
PACIFIC JOURNAL OF MATHEMATICS
Vol. 78, No. 1, 1978

CAPACITIES OF COMPACT SETS IN LINEAR
SUBSPACES OF Rn

TORD SJODIN

We consider two types of spaces, the Bessel potential
spaces Lp{Rn) and the Besov spaces Ap(Rn), a > 0, 1 < p< co.
Associated in a natural way with these spaces are classes
of exceptional sets. We characterize the exceptional sets
for Λp(Rn) by an extension property for continuous functions
and prove an inequality between Bessel and Besov capacities.

The classes of exceptional sets for the spaces Lp(Rn) have been
studied by the concept of capacity [5]. Capacity definitions of these
classes are given in § 2.

Bessel potential spaces and Besov spaces in Rn and Rn+1 are
connected by restriction theorems. A short statement of these
results is the following:

(1.1) L%Rn+1)\Bn =

(1.2) Λ%R^)\Rn =

where α>0, l < p < o o , and β = a + 1/p. (0. V. Besov [4] and E.M.
Stein [7].)

The restriction theorem above gives relations between exceptional
classes of different spaces Lζ and Λl in Rn and Rn+1.

This enables us to prove an extension theorem for continuous
functions on a compact set KaRn into Λp(Rn) (Theorem 1) analogous
to the Lp(Rn) — case contained in [6, Theorem 1]. Finally we prove
an inequality between the capacities defining the classes of excep-
tional sets for Λl(Rn) and Lp

a(Rn) (Theorem 2).

2* Preliminaries and statements of the theorems* We consider
the w-dimensional space Rn of w-tuples x = (χlf x2, •••, x j . Points in
Rn+1 are written (x, xn+1)9 where xeRn and xn+1 e R1. Then Rn is
identified as the subspace {(x, 0); x eRn} of Rn+1. Compact sets are
denoted by K. If KaRn then K is a compact subset of Rn+1 as
well. As usual, the space of p-summable functions is denoted by
Lp(Rn) with norm || | |p. The Bessel kernel Gn

a in Rn is the L\Rn)-
function whose Fourier transform equals (1 + | x \2)~a/\ a > 0.

The space of convolutions U = (•?«*/, where / e Lp(Rn), with the
norm ||U\\atP = | | / | | p , is denoted by Lp(Rn), a> 0, l^p<^. A func-
tion UeΛp

a(Rn), l ^ p ^ o o , o < α < l i f
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is finite. (When no limits of integration are indicated it is under-
stood that the integration is over the whole space.)

When l<>a<2 we replace the first difference by the second dif-
ference. Finally, for a ^ 2, UeΛp(Rn) if and only if UeLp and
d U/dxt e Λζ^R71), 1 <: i <; n, with the norm

\U\at, = \\U\\, + f> ψ-
i = l UXi oc—l,p

We consider the following two capacities for compact sets KaRn,
a>0, l < p < c o ,

= inf \<p\*tP ,

where, in both cases, the infimum is taken over all φeC™(Rn) such
that φ(x) ;> 1 for every x e K. C~(Rn) is the infinitely differentiate
functions on Rn with compact support.

The 2?£p-capacity has several equivalent definitions [2, 5]. We
mention that

BUK) = inί\\f\\l

where infimum is over feL\ such that Gl*f{x) ^ 1 on K. (A lower
superscript + indicates positive elements.) The sign ~ means that the
ratio is bounded from below and above by positive real numbers.
Further, B£lP(K) — (sup ||j«||i)p where supremum is over positive Borel
measures μ concentrated on K with total variation H μ i ! ^ 0 0 and

Here q = p/p — 1. See [5] where this capacity is denoted by
batP. Let ί be a compact subset of Rn. We have proved that
Ba,P(K) = 0 if and only if every continuous function on K is the
restriction to K of a continuous function in Lζ(Rn) [6, Theorem 1].
We prove here the analogue for Λζ(Rn). Let C(E) denote the space
of continuous functions on a set E in Rn.

THEOREM 1. Let 1 < p <oo, o < a*p ^ n and let K be a com-

pact subset of Rn. Then A%tP{K) = 0 if and only if every function
foeC(K) has an extension feΛp

a(Rn) n C(Rn).

When ap > n, the capacities A^p and B£tP are positive unless K
is empty [3].

We denote the exceptional classes for Lζ(Rn) and Λ%(Rn), l<p<ce,
a pίkn, by 35«>?, and U£p respectively [3]. It is well known that
for KczRn:
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KeU2,p if and only if AlP{K) = 0

Ke®;,p if and only if B*P(K) = 0 .

See [3].
It is interesting to note that U*>p and 33£fP can be proved to be

identical for 2 — a/n<p<°° [1, Theorem 1] inspite of the fact that
Li(Rn) Φ ΛP(R") when a > 0 and p Φ 2 [3].

THEOREM 2. Let a > 0, 1 < p < oo, αraϊ Zβί K be a compact
subset of Rn. Then

Constants depending on n, p, and a only, not necessarily the
same at each occurance, are denoted by c.

REMARK. David R. Adams [1, p. 3] has proved that A2,P(K) = 0
implies B£)P(K) = 0 for a> 0, 1 < p <oo. Theorem 2 makes it pos-
sible to compare the capacities B2tP and A%)P for all sets.

