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SCHUR’S THEOREM AND THE DRAZIN INVERSE

ROBERT E. HARTWIG

It is shown that if M = [g ZC)} is a square 2n X 2n matrix

over a ring R, such that AC=CA€R,«,, and with the pro-
perty that A and C possess Drazin inverses, then M is
invertible in R,,.,, if and only if DA-BC is invertible in
R.x..

1. Introduction. In a recent paper [7], Herstein and Small
extended the classic result of Schur [5, p. 46] to matrices over E-rings.

These are rings for which every primitive image is artinian. This

result states that for a square complex block matrix M = [g IC) ,

with A, B, C, D square of the same size such that AC = CA, then M
is invertible exactly when 4 = DA — BC in invertible. This is a
different but equivalent formulation of the problem as stated in [7].

The purpose of this note is to show that this result by Schur
is basically a consequence of the local existence of the Drazin inverse
[2] of the matrices A and C; that is, the strong-m-regularity of A
and C [1] [4]. The proof of [7] was based on the fact that Schur’s
result for matrices over E-rings is really equivalent to the corres-
ponding result for matrices over simple artinian rings (which may
be taken to be division rings). Since artinian rings with unity are
noetherian [8], p. 69, it follows that artinian rings with unity are
strongly-m-regular, so that our local result extends the Schur theorem
for artinian rings as proven in [7].

The Drazin inverse a? of a ring element a, is the unique solution,
if any, to the equations

(1) afza = a*, xax = x, ax = xa ,

for some k = 0, while the group inverse a* of a is the unique solution,
if any, of these equations with # =0, or 1. For example, if a is
algebraic over some field # and a"™b = a”, with ab = ba, then a® =
a"b*. The element a¢ exists if and only if « is strongly-z-regular,
that is, when both chains {a’R} and {Ra’} are ultimately stationary,
[5, Theorem 4]. A ring element is called (von Neumann) regular
if aa~a = a for some ring element a~. If there exists such a~ that
is invertible, a is called unit-regular.

We shall assume familiarity with the properties of these inverses
[4]1[2]1[6] and in particular with the fact that ac = ca — a‘c = ca®
[4, Theorem 1].

It is known that, unlike regularity and unit regularity, R,., does
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not inherit strong-regularity from R [9] [11]. It is not known however,
whether the strong-I7-regularity of R, or the related concept of finite
regularity (ab = 1= ba = 1) is inherited by R,., [10].

We shall use the notation °S and S° to indicate the right and
left annihilators of S respectively, e.g.,

S={xeR;2s =0, *seS}.

For notational convenience we shall state our results in terms of
rings B with unity, with the translation to matrices over R, being
self evident. In particular aR + ¢R = R is equivalent to the 1 x 2
matrix [a, ¢] having a right inverse.

2. Preliminaries. The key to our main result are the following
two lemmas.

LEMMA 1. Let R be a ring with unity 1, and let e, f be com-
muting idempotents in R. If g=e+ f(1 — e) then

() ¢ =g, (i) eR + fR = gR, (ili) Re + Rf = Rg, (iv) €N f°' =
¢, V) %enN’f =%, (vileR+ fR=R=g=1=Re+ Rf =R<=¢'N
F=0=%nf=0)=1~-¢e1—f)=0.

LEMMA 2. Let R be a ring with unity 1, and let a, ¢ be com-
muting elements of R. Then

(i) aR+ c¢R =R<=a™R + ¢c"R = R for somem,n =1 <=a"R +
¢"R = R for all m, n = 1.

(i) ‘%a N’ = (0) = %>a™) N %c*) = (0) for some m,n = 1= "(a™) N
%ec™) = (0) for all m, n = 1.

(iii) Ra + R¢ = R <= Ra™ + Rc¢" = R for some m, n = 1< Ra™ +
Re* = R for all m, n = 1.

iv) a’ne’ =)= (@) N () =(0) for some m,n =1 (a™)°’N
(c™)® = (0) for all m, n = 1.

If in addition, the Drazin inverses a® and ¢ exists, these con-
ditions are all equivalent to

(v) (1 —aa®)@d — cc?) = 0.

Proof. The proof of (i)-(iv) follows by induction. Now suppose
that a? and c? exist and that index (a) = k, index (¢) = l. Then for
all m =k, a"R = a*R = a’R = a’aR. And so, taking m =k, n =1,
we see that (i) is equivalent to

R =a"R + ¢"R = a*R + ¢!R = a’R + ¢’R = a’aR + ¢*R,
which by Lemma 1 is equivalent to

(3) 1 —aa®)@d —cc?) =0.
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Left-right symmetry now shows that (iii) is also equivalent to (v).
Lastly, since for m =k, (a™)° = (a¢*)° = (a%)° = (aa)’, it follows that
with m = k, n = I, (iv) is equivalent to (a%a)’ N (¢%c)° = (0), which again
by Lemma 1 is equivalent to (v). Symmetry again yields the remaining
equivalence.

Before proceeding with our theorem we remark that:

1. It is not necessary for a? and ¢? to exist in order for

Ra + Rce=R==0a"Nc" = (0)

to be valid. It would suffice if a, ¢ and ¢(1 — a"a) were regular.

2. The equivalence of (iv) and (v) has uses in the theory of
differential equations, [2] Lemma 1. The above furnishes a short
and purely algebraic proof of this useful result.

