CAPACITIES OF COMPACT SETS IN LINEAR SUBSPACES OF R^n

Tord Sjödin

We consider two types of spaces, the Bessel potential spaces $L^p_{\alpha}(R^n)$ and the Besov spaces $\Lambda^p_{\alpha}(R^n)$, $\alpha > 0$, 1 . $Associated in a natural way with these spaces are classes of exceptional sets. We characterize the exceptional sets for <math>\Lambda^p_{\alpha}(R^n)$ by an extension property for continuous functions and prove an inequality between Bessel and Besov capacities.

The classes of exceptional sets for the spaces $L^{p}_{\alpha}(\mathbb{R}^{n})$ have been studied by the concept of capacity [5]. Capacity definitions of these classes are given in § 2.

Bessel potential spaces and Besov spaces in \mathbb{R}^n and \mathbb{R}^{n+1} are connected by restriction theorems. A short statement of these results is the following:

(1.1)
$$L^{p}_{\beta}(R^{n+1})|_{R^{n}} = \Lambda^{p}_{\alpha}(R^{n})$$

(1.2)
$$\Lambda^p_{\beta}(R^{n+1})|_{R^n} = \Lambda^p_{\alpha}(R^n) ,$$

where $\alpha > 0$, $1 , and <math>\beta = \alpha + 1/p$. (O. V. Besov [4] and E.M. Stein [7].)

The restriction theorem above gives relations between exceptional classes of different spaces L^p_{α} and Λ^p_{α} in \mathbb{R}^n and \mathbb{R}^{n+1} .

This enables us to prove an extension theorem for continuous functions on a compact set $K \subset \mathbb{R}^n$ into $\Lambda^p_{\alpha}(\mathbb{R}^n)$ (Theorem 1) analogous to the $L^p_{\alpha}(\mathbb{R}^n)$ – case contained in [6, Theorem 1]. Finally we prove an inequality between the capacities defining the classes of exceptional sets for $\Lambda^p_{\alpha}(\mathbb{R}^n)$ and $L^p_{\alpha}(\mathbb{R}^n)$ (Theorem 2).

2. Preliminaries and statements of the theorems. We consider the *n*-dimensional space \mathbb{R}^n of *n*-tuples $x = (x_1, x_2, \dots, x_n)$. Points in \mathbb{R}^{n+1} are written (x, x_{n+1}) , where $x \in \mathbb{R}^n$ and $x_{n+1} \in \mathbb{R}^1$. Then \mathbb{R}^n is identified as the subspace $\{(x, 0); x \in \mathbb{R}^n\}$ of \mathbb{R}^{n+1} . Compact sets are denoted by K. If $K \subset \mathbb{R}^n$ then K is a compact subset of \mathbb{R}^{n+1} as well. As usual, the space of *p*-summable functions is denoted by $L^p(\mathbb{R}^n)$ with norm $||\cdot||_p$. The Bessel kernel G^n_{α} in \mathbb{R}^n is the $L^1(\mathbb{R}^n)$ function whose Fourier transform equals $(1 + |x|^2)^{-\alpha/2}, \alpha > 0$.

The space of convolutions $U = G_{\alpha}^{n} * f$, where $f \in L^{p}(\mathbb{R}^{n})$, with the norm $||U||_{\alpha,p} = ||f||_{p}$, is denoted by $L_{\alpha}^{p}(\mathbb{R}^{n})$, $\alpha > 0$, $1 \leq p < \infty$. A function $U \in \Lambda_{\alpha}^{p}(\mathbb{R}^{n})$, $1 \leq p \leq \infty$, $0 < \alpha < 1$ if

$$|U|_{{}_{lpha,\,p}}=||U||_{{}_{p}}+\left(\int\!\!\!\int\!\!\!\frac{|U(x)-U(y)|^{p}}{|x-y|^{ap+n}}\,dxdy
ight)^{{}_{1/p}}$$

TORD SJÖDIN

is finite. (When no limits of integration are indicated it is understood that the integration is over the whole space.)

