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EQUIDISTRIBUTION THEORY
IN HIGHER DIMENSIONS

CHIA-CHI TUNG

Let X, Y be complex spaces, and /: X —-r Y a meromorphic
map. Assume in Fan admissible family 21 = {Sb}beN of analytic
subsets Sb is given. Assume / is almost adapted to 9ϊ. The
purpose of this paper is to prove that, if / satisfies certain
growth conditions, the valence of Sb (for almost all S6e9ί)
grows to infinity at the same rate as the characteristic of
/. Here X is assumed to carry an exhaustion function which
is, e.g., ^-concave, centrally ^-convex or 0-quasiparabolic.

The results obtained generalize the Casorati-Weierstrass type
theorems of Chern [4] [6], Cowen [7], Griffiths-King [12], Stoll [23]
[26], Wu [31, II-III] (see also Griffiths [10]).

Introduction* It is well-known that the classical Casorati-
Weierstrass theorem is not true in higher dimensions. In fact, the
standard example of Fatou-Bierberbach [2, p. 45] gives a holomorphic
imbedding of C2 into P2 with a nondense image. Chern [4] first
showed that a holomorphic map f:Cn-+Pn whose characteristic grows
sufficiently rapidly assumes almost every point in Pn. This result
was generalized to subvarieties of a general codimension in a complex
manifold by Hirshfelder [13] and Stoll [21]-[23]. In Wu [31] certain
geometric conditions were given which ensure the Casorati-Weierstrass
property. For instance, if Cn is given the Fubini-Study metric, then
a nondegenerate quasi-conf ormal holomorphic map / : Cn —> Pn assumes
almost every point in Pn. This in fact carries over to a balanced
holomorphic map of Cm into Pn (see [10, p. 54]), whose image intersects
almost every {n — p)-dimensional linear subspace of Pn (where
0 < p ^ min (m, ri)).

Let f: X—»Y be a meromorphic map between complex spaces
X, Y. Assume in Y an admissible family Sϊ = {S6}6eiV- is given. This

means Sί is defined by two holomorphic maps Y <— M -̂> N (where
M is a complex space, N a compact complex manifold) such that (i)
π is open, surjective; (ii) h is proper, locally trivial at every point
of M; (iii) each Sb is the topological image of π~\b) under h, and Sb

contains no branch of Y. Then Sb is analytic of pure codimension
s in 7 for all 6. The main purpose of this paper is to establish the
equidistribution property that, for almost every Sb e Sϊ, the valence
of Sb grows (over suitable sequence of domains) at the same rate as
the characteristic of /. The admissible family defined here is more
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general than the one given in Stoll [23]. This makes it possible to
include, for instance, the Schubert varieties as special cases. Moreover,
the Kahlerian assumption on the index manifold is no longer required
in view of the results of Dektyarev [8] and Stoll [23] (see Theorem
2.5).

The equidistribution theorems are proved in §4 for different
types of spaces. Here only the centrally ^-convex type will be set
out. Let φ be a C°° exhaustion function of X. Thus φ:X-^R is a
C°° map such that the sets X[r] = {xeX\φ{x) <, r) are compact for
all r ^ 0. Let L(φ) = ddeφ be the Levi form of φ. Let g: J?(0, oo) —>

e~9{t)dt —> c>o

as r —• oo. Then φ is said to be centrally g-convex (c. gr-convex) if
X[0] has measure zero and if

L(φ) ^ (g'°φ)dφ A dcφ off a closed nowhere dense set.
It follows that L(φ) ^ O o n l (Lemma 2.1) and, setting u = e~9,

ωu = (Uoφ)[L(φ) - (gΌφ)dφ A d°φ] ^ 0 on X - X[0] .

If further

(ωu)
m = 0 off a compact set (m — dim X) ,

then φ is called g-semίparabolίc. A logarithmic pseudoconvex ex-
haustion function (in the sense of Stoll [25]) is g-convex (with g — log).
It is not clear to what extent the ^-convexity generalizes logarithmic
pseudoconvexity, except in the trivial case where g = constant (see
§4 for an example).

Assume φ is c.^-convex. Define X(r) = {xeX\φ(x) < r}, χp =
L{φ)v. Let k = dim N. Let ωNΛ be the fundamental form on N of

a Hermitian metric normalized so that \ (ωN t)
k = 1. The fiber inte-

JN

gration operator induced by h is denoted by h*. For ξeAf'p'(N),
p'^k- 8, define ζγ - h*π*ζ. Also set Ωp = ((^V)1)

fc-s+ί))F, 0 ^ p ^ s.
If r > r' > 0, p ; = k - s + p, and ί ^ 0, define

A (u

f A

ΰ?,P(r, ξY) = \ f*ξr
JXir)

A},P(r, ξτ) = u(r)—>\ f*ξγ
JXW)

Tϊ,{r, r', ξγ) = [A},p(t, ξv)u(t)dt .