It will become clear from the proofs of Theorem 1 and Theorem
2 that the restriction theorem described in (1, 1) and (1, 2) is an
essential tool. (An exact formulation is given in Theorem A is § 3.)

At this point we just note that Theorem 2 has an alternative
formulation. Under the assumptions of Theorem 2,

B;P(K) ^ c-Bft\K) , KcRn , β = a + — .
P

The inclusions Lp

a(Rn) a Λp

a(Rn) for 2 ^ p < oo and Λp

a(Rn) c.Lζ(Rn), for
>^2, are well known [3]. They give immediately the inequalities

BlP{K) ^ c A;,P(K) , 1 < p ^ 2 ,

and

(2.1) AlP{K) ^ c BZ,p{K) , 2 g p<

Combining Theorem 2 with (2.1) gives,

2 rg p <

3* Proof of Theorem 1* We first define two operators E and
R in the following way. Let φeC^(Rn+1)f then

Rφ(x) = 9>(α, 0), a? e Rn .

Let feC^R1) and geC^(Rn) be such that /(0) = 1 and ίflr(a?)da? = 1.
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When ψ 6 C~(Rn) we put

Eψ(χf χn+ί) = f(χn+i) jτK& - χ«+i v) g(v)dy ,

a? e 22*, # Λ + 1 e 221. See for example, E. M. Stein [7].

THEOREM A. Let a>0,l<p<oof and β = a + 1/p. Then

(a) the map R is a continuous map from Lp

β(Rn+1)(Λp

β(Rn+1)) to
Λp(Rn);

(b) the map E is a continuous map from Λp(Rn) to
Lp

β(Rn+1)(Λp

β(Rn+1)).

This theorem is due to E.M. Stein [7] and O.V. Besov [4]. Let
K c Rn, a > 0, 1 < p < oo, then

(3.1) BfX\K) - AlP - AZtXK)

where β — a + 1/p.
This is an immediate consequence of Theorem A and the defini-

tions of the capacities.

Proof of Theorem 1. Let Z be a compact subset of Rn such
that AlP(K) = 0. Let /0 e C(K). Since BfZ\K) = 0, /9 = α + 1/p, by
(3.1), there is a function f e Lp

β(Rn+1) Γ\ C(Rn+1) such that /(a?) =/0(a?)
when iceUL [6, Theorem 1]. Taking the restriction Rf we have
Rf e Λp

a(Rn) f) C(Rn) by Theorem A.

Conversely suppose that every foeC(K) has an extension
fe Λl{Rn) n C(Λ ). Let /0 e C(JΓ) then EfeLp

β(Rn+ί) n C(i2^+1), /3-α+l/p.
By [6, Theorem 1] we must have BfX\K) = 0, which implies

= 0. The proof is complete.

4* Proof of Theorem 2* We begin with a lemma. Let

feLl(Rn+1) then we define flr(y) = Q/(̂ /, tydtj/P, yeR\

The function gr belongs to L\{Rn) and

llflrll, = 11/11,.

(The notation || ||p means that the integral defining the norm is
taken over all the variables and over the whole space.)

LEMMA 1. Let a > 0, 1 < p < oo, β = a + 1/p. Then for
feLp

+(Rn+1),

Gn

β

+1 * f(x, 0) ^ c G; * flr(a?) , xeR* .



CAPACITIES OF COMPACT SETS IN LINEAR SUBSPACES OF Rn
265

In the proof of Lemma 1 we use some well known properties
of the Bessel kernel Gl(r) (see for example [3]):

Gn

a(r) ~ ra~n, r > 0 , for 0 < a < n

G*(r) ~ r ( β " Λ " 1 ) / a β""r , r • oo , for a > 0 .

Proof of Lemma 1. Suppose a p <̂  n and let feLp

+(Rn+ί) and
/r v/p

g(y) = [y(y, t)pdtj . We have

Gn

β

+1*f(x, 0) = §G*β

+1<y\x ~ y\Λ

For \y — α?| ̂  1 we get the estimate:

, t)dydt .

- y , t)dt ^ c - y\2

= c |a? - -1 f(y, \x-y\ t)dt

tyatj
\1/P

tydt)

For \y ~

c - Glix - y) g(y)

# 1 ^ 1 we get

-y\2 + ^ c \{V\x β-n-2)/2

x - y\ t)dt.

We divide the last integral in two parts

I - [ and II =
J-i

Then using the inequality l/ l + x ^ 1 + α/3, 0 ^ a; ̂  1 we get



266 TORD SJϋDIN

Further we have

TTTψ-n-*)/2 f(y, \x - y\ t)dt

^c e-VΊ lχ-yl-\x -y\~1/p-g(y) .

Collecting our results we have

-i/f + tf). f(y, t)dt rg e Gl{x - y). g{y)

which gives

Gn

β

+1*f(x,Q)^c Gn

a*g(x),

where β = a + 1/p.
The case a p > n is much simpler and the proof is omitted.

Proof of Theorem 2. According to the relation (3.1) it suffices
to prove that for every feLp

+(Rn+1) such that Gn

β

+1*f(x, 0) ^ 1 for
x e K, there exists g e Lp

+(Rn) such that Gl * g(x) ^ 1 for x e K and

But this follows immediately from Lemma 1. This proves the
theorem.
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