a separable Hubert space.
The set of equivalence classes of irreducible representations will as
usual be denoted by G. If M c G is a closed subgroup and σ is a
representation of M, we will denote the representation of G induced
from σ by indj(σ). The kernel of a representation π is the set of
elements with π(g) = I and the protective kernel of π, which we
denote by Pπ> is {g | π(g) e CI). The significance of Pπ for studying
the asymptotic behavior of π is demonstrated in [5]. Our first aim
here is to show that for exponential solvable Lie groups, Pπ cannot
be too large for suitable π.

We recall that a solvable Lie group is exponential if the ex-
ponential map from the Lie algebra into the group is a surjection.
For example, connected nilpotent Lie groups are exponential. Two
nonnilpotent exponential groups that arise in the study of the struc-
ture of a general exponential group are the following. Let Sx be
the ax + b group, i.e., S1 is a semi-direct product A(§)B, where A
is the multiplicative group of reals, B is the additive group of
reals, and A acts by automorphisms on B by multiplication. We
define S2 to be the semi-direct product R®C where the action of
R by automorphisms of C is given by t z — [exp(l — iσ)t]zf where
σ is a nonzero real number. The important role played by St and
S2 in the structure of a general exponential solvable group can be
seen from [1, Theorem VII. 2.2] or [2, Lemma 2.3] for example.

PROPOSITION 2. Let G be a connected, simply connected, expo-
nential solvable Lie group, and suppose that π is an infinite
dimensional irreducible unitary representation. Let Ha G be the
closure of the subgroup PK[G, G\. Then G/H is not compact.

Proof. We argue by induction on the dimension of G. We note
first that if π = indgo((j) where Go is a connected normal subgroup,
then PπczG0. It follows that the theorem is true for G nilpotent,
since π is induced by a representation of a connected subgroup of
G containing [G, G]. (See [1, Chapter V].) Thus, we suppose G is
exponential, nonnilpotent, and that the theorem is true for all con-
nected simply connected exponential Lie groups of strictly lower
dimension. Let N be the nilradical of G. If P-CzN, we are clearly
done since [G,G]dN as well. If not, choose XeL(G), the Lie
algebra of G, such that XgL(N) and exp(X) e Pπ. We note that
X must have some nonzero eigenvalue under the adjoint represen-
tation [4, p. 131]. By a result of Auslander and Green [2, Lemma
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2.3], there is a subgroup SczG isomorphic to either St or Sif and
such that the Lie algebra L(S) satisfies X e L(S) c L{G) with X a
regular element in L(S). By the Mautner phenomenon for St (see
[1, Chapter II], for example), exj>(X)ePx implies that π is the
identity on [S, S]. Let (ker π)0 be the connected component of the
identity in ker(π). It follows that Gx = (ker τr)0Π [G, G] is a connected
normal subgroup of nonzero dimension. The representation π then
factors to a representation π of G — G/G19 which is also connected,
simply connected, and exponential. Since we have a continuous

surjection G/Pπ[G, G] -+ G/P~[G, G], the result follows by the induc-
tive hypothesis.

We remark that Proposition 2 is not true for connected simply
connected solvable Lie groups in general, as one can easily see by
examining the representations of the universal covering group of
the group of (orientation preserving) rigid motions of the plane.

We now make some observations of a somewhat different type
concerning projective kernels. Suppose π 6 G is represented on a
Hubert space <%*(π), and let B and X be the vectors of norm 1 and
the projective space of £ίf{π) respectively. Then π defines an action
of G on B and X. An action of a locally compact group on a
standard Borel space will be called smooth if every ergodic (quasi-
invariant) probability measure is supported on an orbit. This is
known to be equivalent to a large number of other regularity con-
ditions [3] The hypothesis of the following result is clearly in-
spired by the results of Howe and Moore [5].

PROPOSITION 3. Suppose π is a representation of a locally
compact group G and that for each v, w e §tf(π)y (π(g)v\w) —• 0 as
g—>oo modulo G/Pπ. If π(Pπ) is closed, then the actions of G on B
and X are smooth.

Proof. As observed in [9, Proposition 2.2], it suffices to show
that the action on B is smooth. To do this, it suffices to show that
the orbits in B are norm closed [3]. Let v eB, gneG, and suppose
v gn-+ w eB. Then gn must be bounded when projected to G/Pπ.
There exists a section G/Pπ -* G that is bounded on compact sets,
and so there exist kn e G, {kn} bounded, such that gnkn e Pπ. We can
suppose kn—>k, so v gnkn-+ w k. Since gnkn acts by scalars and
since π(Pπ) is closed, there exists yePπ such that v y = lim V'gnkn.
Thus v y = w k and w is in the orbit of v.

We will want to apply Proposition 3 to exponential groups, and
hence need the following result.

PROPOSITION 4. If πeG where G is a connected simply con-
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nected exponential solvable Lie group, then π(Pπ) is closed.