(The existence of the integrals will be established in §4.)

THEOREM. Assume f:X-^Y is almost adapted to Sί. Assume
either χq(q = m — s ^ 0) is semi-positive on an effective open set or
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XQ A f*Ω8 ^ 0. (1) Assume there exists a positive form ξ e A$~1>k~\N)
such that over some φ-admissible sequence σ = {r̂  }, one of the following
conditions holds'.

(a) iiJ,._1(r,£F) = o'(Γ5>,l fi2.)).

(b) D},Ur, ζY) = o'(\rD}..(t, Ω8)u{t)dt + A},s{o, Ω.)\\u\\ή.

Then there is a set Nσ Q N of measure zero such that for every
b G N — ΛΓσ, the valence

r, r0, S6) - Γ ΛΓ/(X(ί), Sb, χq)u(t)9+ιdt
Jr0

grows at the same rate as the characteristic T}fS(r, r0, Ωs) over a
subsequence (of σ) —> oo depending on Sh. (2) If ^ is gr-semiparabolic
and if s = 1, then taking σ to be any ^-admissible sequence, the
same conclusion holds. (3) Assume there exists a positive form ξe
Ai~ltk~\N) and a positive continuous Ύ: R[aQ, co)-^ij with ||7%||;o—>
co such that for some constants a > 1, B >̂ 0,

T W I J D J , . ^ , fr) - B|β - O(ΰ})8(r, i28)) (r > - ) .

Then there is a φ-admissible sequence σ for which the conclusion in
(1) holds.

A preliminary report of this paper appeared in [29].

1Φ Adaptation to admissible families* In the following, all
complex spaces are reduced, pure dimensional and have a countable
basis. A family Sί = {Sδ}δe.v is said to be admissible in a complex
space Y iff:

(AJ The index set N is a locally irreducible complex space.
(A2) There exists a complex space M and holomorphic maps

π: M-+ N, h: M-+Y, such that π is open, surjective, and h is proper,
locally trivial at every point of M.

(A8) For each be N the restriction h: π~\b) —> Y is injective and
Sb = h(π~\b)).

(A4) No S6 contains a branch of F.
It follows that each Sb is an analytic set in Y of pure (constant)

codimension s > 0. If in addition, h:M-+Y is surjective, then Sί is
called strictly admissible (st. adm.).

To give some examples, take integers p, q, n with 0 <£ p ^ q ^
n — 1. Let V be a complex vector space of dimension % + 1. Let
Grff(F) be the Grassmann manifold of protective g-planes in P(V).
If ye Gq(V), the affine (q + l)-plane spanned by y is denoted by E(y).
Then the flag manifold
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FP>q = {(x, y) e GP(V) x Gq(y)\E(x) £ E(y))}

together with the projections GP(V) ̂ ~ Fp>q -̂» Gq(V) defines a st. adm.
family « M in GP{V) ([22]).

The family Sϊo,g belongs to the class of Schubert varieties. Let
A == (α0, alf , ap) 6 Zp + 1 with O^ao^a^ --- ̂ ap^n~ p. The flag
manifold of A is the set F(A) of all v = (v0, , t;,) with vs e GβJ.+i( F)
such that E(v0) £ JE^) £ £ J5(vP). For each v e F(A) the Schubert
variety

SV(A) = ή {̂  e GP( F) I dim #(x) n ^ ( ^ ) ̂  i + 1}
5=0

has dimension Σ?=o ̂ i It was shown in Co wen [7] that the Schubert
family {Sv(A)}veFu) is st. adm. in GP(V). Here the total space M is
given by the irreducible complex space

S(A) - U Sυ(A) x M .
veF(A)

For fteG^y), define

Σb = {xeGp(V)\E(x)nE(b)*{0}}

(see Chern [5, p. 79]). The collection &rPtn = {<2δ}δβσn_J,_1<r> is a
Schubert family (see below); it is in fact also admissible relative to

LEMMA 1.1. 3f9%m, is st. adm. in GP(V) of codimension 1.

Proof. Let A — (n — p — 1, n — p, , n — p)e Zp+1. If v =
(vQ, , vp) eF(A), the Schubert variety SV(A) has pure codimension
1 in GP(V) and ΣVo — SV(A). The unitary group (of a Hermitian
metric on V) acts transitively and biholomorphically on F(A). It
follows that the projection p: F(A) —> Gn-p^{V) is open. Hence the
triplet Gp{V)^—S{A)-^Gn^p-1{V) is admissible and defines &r9tΛ.

