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CONTRACTION SEMIGROUPS IN LEBESGUE SPACE

RYOTARO SATO

Let (Tt:t>0) be a strongly continuous semigroup of
linear contractions on LX{X, Σ, μ), where (X, Σ, μ) is a a-
finite measure space. Without assuming the initial continuity
of the semigroup it is shown that (Tt: t>Q) is dominated by
a strongly continuous semigroup (St: t>0) of positive linear
contractions on L^X.Σyμ), i.e., that \Ttf\^St\f\ holds a.e.
on X for all /eL^X, J£, μ) and all t>0. As an application,
a representation of (Tt:t>0) in terms of (St: t>0) is obtain-
ed, and the question of the almost everywhere convergence
of 1/6 [ Ttfdt as δ-*+0 is considered.

Jo

Introduction. Let (X, Σ, μ) be a ^-finite measure space and let
LP(X) — LP(X, Σ, μ), 1 <; p <; oo, be the usual Banach spaces of real
or complex functions on (X, Σ, μ). For a set AeΣ, LP(A) denotes
the Banach space of all Lp(X)-ίunctions that vanish a.e. on X — A.
If feLp(X), we define supp / to be the set of all xeX at which
f(x) Φ 0. Relations introduced below are assumed to hold modulo
sets of measure zero. A linear operator T on LP(X) is called a
contraction if || T\\p <; 1, and positive if / ^ 0 implies Tf ^ 0.

Let ( T t : ί > 0 ) be a strongly continuous semigroup of linear
contractions on LX{X), i.e.,

( i ) each Tt is a linear contraction on Lι{X)f

(ii) TtT8 = Tt+S for all t, s > 0,
(iii) for every feL,(X) and every s>0, l i m ^ . | | Γ t / - TJW^O.

Under the additional hypothesis of strong-lim^+o Tt = / (I
denotes the identity operator), Kubokawa [6] proved that there
exists a strongly continuous semigroup (St: t > 0) of positive linear
contractions on Lt(X) such that \TJ\ ^ St\f\ a.e. on X for all fe
LX{X) and all t > 0. The main purpose of this paper is to prove
the same result, without assuming any additional hypothesis. We
then obtain a representation of (Tt:t>0) in terms of (St:t>0)
which is a continuous extension of Akcoglu-BruneΓs representation
([1], Theorem 3.1), and a decomposition of the space Xfor (Tt: t>0)
which asserts the existence of a set YeΣ such that TtfeLx(Y) for
all feLγ{X) and all t > 0 and also such that if feL^Y) then TJ

S b

Ttfdt
0

converges a.e. on X as b-* +0.
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Existence theorem* Our main result is the following existence
theorem.

THEOREM 1. If (Tt:t > 0) is a strongly continuous semigroup
of linear contractions on L^X), then there exists a strongly con-
tinuous semigroup (St:t > 0) of positive linear contractions on
L1(X)y called the semigroup modulus of (Tt: t > 0), such that

(1) \TJ\^St\f\ (fel^X), t>0).

If 0 S feL^X), St is given by

( 2 ) S J = s u p j r < t . - τ t j : ± tt = t f t t > 0 9 n ^

where τt denotes the linear modulus of Tt in the sense of Chacon-
Krengel ([3]).

Proof. For 0 ^feL^X) and t > 0, put

M(t, f) = K τtj: Σ ** - *, «< > 0, n ^

Since ||τtId = || Tt\\x ^ 1 and τtτsf ^ r ί + s/ for all t, s > 0, we see
that if #! and g2 are in Λf(ί, / ) , then there exists a function h in
Af (*, /) such that

fw g2) ^ h and || /̂  ||x S \\f\\, .

Thus it is possible to define a function Stf in L^X) by the relation:

Stf = sup {g: g e M(t, /)} .

It is clear that \\SJ\\, S II/IL and SJ ^ 0. It is easily seen that
if c is a positive constant and / and g are nonnegative functions in
L^X), then

St(cf) = cSJ and St(f + g) = S J + S^ .

Therefore St may be regarded as a positive linear contraction on
Lλ(X). By the definition of St it follows that

S tS8 - St+8 (t, s > 0) .

It is now enough to prove the strong continuity of (St:t > 0).
To do this, we first show the following result:

(3) lim | | r t / - τ . / | | ι = 0 (/eLX(X), s > 0) .