3. Main results,

THEOREM 1. Let R be a ring with unity 1 and let M = {‘g (ﬂe

R,., with ac = ca. Suppose further that a® and [(1 — aa®)c]® exust.
If 4 =da — be, then:

(1) 4 18 left invertible = M is left invertible.

(ii) M s right invertible = 4 is right tnvertible.

(iii) M 1s imvertible = 4 is invertible.

Proof. Consider the matrix

a U a c¢|[1 —a‘
(4) N:[b z]:[b dJ[O 1 ]

where 4 = (1 — aa?)c and 2 = d — ba%. Since a, a’ and ¢ commute
it follows that

(5) za—bu=(d— ba%c)a — bl — aa*)c=da —bc=4.

Now because a’u = 0 = ua® = a’u’® = u?a?, we may construct the
matrices:

(6) [a u}”ad —u]_[aad—kuud OJ“T
b ozllut  al t 4

and
[ a U [a"’ —w| [aa"’ + uwu? 0
—u? a’|lut al 0 aa? + wut

a® —u a U
w el —ut al’

(7)



136 ROBERT E. HARTWIG

In general however, au? # 0 unless index (a) < 1. Suppose now that
4 has a left inverse 4~, then by (5),

(8) R = Ra + Rc = Ra + Ru .

By Lemma 2, applid to ¢ and %, we see that
1 —aaH) (1 —uu?) =0

or equivalently

(9) aa? + uu? =1.

¢
Hence, by (7), it follows that the matrix P = ad % 1is invertible.
U a

Now since
[ 1 O“[’l 0:]_[1 0}
a4t 4t 4] o 1]’

it follows that M has a left inverse M~ and that
R = Ra + Rb= Rc + Rd .
If in addition 44~ =1, then

bl o]

and consequently M is also invertible.
Conversely, suppose that MM~ = I. Then because N also has a
right inverse, it follows that

aR +uR =R.

Again by Lemma 2, applied to @ and %, we may conclude that (9) holds
so that P is invertible. Hence T = % 2} has a right inverse T~ =

[g 'g} Now TT - =I=v=0=40 = 1, and so 4 has a right inverse.
If in addition, MM = I, then T-T = I and hence again as 7 =0,

04 = 1, completing the proof.

COROLLARY 1. If R s a ring with wnity and M = [g g]eRm

with ac = ca such that a® and c¢* exist, then M 1s invertible if and
only iof 4= da — be is invertible.

Proof. Note that ac = ca implies that aa?c = caa?, so that u? =
(1 — aa®)c?. Again because square matrices over artinian ring with
unity possess Drazin inverses, this result includes the second part
of Theorem 2 of [7].
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COROLLARY 2. Let R be a ring with unity 1, and let a,ce R

such that ac = ca and a?, [(1 — aa®)c]® exist. Then 4f R = Ra + Rec

there exists d € R so that [g ﬂ 18 invertible.

Proof. From Theorem 1, it suffices to select d € R such that 4 =
da — ¢®is invertible. One such choice is given by d = a® + c¢%a?, because
then 4 = aa® — w* which has inverse aa? — u?u?. Indeed, if R =
Ra + Rc = Ra + Ru, then aa® + wu? = 1 which coupled with the fact
a‘u? = 0, yields the desired result.

We conclude this note with several remarks.

1. If a*exists we could also select d = a + c?a? in the last corollary,
for then 4= a*— u* has as inverse (a®)* — uu® since now au = 0.
Moreover, in this case

(a ¢ ]“1 _ "1 —a*‘c:l [a ud] [ 1 O}
¢ a+c¢a] 0 1 u* aj|—ca 1]
B {a — (a*e  ut — c<a#)z:l

u? — c(a*)? at

2. The fact that: “If ac = ca, and a?, ©¢ exist, then R = Ra+ Rec
ensures that a’e +u?u=1", should be compared with the corresponding
results for Moore-Penrose inverses [6]. Namely, if o' and o' =
[e(1 — a'a)]" exists, then

R=Ra+ Re=1=ada'a+vv.

3. If a is unit-regular, that is aa~a = a for some unit a¢~, then
under suitable conditions aR + ¢R = R= Ra + Rc = R. Indeed if
% = (1 — aa™)c is regular and c¢* exists, then

aR+¢cR=R=—a0~+ 1 —a e 1L —aa™) =1.

Thus ae~[A — aa”cu~(1 — aa™] + cu~ (1 — aa™) = 1, which on multiply-
ing through by

p =[1+ aa”cu (1 — aa™)](a™)™
yields:
a + ¢t = p = unit, where t=u"(1 — aa”)(a”)".

Now if in addition, ac = ca and a~¢ = ca™ then we may take u~ =c*.
Hence

a+ 1 —aa”)a™) e =p
implying that Ra + Rc¢ = R.
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4. It is now clear how to extend this to the following: If a*is
unit regular for some k = 1, say a®(a*)“a* = a*, where (a*)~ is a unit,
and if ¢? exist, such that cc¢? commutes with a*(a*)~ and (a*)~ then

R=aR +c¢R=—=R = Ra + Rc.

The case where a? exists and ac = ca easily follows from this example
because then (a*)* exist, for some & = 1 and one may then take (a*)~ =
(a®) + (1 — aa?).
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