Let Sί = {SJδeiv be admissible in Y, s = codimS6, and k = dimiV.
Assume X is a complex space and /: X—>Y is holomorphic. To obtain
the equidistribution property of / rel. to 91, it is necessary to impose
a general position requirement on the image set of /. Consider the
relative fiber product (/', h!) of (/, h):
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N

X

Mh'

Then / is said to be almost adapted to SI iff / = π°f has strict
maximal rank, i.e., the restriction of / to every branch of X has
rank k. (Observe that if dim X < s, f is not almost adapted to 81.)
Take (α, x) e N x X. The map / is said to be adapted to a at x iff
there exist open neighborhoods U, V of α, resp. x, such that the set
f~\Sb) Π V either is empty for all be U or has pure codimension s
in V for all be U; in the latter case, / is called truly adapted to a
at x.

Assume now f:X-±Y is a meromorphic map ([1] [18]). Then
/ may be thought of as a holomorphic correspondence [f]:X-^Y
(see [20]). Let Ί g l x Γ be the graph of [/] and P;'X-*Xf

F:'X-+Y be the projections. There is a largest open set X° £ X
such that P: P^(X°) -+ X° is biholomorphic. Define /0 - FoP~ι\ X° -> Γ.
Then /0 = [f]\X° is holomorphic. The indeterminacy If = X — X°
is thin analytic in X. The map / is said to be: (1) nondegenerate
if F has strict maximal rank; (2) almost adapted to §ί if so is
F.

Define D = D(F) = {ze'X\ rank, ί* < k). Let G £ X If [/](G) n
Sb Φ 0 for some & e JV, then G is called effective (for 81). The set
of all beN to which F is adapted at every point of 'G = P~\G) is
denoted by NG)f. Let G = /^( 'G). Then Nσ,f = N - F(G Π D).
Hence if G is compact, NGff is open. Let Gf] be the set of all
xeG such that F is truly adapted to some 6 e N at some w eP~\x).

LEMMA 1.2. Assume f is almost adapted to Sί. Then (i) for all
G £ X, N — JNΓβ,/ feαs ^ βro (Hausdorff) 2k-measure; (ii) cm ope?ι set
G Q X is effective iff Gf ^ 0 (iii) /or t̂ eri/ branch X3 of X, there
exists x3 e X5 Π X° such that f0 is truly adapted to some point of N
at Xj.

Proof. By [1, 1.24], F(D) is almost thin of dimension k — 2,
Since N - NG)f £ F(D), assertion (i) follows. Assume G £ X is open.
If G is effective there exists we'G such that F(w)eh(M). Then
Gf 2 P(h'(G ~-D))Φ 0 , since D is thin analytic in 'X ([1, 1.16]).
The converse is trivial. Now (iii) is a consequence of (ii).
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LEMMA 1.3, Assume every effective branch X3 of X contains a
point Xj 6 X° such that for every branch B of W—h~\f(x3)), f0 is truly
adapted to some point of π(B) at x3. Then f is almost adapted to SL

Proof. Let (/„', K) be the fiber product of (/0, h). Take an
arbitrary branch A of X°. The map h'Q | A: A —> X° is proper of pure
maximal rank. Hence the image A' = K{A) is a branch of X° ([1,
1.27]). Let {Bi\ be the family of branches of W. Since A' is the
intersection of X° and an effective branch X3 of X, it contains a
point xs at which fQ is truly adapted to a point of π(Bt) for every
Bi. Also, (K)~\x3) Γ\ A Φ 0 and contains a branch of the form
(fiy^Bt) Γ\ (KyXxj). H e n c e t h e r e e x i s t s zeA w i t h YB,ήkz f o \ A = k.
It follows that F has strict rank k.

COROLLARY 1.4. Let %be a st. adm. family defined by Y+—M-+N.
Assume Y is nonsingular, connected and simply connected, and M
is irreducible. Let f: X-*Y be a meromorphic map such that for
every branch X3 of X, there is a point x3 e X3 — If at which f0 is
truly adapted to a point of N. Then f is almost adapted to SI.

Proof. By [27, 1.3], h~\y) is irreducible for all yeY. Apply
Lemma 1.3.

2 The Crofton formula and the F*M*Ί\ Let X be a complex
space of dimension m > 0. Let Al(X)t resp. Ag

k'
r(X), denote the set

of all differential forms of class Ck and degree p, resp. bidegree (q, r)
on X. A form ζ e AlyV(X) is said to be nonnegative (^0) iff for any
holomorphic map a of a nonvoid open set U QCP into X, a*ζ ̂  0 on
U; ζ is said to be strictly nonnegative (>0) iff ζ Λ ^ O for all
nonnegative forms ΎJ on X. The form ζ is said to be positive at
a 6 X iff ζ has a positive extension into a local embedding space of
X at a. Also, ζ is said to be simi-positive on X iff it is positive
outside a thin analytic subset of X.