When $1 \leq \alpha < 2$ we replace the first difference by the second difference. Finally, for $\alpha \geq 2$, $U \in \Lambda^p_{\alpha}(R^n)$ if and only if $U \in L^p$ and $\partial U/\partial x_i \in \Lambda^p_{\alpha-1}(R^n)$, $1 \leq i \leq n$, with the norm

$$|U|_{lpha,p} = ||U||_p + \sum_{i=1}^n \left| rac{\partial U}{\partial x_i}
ight|_{lpha - 1,p}$$

We consider the following two capacities for compact sets $K \subset R^n$, $\alpha > 0$, 1 .

$$egin{aligned} &A^{lpha}_{lpha,\,p}(K) = \inf \, |arphi|^p_{lpha,\,p} \,, \ &B^{lpha}_{lpha,\,p}(K) = \inf \, ||arphi||^p_{lpha,\,p} \,, \end{aligned}$$

where, in both cases, the infimum is taken over all $\varphi \in C_0^{\infty}(\mathbb{R}^n)$ such that $\varphi(x) \geq 1$ for every $x \in K$. $C_0^{\infty}(\mathbb{R}^n)$ is the infinitely differentiable functions on \mathbb{R}^n with compact support.

The $B^{*}_{\alpha,p}$ -capacity has several equivalent definitions [2, 5]. We mention that

$$B^n_{\alpha,p}(K) = \inf ||f||_p^p$$

where infimum is over $f \in L^p_+$ such that $G^n_{\alpha} * f(x) \ge 1$ on K. (A lower superscript + indicates positive elements.) The sign ~ means that the ratio is bounded from below and above by positive real numbers. Further, $B^n_{\alpha,p}(K) = (\sup ||\mu||_1)^p$ where supremum is over positive Borel measures μ concentrated on K with total variation $||\mu||_1 < \infty$ and $||G^n_{\alpha} * \mu||_q \le 1$.

Here q = p/p - 1. See [5] where this capacity is denoted by $b_{\alpha,p}$. Let K be a compact subset of \mathbb{R}^n . We have proved that $\mathbb{B}^n_{\alpha,p}(K) = 0$ if and only if every continuous function on K is the restriction to K of a continuous function in $L^p_{\alpha}(\mathbb{R}^n)$ [6, Theorem 1]. We prove here the analogue for $\Lambda^p_{\alpha}(\mathbb{R}^n)$. Let C(E) denote the space of continuous functions on a set E in \mathbb{R}^n .

THEOREM 1. Let $1 , <math>0 < \alpha \cdot p \leq n$ and let K be a compact subset of \mathbb{R}^n . Then $A^n_{\alpha,p}(K) = 0$ if and only if every function $f_0 \in C(K)$ has an extension $f \in \Lambda^p_{\alpha}(\mathbb{R}^n) \cap C(\mathbb{R}^n)$.

When $\alpha p > n$, the capacities $A_{\alpha,p}^{n}$ and $B_{\alpha,p}^{n}$ are positive unless K is empty [3].

We denote the exceptional classes for $L^p_{\alpha}(\mathbb{R}^n)$ and $\Lambda^p_{\alpha}(\mathbb{R}^n)$, $1 , <math>\alpha \cdot p \leq n$, by $\mathfrak{B}^n_{\alpha,p}$ and $\mathfrak{U}^n_{\alpha,p}$ respectively [3]. It is well known that for $K \subset \mathbb{R}^n$:

262

 $K \in \mathfrak{U}^n_{\alpha,p}$ if and only if $A^n_{\alpha,p}(K) = 0$ $K \in \mathfrak{B}^n_{\alpha,p}$ if and only if $B^n_{\alpha,p}(K) = 0$.

See [3].

It is interesting to note that $\mathfrak{U}^n_{\alpha,p}$ and $\mathfrak{B}^n_{\alpha,p}$ can be proved to be identical for $2 - \alpha/n [1, Theorem 1] inspite of the fact that <math>L^p_{\alpha}(\mathbb{R}^n) \neq \Lambda^p_{\alpha}(\mathbb{R}^n)$ when $\alpha > 0$ and $p \neq 2$ [3].