To see this, we may and do assume without loss of generality
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that / is nonnegative. Let ε > 0 be given. By [3] there exist
functions gi e L^X), 1 <* i <^ n, such that

I fir* I ̂ / a n d \\τj - max | T.gt\ ||L < ε .

Since (Tt:t>0) is strongly continuous on (0, o°)> we can take a
δ > 0 so that \s - t\ < δ implies || Tsgf - T^IL < e/n for each 1 ^
i<Ln. Fix a ί > 0 so that \s - t\ < δ. We then have || | Γ s ^ | -
I Ttgt\ id <̂  || T8gt - Γ^H,. < ε/w for each 1 ^ i ^ n, and so it follows
that

| | τ . / - m a x | T ί f l r < | | | 1 < 2 6 .

By this and the fact that τj ^ max | Ttgt\f we get

\\(τtf - τj)-\\t ^ | |(max | Ttgt\ - r s /)- | | t < 2ε .

Therefore

(4) lim||(r l/-r f/)-||1 = 0.
t->s

Next, let ί > s and write ί = s + α. Since

ll(τβτ i/-τΛf)-||1^||(r ί/-τ./)-||1,

it follows that

(5) lim||(rβr./-r./)1|1 = 0.
o—»-f-0

On the other hand,

τjj = (̂ α ŝ/ ~ ^ s /) + - (JΛ/ - τβ/)" + τj .

Thus, by (5), we have that

IKW - r./)+||1 ^ ||(rβr./ - r./)+||1
£ \\(τaτsf - τJYW, + || W I L - IIΓ./H,

as α—> +0, because [|τβ11,. <; 1. This and (4) establish (3).
We next show that

(6) lim | | S l / - S . / | | 1 . = 0 (/ 6 L3(X), s > 0) .
ί-+s+0

To see this, we may and do assume without loss of generality
that / is nonnegative. Let ε > 0 be given, and choose a function
g e M(s, f) so that
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where g is of the form

g = τ h τ t j , j t tt = s , a n d t t > 0 ( l ^ i ^ n ) .

Let sn > tn. Then

\\g - ^...τ^.r./IL = ll^ - r ^ r , / - r^/)^

and hence, by (3),

(7) Γ

Let us write t = tί + + £„_! + sΛ(> s). Since

Stf - SJ ^ (τv - - v ^ / - flr) + ((/ - S./) ,

it follows that

(SJ - Sjy ^\τh. •τ^τ.J ~ g\ + \g - SJ\ .

This and (7) yield that

lim sup IKS,/ -S./)-| !i
<-*s-:-o

Since ε is arbitrary,

Hence

\\(SJ - S./ΓH, + H

IKS./ - S.f)-\\i

L - HS./IL

as t > s + 0, because \\SJ\\, ^ \\SJ\\, for all t > s. This proves (6).
Using (6), it is now direct to show that the semigroup (St: t>0)

is strongly continuous on (0, oo)f and we omit the details.

THEOREM 2. Let (Tt: t > 0) and (St: t > 0) be as in Theorem 1.
Then Tt converges strongly as t —> +0 i/ ci7id oni?/ if St converges
strongly as t--> +0.

Proof. If To = strong-lim^+o T% exists, then (Tt:t^O) is a
semigroup and strongly continuous on [0, co). Hence we can apply
the same arguments as in the proof of Theorem 1 to obtain that
lim^+o 11 Si/ — Γo/Hi = 0 for all f eL^X), where τ0 denotes the linear
modulus of 2Γ0.
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Conversely, if So = strong-lim^+0 St exists, then, for all f eLx(X),
the set { Γ ί / : 0 < ί < l } is weakly sequentially compact in Lx(X)f

since \Ttf\^St\f\ and lim^+0 \\St\f\ - S0\f\ \\x = 0 (cf. Theorem
IV. 8.9 in [4]). Thus, by Lemma 1 of the author [8], Tt converges
strongly as t -» + 0.

The hypothesis of being a contraction semigroup can not be
weakened in Theorem 1. To see this, we give the following example,
motivated by S. Tsurumi.

EXAMPLE. Let X be the positive integers, Σ all possible subsets
of X, and μ the counting measure. Let ε > 0 be given. By an
elementary computation, there exists a real constant r, with 1/e <
r < 1, such that

( 8) 1 < sup {r*(| cos ί i + | sin 11): t ^ 0} < 1 + e .

For / e L,(X) and t > 0, define

TJ(2n - 1) = rnt[f(2n - 1) cos nt - f(2n) sin nt] (n ^ 1)

and

Ttf(2n) = rnt[f(2n - 1) sin nt + f(2n) cos nt] (n ^ 1) .