LEMMA 2.1. If ζeAl>p(X) is nonnegative on an open, dense
subset of X, then ζ is nonnegative on X.

Proof. Take arbitrary ξ3 e AJ'°(X), j = 1, , m - p. Then the
form 57=i*"pζΛίiΛfiΛ Λξm-PΛξm-P is ^0 on an open, dense subset
of X. By continuity, η ^ 0 on Xreg (the manifold of regular points
of X). It follows that η ^ 0 (hence also ζ ̂  0) on X ([28, §4.2]).

Let M, M! be complex spaces and h: M —> M' a holomorphic map.
If /& is proper and locally trivial at every point of M, then the fiber
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integration operator h% exists, which associates to each ζeA^p(M)f

p^r = fiber dim. h, a form h*ζ e AΓr'p~r{M') ([28, § 8.2]). Moreover,
if ζ is ^0, resp. > 0, then so is h*ζ ([ibid.]). If h has strict rank
n = dim Jf' and if ζ' is >0 on M', then h*ζ' » 0 o n l ([ibid.]).

Assume Y <— M -^ N defines an admissible family 81 in Y. Then
the linear map Ψ = h*π*: Aψv{N) -* AΓk+Sfp~k+s(Y) exists if p ^ k - s.
Assume f:X-±Y is a meromorphic map almost adapted to 9Ϊ.

LEMMA 2.2. Let ζ, ζ' e A%iP(N) be real forms where p=k or k—1.
Let ζγ = Ψ(ξ). (1) // ξ ^ 0, ί^e^ /*5F > 0 on any open subset of X°.
(2) Assume N is compact and ξ > 0. I%e% there is a constant C > 0
swe/fc £&α£ i/ ζeA%*r(W) is ^0 on an open subset Wof X, ζΛf*ζΎ^
Cζ A f*ξτ on W.

Proof. Observe that ζ > 0 on N. Since F has strict rank kf

fiber integration yields F*ζγ > 0 on 'X([ibid.]). This implies f*ξγ > 0
on any open subset of X° ([28, 4.2.5.]). To prove (2), let C> 0 be
a constant such that ζ' ^ Cf. Then Cξ - ξ' > 0. Hence ζ Λ /*ίr ^
Cζ Λ / * ί r on W.

THEOREM 2.3 (Crofton Formula). Let ζ 6 Al{m~s)(X) and ω 6 A2

0\N).
Assume G £ X is open and K = G Π supp ζ is compact. Define 'ζ —
P*ζ, rG = P-χ

vYζ (beNκ,f).

Then Nf(G, Sb, ζ) is measurable on N and

r, Sb, ζ)ω = 1 ζ Λ /*<*>r .\
JN

REMARKS 1. The intersection multiplicity v\ of F with Sb is
included because of its appearance in the P. M. T. For the definition
and properties of the multiplicity, see [28].

2. It can be shown that for almost all S&e9ϊ,

Nf(G, S,f C) = ( , C
if-l(Sh)ΠG

Proof. Since

( C Λ /o*ωF = ( 'ζ Λ i77*
Jc?nx0 j ' G

exists, the measurable form ζAf*<oγ is integrable over G. Moreover,
it suffices to consider the case where / is holomorphic.



532 CHIA-CHI TUNG

Let K = h'-\K), ζ = h'%, D == D(f) and N0 = {be N\ω(b) Φ 0}.

Then

\ ζ Λ poύy = \ζA K(f'*π*ω) ( [28, §8.2])
JG JK

= L ζ Λ f*ω
JK-D

= \ ( L _ y/C)ώ) ([28, 5.2.1])

= S ( ( . .v
JNκ>f\Jf — 1(b)f]K

V>(G, Sh, ζ)ω .

LEMMA 2.4. Let ωeA2

0

k(N) be semi-positive. Then (1) ωγ^0 on
Y. (2) Lei / be as above and ζ e A™~s'm~s(X). If ζ is semi-positive
on an effective open set G £ X, ίAew ζ Λ /*<*>r ^ 0 on G° = G Π -X"0.

Proof. Observe that the identity map of Y is almost adapted
to Si and positive form ζ' e A%~s>n-S(Y) (n = dimΓ) exists. Hence (2)
implies (1).

To prove (2), let R be a thin analytic subset of G such that
ζ > 0 on G - R. The open set ('G)j 0) contains a point xeP-\G°).
Therefore it may be assumed w.l.o.g. that / is holomorphic. Let
w eX such that / is adapted to a — f{w) at x = h'(w) eG. