SCHUR'S THEOREM AND THE DRAZIN INVERSE

ROBERT E. HARTWIG

It is shown that if $M = \begin{bmatrix} A & C \\ B & D \end{bmatrix}$ is a square $2n \times 2n$ matrix over a ring R, such that $AC = CA \in R_{n \times n}$, and with the property that A and C possess Drazin inverses, then M is invertible in $R_{2n \times 2n}$ if and only if DA-BC is invertible in $R_{n \times n}$.

1. Introduction. In a recent paper [7], Herstein and Small extended the classic result of Schur [5, p. 46] to matrices over *E*-rings. These are rings for which every primitive image is artinian. This result states that for a square complex block matrix $M = \begin{bmatrix} A & C \\ B & D \end{bmatrix}$, with *A*, *B*, *C*, *D* square of the same size such that AC = CA, then *M* is invertible exactly when $\Delta = DA - BC$ in invertible. This is a different but equivalent formulation of the problem as stated in [7].

The purpose of this note is to show that this result by Schur is basically a consequence of the *local* existence of the Drazin inverse [2] of the matrices A and C; that is, the strong- π -regularity of A and C [1] [4]. The proof of [7] was based on the fact that Schur's result for matrices over *E*-rings is really equivalent to the corresponding result for matrices over simple artinian rings (which may be taken to be division rings). Since artinian rings with unity are noetherian [8], p. 69, it follows that artinian rings with unity are strongly- π -regular, so that our local result extends the Schur theorem for artinian rings as proven in [7].

The Drazin inverse a^d of a ring element a, is the unique solution, if any, to the equations

$$(1) akxa = ak, xax = x, ax = xa,$$

for some $k \ge 0$, while the group inverse a^* of a is the unique solution, if any, of these equations with k = 0, or 1. For example, if a is algebraic over some field \mathscr{F} and $a^{n+1}b = a^n$, with ab = ba, then $a^d = a^nb^{n+1}$. The element a^d exists if and only if a is strongly- π -regular, that is, when both chains $\{a^iR\}$ and $\{Ra^i\}$ are ultimately stationary, [5, Theorem 4]. A ring element is called (von Neumann) regular if $aa^-a = a$ for some ring element a^- . If there exists such a^- that is invertible, a is called unit-regular.

We shall assume familiarity with the properties of these inverses [4] [2] [6] and in particular with the fact that $ac = ca \Rightarrow a^d c = ca^d$ [4, Theorem 1].

It is known that, unlike regularity and unit regularity, $R_{2\times 2}$ does

not inherit strong-regularity from R [9] [11]. It is not known however, whether the strong- Π -regularity of R, or the related concept of finite regularity ($ab = 1 \Rightarrow ba = 1$) is inherited by $R_{2\times 2}$ [10].

We shall use the notation $^{\circ}S$ and S° to indicate the right and left annihilators of S respectively, e.g.,

$$S^{\circ} = \{x \in R; \ xs = 0, \ orall \ s \in S\}$$
 .

For notational convenience we shall state our results in terms of rings R with unity, with the translation to matrices over R, being self evident. In particular aR + cR = R is equivalent to the 1×2 matrix [a, c] having a right inverse.

2. Preliminaries. The key to our main result are the following two lemmas.

LEMMA 1. Let R be a ring with unity 1, and let e, f be commuting idempotents in R. If g = e + f(1 - e) then

(i) $g^2 = g$, (ii) eR + fR = gR, (iii) Re + Rf = Rg, (iv) $e^0 \cap f^0 = g^0$, (v) ${}^{0}e \cap {}^{0}f = {}^{0}g$, (vi) $eR + fR = R \Leftrightarrow g = 1 \Leftrightarrow Re + Rf = R \Leftrightarrow e^0 \cap f^0 = (0) \Leftrightarrow {}^{0}e \cap {}^{0}f = (0) \Leftrightarrow (1 - e)(1 - f) = 0$.

LEMMA 2. Let R be a ring with unity 1, and let a, c be commuting elements of R. Then

(i) $aR + cR = R \Leftrightarrow a^mR + c^nR = R$ for some $m, n \ge 1 \Leftrightarrow a^mR + c^nR = R$ for all $m, n \ge 1$.

(ii) ${}^{\circ}a \cap {}^{\circ}c = (0) \Leftrightarrow {}^{\circ}(a^m) \cap {}^{\circ}(c^n) = (0)$ for some $m, n \ge 1 \Leftrightarrow {}^{\circ}(a^m) \cap {}^{\circ}(c^n) = (0)$ for all $m, n \ge 1$.

(iii) $Ra + Rc = R \Leftrightarrow Ra^m + Rc^n = R$ for some $m, n \ge 1 \Leftrightarrow Ra^m + Rc^n = R$ for all $m, n \ge 1$.

(iv) $a^{0} \cap c^{0} = (0) \Leftrightarrow (a^{m})^{\circ} \cap (c^{n})^{0} = (0)$ for some $m, n \geq 1 \Leftrightarrow (a^{m})^{0} \cap (c^{n})^{0} = (0)$ for all $m, n \geq 1$.

If in addition, the Drazin inverses a^d and c^d exists, these conditions are all equivalent to

 $(\mathbf{v}) (1 - aa^d)(1 - cc^d) = 0.$

Proof. The proof of (i)-(iv) follows by induction. Now suppose that a^d and c^d exist and that index (a) = k, index (c) = l. Then for all $m \ge k$, $a^m R = a^k R = a^d R = a^d a R$. And so, taking $m \ge k$, $n \ge l$, we see that (i) is equivalent to

$$R = a^{m}R + c^{n}R = a^{k}R + c^{l}R = a^{d}R + c^{d}R = a^{d}aR + c^{d}cR$$
,

which by Lemma 1 is equivalent to

$$(3) \qquad (1-aa^d)(1-cc^d) = 0.$$

Left-right symmetry now shows that (iii) is also equivalent to (v). Lastly, since for $m \ge k$, $(a^m)^0 = (a^k)^0 = (a^d)^0 = (a^d a)^0$, it follows that with $m \ge k$, $n \ge l$, (iv) is equivalent to $(a^d a)^0 \cap (c^d c)^0 = (0)$, which again by Lemma 1 is equivalent to (v). Symmetry again yields the remaining equivalence.

Before proceeding with our theorem we remark that:

1. It is not necessary for a^d and c^d to exist in order for

$$Ra \, + \, Rc = R \Longleftrightarrow a^{\scriptscriptstyle 0} \cap c^{\scriptscriptstyle 0} = (0)$$

to be valid. It would suffice if a, c and $c(1 - a^{-}a)$ were regular.

2. The equivalence of (iv) and (v) has uses in the theory of differential equations, [2] Lemma 1. The above furnishes a short and purely algebraic proof of this useful result.

3. Main results.

THEOREM 1. Let R be a ring with unity 1 and let $M = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \in R_{2\times 2}$ with ac = ca. Suppose further that a^d and $[(1 - aa^d)c]^d$ exist. If $\Delta = da - bc$, then:

- (i) Δ is left invertible $\Leftrightarrow M$ is left invertible.
- (ii) M is right invertible $\Leftrightarrow \Delta$ is right invertible.
- (iii) M is invertible $\Leftrightarrow \Delta$ is invertible.

Proof. Consider the matrix

(4)
$$N = \begin{bmatrix} a & u \\ b & z \end{bmatrix} = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} 1 & -a^d c \\ 0 & 1 \end{bmatrix},$$

where $u = (1 - aa^d)c$ and $z = d - ba^d c$. Since a, a^d and c commute it follows that

(5)
$$za - bu = (d - ba^{d}c)a - b(1 - aa^{d})c = da - bc = \Delta$$
.

Now because $a^{d}u = 0 = ua^{d} = a^{d}u^{d} = u^{d}a^{d}$, we may construct the matrices:

$$\begin{pmatrix} 6 \end{pmatrix} \qquad \begin{bmatrix} a & u \\ b & z \end{bmatrix} \begin{bmatrix} a^{d} & -u \\ u^{d} & a \end{bmatrix} = \begin{bmatrix} aa^{d} + uu^{d} & 0 \\ t & \Delta \end{bmatrix} = T$$

and

(7)
$$\begin{bmatrix} a & u \\ -u^{d} & a^{d} \end{bmatrix} \begin{bmatrix} a^{d} & -u \\ u^{d} & a \end{bmatrix} = \begin{bmatrix} aa^{d} + uu^{d} & 0 \\ 0 & aa^{d} + uu^{d} \end{bmatrix} = \begin{bmatrix} a^{d} & -u \\ u^{d} & a \end{bmatrix} \begin{bmatrix} a & u \\ -u^{d} & a^{d} \end{bmatrix}.$$

In general however, $au^d \neq 0$ unless index $(a) \leq 1$. Suppose now that Δ has a left inverse Δ^- , then by (5),

$$(8) R = Ra + Rc = Ra + Ru.$$

By Lemma 2, applid to a and u, we see that

$$(1-aa^d)(1-uu^d)=0$$

or equivalently

$$(9) aa^d + uu^d = 1.$$

Hence, by (7), it follows that the matrix $P = \begin{bmatrix} a^d & -u \\ u^d & a \end{bmatrix}$ is invertible. Now since

$$\begin{bmatrix} 1 & 0 \\ - \varDelta^- t & \varDelta^- \end{bmatrix} \begin{bmatrix} 1 & 0 \\ t & \varDelta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

it follows that M has a left inverse M^- and that

$$R = Ra + Rb = Rc + Rd$$
.

If in addition $\Delta \Delta^{-} = 1$, then

$$egin{bmatrix} \mathbf{1} & \mathbf{0} \ t & arDelta \end{bmatrix} egin{bmatrix} \mathbf{1} & \mathbf{0} \ -arDelta^- t & arDelta^- \end{bmatrix} = I_2$$

and consequently M is also invertible.

Conversely, suppose that $MM^- = I$. Then because N also has a right inverse, it follows that

$$aR + uR = R$$
.

Again by Lemma 2, applied to a and u, we may conclude that (9) holds so that P is invertible. Hence $T = \begin{bmatrix} 1 & 0 \\ t & \Delta \end{bmatrix}$ has a right inverse $T^- = \begin{bmatrix} \alpha & \gamma \\ \beta & \delta \end{bmatrix}$. Now $TT^- = I \Rightarrow \gamma = 0 \Rightarrow \Delta \delta = 1$, and so Δ has a right inverse. If in addition, $M^-M = I$, then $T^-T = I$ and hence again as $\gamma = 0$, $\delta \Delta = 1$, completing the proof.

COROLLARY 1. If R is a ring with unity and $M = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \in R_{2\times 2}$ with ac = ca such that a^{d} and c^{d} exist, then M is invertible if and only if $\Delta = da - bc$ is invertible.

Proof. Note that ac = ca implies that $aa^{d}c = caa^{d}$, so that $u^{d} = (1 - aa^{d})c^{d}$. Again because square matrices over artinian ring with unity possess Drazin inverses, this result includes the second part of Theorem 2 of [7].

COROLLARY 2. Let R be a ring with unity 1, and let $a, c \in R$ such that ac = ca and a^d , $[(1 - aa^d)c]^d$ exist. Then if R = Ra + Rcthere exists $d \in R$ so that $\begin{bmatrix} a & c \\ c & d \end{bmatrix}$ is invertible.

Proof. From Theorem 1, it suffices to select $d \in R$ such that $\Delta = da - c^2$ is invertible. One such choice is given by $d = a^d + c^2 a^d$, because then $\Delta = aa^d - u^2$ which has inverse $aa^d - u^d u^d$. Indeed, if R = Ra + Rc = Ra + Ru, then $aa^d + uu^d = 1$ which coupled with the fact $a^d u^d = 0$, yields the desired result.

We conclude this note with several remarks.

1. If a^* exists we could also select $d = a + c^2 a^*$ in the last corollary, for then $\Delta = a^2 - u^2$ has as inverse $(a^*)^2 - uu^4$ since now au = 0. Moreover, in this case

$$egin{bmatrix} a & c \ c & a+c^2a \end{bmatrix}^{-1} = egin{bmatrix} 1 & -a^*c \ 0 & 1 \end{bmatrix} egin{bmatrix} a & u^d \ u^d & a \end{bmatrix} egin{bmatrix} 1 & 0 \ -ca & 1 \end{bmatrix} \ = egin{bmatrix} a - (a^*)^3c^2 & u^d - c(a^*)^2 \ u^d - c(a^*)^2 & a^* \end{bmatrix}.$$

2. The fact that: "If ac = ca, and a^{d} , u^{d} exist, then R = Ra + Rc ensures that $a^{d}a + u^{d}u = 1$ ", should be compared with the corresponding results for Moore-Penrose inverses [6]. Namely, if a^{\dagger} and $v^{\dagger} = [c(1 - a^{\dagger}a)]^{\dagger}$ exists, then

$$R=Ra+\ Rc \Longrightarrow \mathbf{1}=a^{\dagger}a+v^{\dagger}v$$
 .

3. If a is unit-regular, that is $aa^{=}a = a$ for some unit $a^{=}$, then under suitable conditions $aR + cR = R \Rightarrow Ra + Rc = R$. Indeed if $u = (1 - aa^{=})c$ is regular and c^{*} exists, then

$$aR + cR = R \Longrightarrow aa^{=} + (1 - a^{=})cu^{-}(1 - aa^{=}) = 1$$
.

Thus $aa^{=}[(1 - aa^{=}cu^{-}(1 - aa^{=}) + cu^{-}(1 - aa^{=}) = 1$, which on multiplying through by

$$p = [1 + aa^{=}cu^{-}(1 - aa^{=})](a^{=})^{-1}$$

yields:

$$a + ct = p = unit$$
, where $t = u^{-1}(1 - aa^{-1})(a^{-1})^{-1}$

Now if in addition, ac = ca and $a^{=}c = ca^{=}$ then we may take $u^{-} = c^{*}$. Hence

$$a + (1 - aa^{=})(a^{=})^{-1}c^{\sharp}c = p$$

implying that Ra + Rc = R.

4. It is now clear how to extend this to the following: If a^k is unit regular for some $k \ge 1$, say $a^k(a^k)=a^k=a^k$, where $(a^k)=$ is a unit, and if c^d exist, such that cc^d commutes with $a^k(a^k)=$ and $(a^k)=$ then

$$R = aR + cR \Longrightarrow R = Ra + Rc$$
 .

The case where a^{d} exists and ac = ca easily follows from this example because then $(a^{k})^{\sharp}$ exist, for some $k \ge 1$ and one may then take $(a^{k})^{=} = (a^{k})^{\sharp} + (1 - aa^{d})$.

References

[1] G. Azumaya, Strongly-II-regular rings, J. Fac. Science Hokkaido Univ. Series 1, Math., XIII (1954-57), 34-39.

[2] A. Ben Israel and T. N. E. Greville, Generalized Inverses, Theory and Applications, Wiley, New York, 1974.

[3] S. L. Campbell, C. D. Meyer and N. J. Rose, Applications of the Drazin inverse to linear systems of differential equations, SIAM J. Appl. Math., **31** (1976), 411-425.

[4] M. P. Drazin, Pseudo-inverses in associate rings and semigroups, Amer. Math. Monthly, **65** (1958), 506-514.

[5] F. R. Gantmacher, The Theory of Matrices, Vol. 1, Chelsea, New York, 1960.

[6] R. E. Hartwig, Block generalized inverses, Arch. Rat. Mech., 61, (1976), 197-251.

[7] R. E. Harwig and J. Schoaf, Group inverses and Drazin inverses of bidiagonal

and triangular Toeplitz matrices, J. Austral. Math. Soc. (A), XXIV (1977), 10-34. [8] R. E. Hartwig and J. Luh, On finite regular rings, Pacific J. Math., **69** (1977), 73-95.

[9] M. Henriksen, On a class of regular rings that are elementary divisor rings, Arch. Math., 24 (1973), 133-141.

[10] I. N. Herstein and L. W. Small, An extension of a theorem of Schur, Lin. Mult. Algebra, 3 (1975), 41-43.

[11] J. Lambek, Lectures on Rings and Modules, Blaisdell, Waltham, 1966.

Received June 2, 1977 and in revised form December 7, 1977.

NORTH CAROLINA STATE UNIVERSITY RALEIGH, NC 27607