It is easily seen that (Tt:t > 0) is a strongly continuous semigroup
of linear operators on L,(X) satisfying || T^ ^ 1 + e for all t>0.
Furthermore

(9)

To see this, let ln denote the indicator function of {n}. Then

m m

as has been pointed out by S. Koshi. Hence (8) implies (9).
By (9) it is now immediate to see that (Tt:t>0) can not be

dominated by a semigroup of positive linear operators on Lt(X).

Representation theorem* Let (Tt: t > 0) be a strongly contin-
uous semigroup of linear contractions on Lt(X). It is well known
that given an feL^X) there exists a scalar function g(t, x) on (0,
w ) χ l , measurable with respect to the product of Lebesgue
measure and μ, such that for each t > 0, g(t, x), as a function of
x9 belongs to the equivalence class of Ttf. In the sequel g(t, x) will
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be denoted by TJ(x). Using Fubini's theorem, we see that there
exists a set E(f) e Σ, with μ(E(f)) = 0, such that if x $ E(f) then
the scalar function 1i—• TJ(x) is Lebesgue integrable on every finite

S b

TJ(x)dt, as a function of x, belongs
S a Γb

TJdt, where I TJdt denotes the Boch-
a Jα

ner integral of the vector valued function t \-* TJ with respect to
Lebesgue measure on (α, 6).

If (St: t > 0) denotes the semigroup modulus of (Tt: t >0), then
the ratio ergodic theorem holds for (St:t > 0), i.e., for any / and
g in L^X), with g ^ 0, the ratio ergodic limit

/Cb \ I/Cb

lim \ SJ(x)dt )/(\ Stg(x)dt

exists and is finite a.e. on the set ]x: \ Stg(x)dt > 0κcf. [5]). Thus
v Jo )

Hopf's decomposition holds, i.e., X decomposes into two measurable
sets C and D, called respectively the conservative and dissipative
parts of X, such that if 0 £ g e Lt(X) then I Stg(x)dt = o o 0 r 0 a.e.

S oo JO

Stg(x)dt<c>o a.e. on D. A set A e Σ is called invariant
(under (St: t > 0)), if StL^A) c LX(A) for all t > 0. It is immediate
that A is invariant under (St: t > 0) if and only if it is invariant
under (Tf:t>0). It is known (cf. [7]) that C is invariant and the
class Σi of all invariant subsets of C forms a α-field in the class of
all measurable subsets of C.

We are now in a position to state our representation theorem.
THEOREM 3. Let (Tt:t > 0) be a strongly continuous semigroup

of linear contractions on L^X) and (St: t > 0) denote the semigroup
modulus of (Tt: t > 0). Let C denote the conservative part of X with
respect to (St: t > 0) and let Σt be the σ-field of invariant subsets of
C. Then there exists a (unique) set Γ e Σt and a function u e LJJΓ)
such that

( i ) \u\=l a.e. on Γ and TJ = (l/u)St(uf) for all feLt(Γ)
and all t > 0,

(ii) if Δ — C — Γ', then the closed linear hull of {/ — TJ\
feL^A), t>0} is L^Δ),

(iii) a function veL^Γ), with | i ; | > 0 a.e. on Γ, satisfies
TJ - (l/v)St(vf) for all f e L^Γ) and all t>0 if and only if
there exists a function r e L^Γ) such that | r | > 0 a.e. on Γ, Sfr =
r a.e. on Γ for all t > 0, and v — ru.

Proof. Let heL^C) be such that Tt*h = h a.e. on C for all
t > 0. Since \h\ = | TV^I ^ τf \h\ £ St*\h\ and the conservative part
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of X with respect to each single operator St is exactly C (cf. [7]),
it follows that \h\ = St*\h\ a.e. on C for all t > 0, and hence supp
heΣi. By this, we can find a function heL^C) such that Tt*h = h
a.e. on C for all ί > 0 and also such that if feL^C) satisfies
T?f - / a.e. on C for all t > 0, then supp / c supp h. Put Γ =
supp ft and define usLJJΓ) by u = h/\h\ a.e. on Γ. If 0 ^ feL^Γ)
and £ > 0, then, as in [1],

5(S*/)|Λ|d/< = \fS*\h\dμ = \f\h\dμ = \(f/u)hdμ

= \{f!u)T?hdμ = ^Tt(f/u)u\h\dμ .