Proof. If π is one-dimensional, this is clear, so we need con-
sider only the case in which π is infinite dimensional. We can
clearly reduce readily to the case in which K = ker(ττ) is discrete.
Using the existence of subgroups isomorphic to S£ and the Mautner
phenomenon as in Proposition 2, we see that we must then have
Pπ c N, where N is the nilradical of G. Furthermore, Pπ c Z(G),
the center of G. This follows from the fact that if <p:G-> G/K is
the natural projection, then φ~\Z(GrlK)) = Z{G) since G is connected
and K is discrete, and the observation that φ(Pπ) c Z(GjK). Thus,
Pπ a(NΓ\ Z(G))cz Z(N). By Mackey's analysis, we can represent π
by π = indS(tf) where M is a subgroup with NaMcG, σeM, and
σ\N is a multiple of a representation aeN. Since <% is irreducible,
we have that Z(N) c Pα,. By the subgroup theorem, we can write

SΘ
a gy where n e {oo, 1, 2, •} and α # refers to the action

G/M

of G on AT. Prom this we see that for x e Z(N), we have xePπ if
and only if a(gxg~ι) = α(a?) for all g eG, and in that case π{x) — α(#)
considered as scalars. For each g, let φg be the character of Z(N)
defined by φg(x) = a{gxg'1). Identifying (̂ΛΓ) as a vector group,
{<pg\geG} is then a connected subset of the dual vector space Z(N)*.
Therefore, we have xePπ if and only if {φg} is contained in an
affine space which is a translate of ker x c Z{N)*. From this it
becomes clear that π(Pz) = a(Pr) is either {1} or the entire unit
circle.

3. Proof of Theorem !• We now turn to the proof of
Theorem 1. We recall that the definition of an ergodic G-space
(S, μ) entails the presence of a jointly Borel (?-action on S under
which μ is quasi-invariant and ergodic. We shall emply below some
of the concepts and results from the cohomology theory of such
actions, for which the reader is referred to [7], [9], and the bilblio-
graphy of these papers.

We let N — [G, G] and suppose that the restriction of the
G-action on S to N is ergodic. Suppose that for some uniform sub-
group ΓcG,Γ is not ergodic on S. By [9, Theorem 4.2], the pro-
duct G-action on SxG/Γ is not ergodic. Since Γ is uniform, we
can write inάG(I) = J φ Σ ^ φ Σ ® ^ where χ* are nontrivial one-dimen-
sional representations of G and πt are infinite-dimensional irreducible
representations. It follows from [9, Proposition 3.1] that for at
least one χ* or πit the restriction of the representation to a cocycle
on SxG must contain the identity cocycle. If this were true for
some χif it would then follow that SxG/ΓΉ would not be ergodic,
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which is impossible since SxG/N is ergodic [9, Theorem 4.2] Thus
we can assume that some πt — π restricts to a cocycle on S x G
which contains the identity. It follows from [9, Theorem 3.2] that
(perhaps by passing to a G-invariant conull Borel subset of S) that
there is then a G-map φ: S -»X, where X is protective space in
έ%f(π). If x e X, let Gx be the stability group in G at x. It follows
from a result of Howe and Moore [5, Theorem 7.1] that Gx/Pπ is a
compact group. From [5, Theorem 7.1] and Propositions 3 and 4,
we know that G acts smoothly on X, and so every orbit is homeo-
morphic to G/Gx for some x in the orbit, and is locally closed in X
[3]. Consider now the iϊ-orbits in X where H = PπN. For each x,
GXH is closed in G. This follows from the fact that GXH is the
inverse image under the natural projection to G/Pπ of (GJPπ)(H/Pz)
and the latter is closed since GJPπ is compact. It follows that the
JEZ-orbit of x e X will be homeomorphic to the closed subset HGJGX

of GjGx, and will be a locally closed set in X. Since all iϊ-orbits
are locally closed, it follows that H acts smoothly on X [3]. But
φ*(μ) is ίf-quasi-invariant on X, and since N is ergodic on S, H
clearly is as well, which implies that φ*(μ) is ergodic under H and
by smoothness supported on an iT-orbit YcX. Let So •= φ~\Y), a
conull Borel set in S. Then the set {(s, g)\s e So, sgeSQ} is conull in
SxG. By Fubini's theorem, and since φ is a G-map, we conclude
that for almost all y eY, we have yg e Y for almost all g. Since
Y is G-homeomorphic to a closed subset of G/Gx for some x> this
implies that yg e Y for all g 6 G. In other words, Y contains a
G-orbit, and since it is an iϊ-orbit, we in fact have Y ^ G/Gx for
some x. But this implies GXH = G, so that the map GJPπ —> G/H
is surjective. This is impossible since GJPTί is compact while G/H
is not by Proposition 2. This contradiction completes the proof.
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