THEOREM 2. Let $\alpha > 0$, $1 , and let K be a compact subset of <math>\mathbb{R}^n$. Then

$$B^n_{\alpha, p}(K) \leq c \cdot A^n_{\alpha, p}(K)$$
.

Constants depending on n, p, and α only, not necessarily the same at each occurance, are denoted by c.

REMARK. David R. Adams [1, p. 3] has proved that $A^n_{\alpha,p}(K) = 0$ implies $B^n_{\alpha,p}(K) = 0$ for $\alpha > 0, 1 . Theorem 2 makes it possible to compare the capacities <math>B^n_{\alpha,p}$ and $A^n_{\alpha,p}$ for all sets.

It will become clear from the proofs of Theorem 1 and Theorem 2 that the restriction theorem described in (1, 1) and (1, 2) is an essential tool. (An exact formulation is given in Theorem A is § 3.)

At this point we just note that Theorem 2 has an alternative formulation. Under the assumptions of Theorem 2,

$$B^n_{lpha,\,p}(K) \leqq c \cdot B^{n+1}_{eta,\,p}(K) \;,\; K \subset R^n \;, \qquad eta = lpha + rac{1}{p} \;.$$

The inclusions $L^p_{\alpha}(\mathbb{R}^n) \subset \Lambda^p_{\alpha}(\mathbb{R}^n)$ for $2 \leq p < \infty$ and $\Lambda^p_{\alpha}(\mathbb{R}^n) \subset L^p_{\alpha}(\mathbb{R}^n)$, for 1 , are well known [3]. They give immediately the inequalities

 $B^{\mathtt{n}}_{\scriptscriptstyle{lpha,\,p}}(K) \leq c \cdot A^{\mathtt{n}}_{\scriptscriptstyle{lpha,\,p}}(K)$, 1 ,

and

$$(2.1) A^n_{\alpha,p}(K) \leq c \cdot B^n_{\alpha,p}(K) , 2 \leq p < \infty$$

Combining Theorem 2 with (2.1) gives,

$$A^{n}_{\alpha, p}(K) \sim B^{n}_{\alpha, p}(K)$$
, $2 \leq p < \infty$.

3. Proof of Theorem 1. We first define two operators E and R in the following way. Let $\varphi \in C_0^{\infty}(\mathbb{R}^{n+1})$, then

$$R\varphi(x) = \varphi(x, 0), x \in \mathbb{R}^n$$
.

Let $f \in C_0^{\infty}(R^1)$ and $g \in C_0^{\infty}(R^n)$ be such that f(0) = 1 and $\int g(x) dx = 1$.

When $\psi \in C_0^{\infty}(\mathbb{R}^n)$ we put

$$E\psi(x, x_{n+1}) = f(x_{n+1}) \cdot \int \psi(x - x_{n+1} \cdot y) \cdot g(y) dy$$
,

 $x \in \mathbb{R}^n$, $x_{n+1} \in \mathbb{R}^1$. See for example, E. M. Stein [7].

THEOREM A. Let $\alpha > 0$, $1 , and <math>\beta = \alpha + 1/p$. Then

(a) the map R is a continuous map from $L^p_\beta(R^{n+1})(\Lambda^p_\beta(R^{n+1}))$ to $\Lambda^p_\alpha(R^n)$;

(b) the map E is a continuous map from $\Lambda^p_{\alpha}(\mathbb{R}^n)$ to $L^p_{\beta}(\mathbb{R}^{n+1})(\Lambda^p_{\beta}(\mathbb{R}^{n+1}))$.

This theorem is due to E.M. Stein [7] and O.V. Besov [4]. Let $K \subset R^n$, $\alpha > 0$, 1 , then

$$(3.1) B^{n+1}_{\beta,p}(K) \sim A^n_{\alpha,p} \sim A^{n+1}_{\beta,p}(K)$$

where $\beta = \alpha + 1/p$.

This is an immediate consequence of Theorem A and the definitions of the capacities.

