SCHUR'S THEOREM AND THE DRAZIN INVERSE

Robert E. Hartwig

Abstract

It is shown that if $M=\left[\begin{array}{ll}A & C \\ B & D\end{array}\right]$ is a square $2 n \times 2 n$ matrix over a ring R, such that $A C=C A \in R_{n \times n}$, and with the property that A and C possess Drazin inverses, then M is invertible in $R_{2 n \times 2 n}$ if and only if $D A-B C$ is invertible in $R_{n \times n}$ 。

1. Introduction. In a recent paper [7], Herstein and Small extended the classic result of Schur [5, p. 46] to matrices over E-rings. These are rings for which every primitive image is artinian. This result states that for a square complex block matrix $M=\left[\begin{array}{ll}A & C \\ B & D\end{array}\right]$, with A, B, C, D square of the same size such that $A C=C A$, then \vec{M} is invertible exactly when $\Delta=D A-B C$ in invertible. This is a different but equivalent formulation of the problem as stated in [7].

The purpose of this note is to show that this result by Schur is basically a consequence of the local existence of the Drazin inverse [2] of the matrices A and C; that is, the strong- π-regularity of A and C [1] [4]. The proof of [7] was based on the fact that Schur's result for matrices over E-rings is really equivalent to the corresponding result for matrices over simple artinian rings (which may be taken to be division rings). Since artinian rings with unity are noetherian [8], p. 69, it follows that artinian rings with unity are strongly- π-regular, so that our local result extends the Schur theorem for artinian rings as proven in [7].

The Drazin inverse a^{d} of a ring element a, is the unique solution, if any, to the equations

$$
\begin{equation*}
a^{k} x a=a^{k}, x a x=x, a x=x a, \tag{1}
\end{equation*}
$$

for some $k \geqq 0$, while the group inverse a^{\sharp} of a is the unique solution, if any, of these equations with $k=0$, or 1 . For example, if a is algebraic over some field \mathscr{F} and $a^{n+1} b=a^{n}$, with $a b=b a$, then $a^{d}=$ $a^{n} b^{n+1}$. The element a^{d} exists if and only if a is strongly- π-regular, that is, when both chains $\left\{a^{i} R\right\}$ and $\left\{R a^{i}\right\}$ are ultimately stationary, [5, Theorem 4]. A ring element is called (von Neumann) regular if $a a^{-} a=a$ for some ring element a^{-}. If there exists such a^{-}that is invertible, a is called unit-regular.

We shall assume familiarity with the properties of these inverses [4][2][6] and in particular with the fact that $a c=c a \Rightarrow a^{d} c=c a^{d}$ [4, Theorem 1].

It is known that, unlike regularity and unit regularity, $R_{2 \times 2}$ does
not inherit strong-regularity from R [9] [11]. It is not known however, whether the strong- Π-regularity of R, or the related concept of finite regularity ($a b=1 \Rightarrow b a=1$) is inherited by $R_{2 \times 2}$ [10].

We shall use the notation ${ }^{\circ} S$ and S^{0} to indicate the right and left annihilators of S respectively, e.g.,

$$
S^{0}=\{x \in R ; x s=0, \forall s \in S\} .
$$

For notational convenience we shall state our results in terms of rings R with unity, with the translation to matrices over R, being self evident. In particular $a R+c R=R$ is equivalent to the 1×2 matrix $[a, c]$ having a right inverse.
2. Preliminaries. The key to our main result are the following two lemmas.

Lemma 1. Let R be a ring with unity 1, and let e,f be commuting idempotents in R. If $g=e+f(1-e)$ then
(i) $g^{2}=g$, (ii) $e R+f R=g R$, (iii) $R e+R f=R g$, (iv) $e^{0} \cap f^{0}=$ g^{0}, (v) ${ }^{0} e \cap{ }^{0} f={ }^{0} g$, (vi) $e R+f R=R \Leftrightarrow g=1 \Leftrightarrow R e+R f=R \Leftrightarrow e^{0} \cap$ $f^{0}=(0) \Leftrightarrow{ }^{0} e \cap^{0} f=(0) \Leftrightarrow(1-e)(1-f)=0$.