Hence SJ = Tt(f/u)u, since S J ^ | Tt(f/u)\ - | Tt(f/u)u\, and (i) is
established.

To prove (ii), let heL^J) be such that ί(/ - TJ)hdμ = 0 for
all / 6 LX(J) and all ί > 0. Then T?h = fe a.e. on zf (and hence on
C) for all ί > 0. Therefore, by the definition of Γ, h — 0 a.e. on
A, and (ii) follows from the Hahn-Banach theorem.

To prove (iii), let veLJίΓ) and \v\ > 0 a.e. on Γ. Put r = v/%.
Then T,/ = (l/v)St(vf) for all / e A(Γ) and all t > 0 if and only if
(l/ru)St(ruf) = (l/u)St(uf) for all / e LX(Γ) and all ί > 0, or equiv-
alently, St(rf) - rS,/ for all / e L^Γ) and all t > 0, since {%/:
feLx{Γ)} = L^Γ). And this is equivalent to the fact that S?τ = r
a.e. on Γ for all £ > 0, by Lemma 2.4 in [1],

The proof is complete.

Decomposition theorem* It is shown that, after eliminating
an uninteresting subset of X, a strongly continuous semigroup (Tt:
t > 0) of linear contractions on Lt(X) can be made strongly contin-
uous at the origin and the local ergodic theorem holds.

THEOREM 4. Let (Tt:t > 0) be a strongly continuous semigroup
of linear contractions on LX(X). Then X can be written as the
union of two disjoint measurable sets Y and Z with the following
properties:

( i ) For every feL^X) and every t > 0, TJeL^Y).
(ii) For every feL^Y), Ttf converges in the norm topology

of LX(X) as £ —» +0 and

lim-M TJ(x)dt
b~>+0 0 JO

exists a.e. on X.
(iii) For every feLx(Y) with / > 0 a.e. on Y,
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Y = U fa Ti/./(aO > 0} .

Proof. Let (St:t> 0) be the semigroup modulus of (Tt: t > 0).
Fix an h e Lt(X) with h > 0 a.e. on X, and put

r = U {χ s1/nh(χ) > 0}

and Z = X — Y. It is easily seen that Stf eLt(Y) and hence Ttf e

L,(Y) for all feL^X) and all ί > 0. If we write ho=\lSthdt, then

AoeL^F), ô > 0 a.e. on Y, and lim^+0 IISA - feolli = 0.° Therefore,
by approximation, the set {Stf: 0 < t < 1} is weakly sequentially
compact in Lt(X) for all 0 ̂ feL^Y), from which we observe that
the set{Ttf: 0 < t < 1} is also weakly sequentially compact in LX(X)
for all feL^Y), since I T J I ^ S J / I for all t > 0. Hence Lemma
1 of the author [8] implies that Ttf converges in the norm topology
of LX(X) as t-> +0 for all feL^Y).

To prove the second part of (ii), we may and do assume with-
out loss of generality that X — Y. Put Γo = strong-lim^+o Tu and
let / G Lt(X). Then / can be written as / = g + h, where g = Γo/
and Γ.Λ = 0 for all t ^ 0, because TtT0 = T0Tt = Tt for all t ^ 0.
It follows that

lim \\(f - h) - M*TtgdtW, == 0 .
α-*+0 & JO

S α

Γ^cίί, then it is easily seen that
0

Hm — [hTJo(x)dt = fa(x) - h(x) a.e.
6^+0 0 JO

on X. On the other hand, by Akcoglu-Chacon's local ergodic theo-
rem ([2]),

sup
0<6<l

M"Ttf(x)dt
0 Jo o<6<i

<: sup 4 \ St\f\(x)dt < °o a.e.

on X. Thus, the second part of (ii) follows from Banach's conver-
gence theorem (cf. Theorem IV. 11. 3 in [4]).

For the proof of (iii), let feL^Y), / > 0 a.e. on Y. Put

P = U {x: Ti/J(x) > 0}

Clearly, PaY, and by the definition of Y and (i),

Y - U {x- S1/nf(x) > 0} .
l
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Let 1/n < t. Then τj £ τ1/Λτ t_(1/Λ)/, and so supp τj c supp τ1/nf.
Thus it follows that

suppStf c P (ί > 0) .

Therefore Γ c P , and (iii) is established.
The proof is complete.

In conclusion, the author would like to remark that the ques-

S b

Ttf(x)dt
0

as b—* +0 holds for all feL^Z) remains an open problem.
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