Proof of Theorem 1. Let K be a compact subset of \mathbb{R}^n such that $A^n_{\alpha,p}(K) = 0$. Let $f_0 \in C(K)$. Since $B^{n+1}_{\beta,p}(K) = 0$, $\beta = \alpha + 1/p$, by (3.1), there is a function $f \in L^p_{\beta}(\mathbb{R}^{n+1}) \cap C(\mathbb{R}^{n+1})$ such that $f(x) = f_0(x)$ when $x \in K$ [6, Theorem 1]. Taking the restriction Rf we have $Rf \in \Lambda^p_{\alpha}(\mathbb{R}^n) \cap C(\mathbb{R}^n)$ by Theorem A.

Conversely suppose that every $f_0 \in C(K)$ has an extension $f \in \Lambda^p_{\alpha}(\mathbb{R}^n) \cap C(\mathbb{R}^n)$. Let $f_0 \in C(K)$ then $Ef \in L^p_{\beta}(\mathbb{R}^{n+1}) \cap C(\mathbb{R}^{n+1})$, $\beta = \alpha + 1/p$. By [6, Theorem 1] we must have $B^{n+1}_{\beta,p}(K) = 0$, which implies $A^n_{\alpha,p}(K) = 0$. The proof is complete.

4. Proof of Theorem 2. We begin with a lemma. Let $f \in L^p_+(R^{n+1})$ then we define $g(y) = \left(\int f(y, t)^p dt\right)^{1/p}$, $y \in R^n$.

The function g belongs to $L^p_+(\tilde{R}^n)$ and

$$||g||_p = ||f||_p$$
 .

(The notation $||\cdot||_p$ means that the integral defining the norm is taken over all the variables and over the whole space.)

LEMMA 1. Let $\alpha > 0, 1 , <math>\beta = \alpha + 1/p$. Then for $f \in L^p_+(R^{n+1})$,

$$G^{n+1}_{\scriptscriptstyleeta}st f(x,\,0) \leqq c \cdot G^n_{\scriptscriptstylelpha}st g(x) \;, \qquad x \in R^n \;.$$

In the proof of Lemma 1 we use some well known properties of the Bessel kernel $G^n_{\alpha}(r)$ (see for example [3]):

$$egin{array}{lll} G^n_lpha(r) \sim r^{lpha - n}, \ r \longrightarrow 0 \ , & ext{for} \quad 0 < lpha < n \ G^n_lpha(r) \sim r^{(lpha - n - 1)/2} {f \cdot} e^{-r} \ , & r \longrightarrow \infty \ , & ext{for} \quad lpha > 0 \ . \end{array}$$

Proof of Lemma 1. Suppose $\alpha \cdot p \leq n$ and let $f \in L^p_+(R^{n+1})$ and $g(y) = \left(\int f(y, t)^p dt\right)^{1/p}$. We have

$$G^{n+1}_{eta}*f(x,\,\mathbf{0})=\iint G^{n+1}_{eta}(\sqrt{|x-y|^2+t^2})\cdot f(y,\,t)dydt\;.$$

For $|y - x| \leq 1$ we get the estimate:

$$egin{aligned} &\int\!G_{eta}^{n+1}(\sqrt{|x-y|^2+t^2})\cdot f(y,t)dt &\leq c\cdot\!\int\!(\sqrt{|x-y|^2+t^2})^{eta-n-1} \ &\cdot f(y,t)dt \ &= c\cdot|x-y|^{eta-n}\cdot\int\!(\sqrt{1+t^2})^{eta-n-1}\cdot f(y,|x-y|\cdot t)dt \ &\leq c\cdot|x-y|^{eta-n}\cdot\left(\int\!\!f(y,|x-y|\cdot t)^pdt
ight)^{1/p} \ &= c\cdot|x-y|^{eta-n-1/p}\cdot\left(\int\!\!f(y,t)^pdt
ight)^{1/p} \ &\leq c\cdot G_{lpha}^n(x-y)\cdot g(y) \ . \end{aligned}$$