Lemma 2. Let R be a ring with unity 1 , and let a, c be commuting elements of R. Then
(i) $a R+c R=R \Leftrightarrow a^{m} R+c^{n} R=R$ for some $m, n \geqq 1 \Leftrightarrow a^{m} R+$ $c^{n} R=R$ for all $m, n \geqq 1$.
(ii) ${ }^{0} a \cap{ }^{0} c=(0) \Leftrightarrow{ }^{0}\left(a^{m}\right) \cap{ }^{0}\left(c^{n}\right)=(0)$ for some $m, n \geqq 1 \Leftrightarrow{ }^{0}\left(a^{m}\right) \cap$ ${ }^{\circ}\left(c^{n}\right)=(0)$ for all $m, n \geqq 1$.
(iii) $R a+R c=R \Leftrightarrow R a^{m}+R c^{n}=R$ for some $m, n \geqq 1 \Leftrightarrow R a^{m}+$ $R c^{n}=R$ for all $m, n \geqq 1$.
(iv) $a^{0} \cap c^{0}=(0) \Leftrightarrow\left(a^{m}\right)^{c} \cap\left(c^{n}\right)^{0}=(0)$ for some $m, n \geqq 1 \Leftrightarrow\left(a^{m}\right)^{0} \cap$ $\left(c^{n}\right)^{0}=(0)$ for all $m, n \geqq 1$.

If in addition, the Drazin inverses a^{d} and c^{d} exists, these conditions are all equivalent to
(v) $\left(1-a a^{d}\right)\left(1-c c^{d}\right)=0$.

Proof. The proof of (i)-(iv) follows by induction. Now suppose that a^{d} and c^{d} exist and that index $(a)=k$, index $(c)=l$. Then for all $m \geqq k, a^{m} R=a^{k} R=a^{d} R=a^{d} a R$. And so, taking $m \geqq k, n \geqq l$, we see that (i) is equivalent to

$$
R=a^{m} R+c^{n} R=a^{k} R+c^{l} R=a^{d} R+c^{d} R=a^{d} a R+c^{d} c R,
$$

which by Lemma 1 is equivalent to

$$
\begin{equation*}
\left(1-a a^{d}\right)\left(1-c c^{d}\right)=0 . \tag{3}
\end{equation*}
$$

Left-right symmetry now shows that (iii) is also equivalent to (v). Lastly, since for $m \geqq k,\left(a^{m}\right)^{0}=\left(a^{k}\right)^{0}=\left(a^{d}\right)^{0}=\left(a^{d} a\right)^{0}$, it follows that with $m \geqq k, n \geqq l$, (iv) is equivalent to $\left(a^{d} a\right)^{0} \cap\left(c^{d} c\right)^{0}=(0)$, which again by Lemma 1 is equivalent to (v). Symmetry again yields the remaining equivalence.

Before proceeding with our theorem we remark that:

1. It is not necessary for a^{d} and c^{d} to exist in order for

$$
R a+R c=R \Longleftrightarrow a^{0} \cap c^{0}=(0)
$$

to be valid. It would suffice if a, c and $c\left(1-a^{-} a\right)$ were regular.
2. The equivalence of (iv) and (v) has uses in the theory of differential equations, [2] Lemma 1. The above furnishes a short and purely algebraic proof of this useful result.

3. Main results.

Theorem 1. Let R be a ring with unity 1 and let $M=\left[\begin{array}{ll}a & c \\ b & d\end{array}\right] \in$ $R_{2 \times 2}$ with $a c=c a$. Suppose further that a^{d} and $\left[\left(1-a a^{d}\right) c\right]^{d}$ exist. If $\Delta=d a-b c$, then:
(i) Δ is left invertible $\Leftrightarrow M$ is left invertible.
(ii) M is right invertible $\Leftrightarrow \Delta$ is right invertible.
(iii) M is invertible $\Leftrightarrow \Delta$ is invertible.

Proof. Consider the matrix

$$
N=\left[\begin{array}{ll}
a & u \tag{4}\\
b & z
\end{array}\right]=\left[\begin{array}{cc}
a & c \\
b & d
\end{array}\right]\left[\begin{array}{cc}
1 & -a^{d} c \\
0 & 1
\end{array}\right]
$$

where $u=\left(1-a a^{d}\right) c$ and $z=d-b a^{d} c$. Since a, a^{d} and c commute it follows that

$$
\begin{equation*}
z a-b u=\left(d-b a^{d} c\right) a-b\left(1-a a^{d}\right) c=d a-b c=\Delta \tag{5}
\end{equation*}
$$

Now because $a^{d} u=0=u a^{d}=a^{d} u^{d}=u^{d} a^{d}$, we may construct the matrices:

$$
\left[\begin{array}{ll}
a & u \tag{6}\\
b & z
\end{array}\right]\left[\begin{array}{cr}
a^{d} & -u \\
u^{d} & a
\end{array}\right]=\left[\begin{array}{cc}
a a^{d}+u u^{d} & 0 \\
t & \Delta
\end{array}\right]=T
$$

and

$$
\begin{align*}
& {\left[\begin{array}{cc}
a & u \\
-u^{d} & a^{d}
\end{array}\right]\left[\begin{array}{cc}
a^{d} & -u \\
u^{d} & a
\end{array}\right]=\left[\begin{array}{cc}
a a^{d}+u u^{d} & 0 \\
0 & a a^{d}+u u^{d}
\end{array}\right]} \tag{7}\\
& \quad=\left[\begin{array}{cc}
a^{d} & -u \\
u^{d} & a
\end{array}\right]\left[\begin{array}{cc}
a & u \\
-u^{d} & a^{d}
\end{array}\right] .
\end{align*}
$$

In general however, $a u^{d} \neq 0$ unless index $(a) \leqq 1$. Suppose now that Δ has a left inverse Δ^{-}, then by (5),

$$
\begin{equation*}
R=R a+R c=R a+R u \tag{8}
\end{equation*}
$$

By Lemma 2, applid to a and u, we see that

$$
\left(1-a a^{d}\right)\left(1-u u^{d}\right)=0
$$

or equivalently

$$
\begin{equation*}
a \alpha^{d}+u u^{d}=1 \tag{9}
\end{equation*}
$$

Hence, by (7), it follows that the matrix $P=\left[\begin{array}{rr}a^{d} & -u \\ u^{d} & a\end{array}\right]$ is invertible. Now since

$$
\left[\begin{array}{cc}
1 & 0 \\
-\Delta^{-} t & \Delta^{-}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
t & \Delta^{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

it follows that M has a left inverse M^{-}and that

$$
R=R a+R b=R c+R d
$$

If in addition $\Delta \Delta^{-}=1$, then

$$
\left[\begin{array}{ll}
1 & 0 \\
t & \Delta
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-\Delta^{-} t & \Delta^{-}
\end{array}\right]=I_{2}
$$

and consequently M is also invertible.
Conversely, suppose that $M M^{-}=I$. Then because N also has a right inverse, it follows that

$$
a R+u R=R
$$

Again by Lemma 2, applied to a and u, we may conclude that (9) holds so that P is invertible. Hence $T=\left[\begin{array}{ll}1 & 0 \\ t & \Delta\end{array}\right]$ has a right inverse $T^{-}=$ $\left[\begin{array}{ll}\alpha & \gamma \\ \beta & \delta\end{array}\right]$. Now $T T^{-}=I \Rightarrow \gamma=0 \Rightarrow \Delta \delta=1$, and so Δ has a right inverse. If in addition, $M^{-} M=I$, then $T^{-} T=I$ and hence again as $\gamma=0$, $\delta \Delta=1$, completing the proof.

Corollary 1. If R is a ring with unity and $M=\left[\begin{array}{ll}a & c \\ b & d\end{array}\right] \in R_{2 \times 2}$ with $a c=c a$ such that a^{d} and c^{d} exist, then M is invertible if and only if $\Delta=d a-b c$ is invertible.

Proof. Note that $a c=c a$ implies that $a a^{d} c=c a \alpha^{d}$, so that $u^{d}=$ $\left(1-a a^{d}\right) c^{d}$. Again because square matrices over artinian ring with unity possess Drazin inverses, this result includes the second part of Theorem 2 of [7].

Corollary 2. Let R be a ring with unity 1 , and let $a, c \in R$ such that $a c=c a$ and $a^{d},\left[\left(1-a a^{d}\right) c\right]^{d}$ exist. Then if $R=R a+R c$ there exists $d \in R$ so that $\left[\begin{array}{ll}a & c \\ c & d\end{array}\right]$ is invertible.

Proof. From Theorem 1, it suffices to select $d \in R$ such that $\Delta=$ $d a-c^{2}$ is invertible. One such choice is given by $d=a^{d}+c^{2} a^{d}$, because then $\Delta=a a^{d}-u^{2}$ which has inverse $a a^{d}-u^{d} u^{d}$. Indeed, if $R=$ $R a+R c=R a+R u$, then $a a^{d}+u u^{d}=1$ which coupled with the fact $a^{d} u^{d}=0$, yields the desired result.

We conclude this note with several remarks.

1. If a^{\ddagger} exists we could also select $d=a+c^{2} a^{\ddagger}$ in the last corollary, for then $\Delta=a^{2}-u^{2}$ has as inverse $\left(a^{\sharp}\right)^{2}-u u^{d}$ since now $a u=0$. Moreover, in this case

$$
\begin{aligned}
{\left[\begin{array}{cc}
a & c \\
c & a+c^{2} a
\end{array}\right]^{-1} } & =\left[\begin{array}{cc}
1 & -a^{\sharp} c \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
a & u^{d} \\
u^{d} & a
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-c a & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
a-\left(a^{\#}\right)^{3} c^{2} & u^{d}-c\left(a^{\sharp}\right)^{2} \\
u^{d}-c\left(a^{\sharp}\right)^{2} & a^{\#}
\end{array}\right]
\end{aligned}
$$

2. The fact that: "If $a c=c a$, and a^{d}, u^{d} exist, then $R=R a+R c$ ensures that $a^{d} a+u^{d} u=1$ ", should be compared with the corresponding results for Moore-Penrose inverses [6]. Namely, if a^{\dagger} and $v^{\dagger}=$ $\left[c\left(1-a^{\dagger} a\right)\right]^{\dagger}$ exists, then

$$
R=R a+R c \Longrightarrow 1=a^{\dagger} a+v^{\dagger} v
$$

3. If a is unit-regular, that is $a \alpha^{=} a=a$ for some unit $a^{=}$, then under suitable conditions $a R+c R=R \Rightarrow R a+R c=R$. Indeed if $u=\left(1-a a^{=}\right) c$ is regular and $c^{\#}$ exists, then

$$
a R+c R=R \Longrightarrow a \alpha^{=}+\left(1-a^{=}\right) c u^{-}\left(1-a a^{=}\right)=1 .
$$

Thus $a a^{=}\left[\left(1-a a^{=} c u^{-}\left(1-a a^{=}\right]+c u^{-}\left(1-a \alpha^{=}\right)=1\right.\right.$, which on multiplying through by

$$
p=\left[1+a a^{=} c u^{-}\left(1-a \alpha^{=}\right)\right]\left(a^{=}\right)^{-1}
$$

yields:

$$
a+c t=p=\text { unit, where } t=u^{-}\left(1-a a^{=}\right)\left(a^{=}\right)^{-1}
$$

Now if in addition, $a c=c a$ and $a^{=} c=c a^{=}$then we may take $u^{-}=c^{\sharp}$. Hence

$$
a+\left(1-a a^{=}\right)\left(a^{=}\right)^{-1} c^{\ddagger} c=p
$$

implying that $R a+R c=R$.
4. It is now clear how to extend this to the following: If a^{k} is unit regular for some $k \geqq 1$, say $\alpha^{k}\left(a^{k}\right)^{=} a^{k}=a^{k}$, where ($\left.a^{k}\right)^{=}$is a unit, and if c^{d} exist, such that $c c^{d}$ commutes with $a^{k}\left(a^{k}\right)^{=}$and $\left(a^{k}\right)^{=}$then

$$
R=a R+c R \Longrightarrow R=R a+R c .
$$

The case where a^{d} exists and $a c=c a$ easily follows from this example because then $\left(a^{k}\right)^{\sharp}$ exist, for some $k \geqq 1$ and one may then take $\left(a^{k}\right)^{=}=$ $\left(a^{k}\right)^{\sharp}+\left(1-a a^{d}\right)$.

References

[1] G. Azumaya, Strongly-П-regular rings, J. Fac. Science Hokkaido Univ. Series 1, Math., XIII (1954-57), 34-39.
[2] A. Ben Israel and T. N. E. Greville, Generalized Inverses, Theory and Applications, Wiley, New York, 1974.
[3] S. L. Campbell, C. D. Meyer and N. J. Rose, Applications of the Drazin inverse to linear systems of differential equations, SIAM J. Appl. Math., 31 (1976), 411-425.
[4] M. P. Drazin, Pseudo-inverses in associate rings and semigroups, Amer. Math. Monthly, 65 (1958), 506-514.
[5] F. R. Gantmacher, The Theory of Matrices, Vol. 1, Chelsea, New York, 1960.
[6] R. E. Hartwig, Block generalized inverses, Arch. Rat. Mech., 61, (1976), 197-251.
[7] R. E. Harwig and J. Schoaf, Group inverses and Drazin inverses of bidiagonal and triangular Toeplitz matrices, J. Austral. Math. Soc. (A), XXIV (1977), 10-34.
[8] R. E. Hartwig and J. Luh, On finite regular rings, Pacific J. Math., 69 (1977), 73-95.
[9] M. Henriksen, On a class of regular rings that are elementary divisor rings, Arch. Math., 24 (1973), 133-141.
[10] I. N. Herstein and L. W. Small, An extension of a theorem of Schur, Lin. Mult. Algebra, 3 (1975), 41-43.
[11] J. Lambek, Lectures on Rings and Modules, Blaisdell, Waltham, 1966.
Received June 2, 1977 and in revised form December 7, 1977.
North Carolina State University
Raleigh, NC 27607