For $|y - x| \ge 1$ we get

$$\begin{split} &\int G_{\beta}^{n+1}(\sqrt{|x-y|^2+t^2})f(y,t)dt \leq c \cdot \int (\sqrt{|x-y|^2+t^2})^{(\beta-n-2)/2} \\ &\cdot e^{-\sqrt{|x-y|^2+t^2}} \cdot f(y,t)dt \\ &= c \cdot |x-y|^{(\beta-n)/2} \cdot \int (\sqrt{1+t^2})^{(\beta-n-2)/2} \cdot e^{-|x-y| \cdot \sqrt{1+t^2}} \\ &\cdot f(y,|x-y| \cdot t)dt \;. \end{split}$$

We divide the last integral in two parts

$$I = \int_{-1}^{1}$$
 and $II = \int_{|t|\geq 1}$.

Then using the inequality $\sqrt{1+x} \ge 1 + x/3$, $0 \le x \le 1$ we get

$$\begin{split} I &\leq e^{-|x-y|} \cdot \int_{-1}^{1} e^{-|x-y| \cdot t^{2}/3} \cdot f(y, |x-y| \cdot t) dt \\ &\leq |x-y|^{-1/2} \cdot e^{-|x-y|} \cdot \int e^{-t^{2}/3} \cdot f(y, \sqrt{|x-y|} t) dt \\ &\leq c \cdot |x-y|^{(-1-1/p) \cdot /2} \cdot e^{-|x-y|} \cdot g(y) \,. \end{split}$$

Further we have

$$egin{aligned} II &\leq e^{-\sqrt{2} \cdot |x-y|} \cdot \int (\sqrt{1+t^2})^{(eta-n-2)/2} \cdot f(y, |x-y| \cdot t) dt \ &\leq c \cdot e^{-\sqrt{2} \cdot |x-y|} \cdot |x-y|^{-1/p} \cdot g(y) \ . \end{aligned}$$

Collecting our results we have

$$\int G^{n+1}_{\beta}(\sqrt{|x-y|^2+t^2)} \cdot f(y,t) dt \leq c \cdot G^n_{\alpha}(x-y) \cdot g(y)$$

which gives

$$G^{n+1}_{\scriptscriptstyleeta}*f(x,\,0)\leq c\cdot G^n_{\scriptscriptstylelpha}*g(x)$$
 ,

where $\beta = \alpha + 1/p$.

The case $\alpha \cdot p > n$ is much simpler and the proof is omitted.

Proof of Theorem 2. According to the relation (3.1) it suffices to prove that for every $f \in L^p_+(R^{n+1})$ such that $G^{n+1}_{\beta} * f(x, 0) \ge 1$ for $x \in K$, there exists $g \in L^p_+(R^n)$ such that $G^n_{\alpha} * g(x) \ge 1$ for $x \in K$ and

$$||g||_p \leq c \cdot ||f||_p$$
.

But this follows immediately from Lemma 1. This proves the theorem.

References

1. David R. Adams, On the exceptional sets for spaces of potentials, Pacific J. Math., 52 (1974), 1-5.

2. David R. Adams and John C. Polking, The equivalence of two definitions of capacity, Proc. Amer. Math. Soc., **37**:2 (1973), 529-534.

3. N. Aronszajn, F. Mulla and P. Szeptycki, On spaces of potentials connected with L^{p} -classes, Ann. Inst. Fourier, 13 (1963), 211-306.

4. O. V. Besov, On a certain family of functional spaces. Imbedding and continuation theorem, Dokl. Akad. Nauk., **126** No. 6 (1959), 1163-1165.

5. N. G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand., **26** (1970), 255-292.

6. T. Sjödin, Bessel potentials and extension of continuous functions on compact sets, Ark. Mat., 13 (1975), 263-271.

7. E. M. Stein, The characterization of functions arising as potentials I, Bull. Amer. Math. Soc., 67 (1961), 102-104. II (ibid.), 68 (1962), 577-582.

Received October 8, 1976. University of Umea Sweden

266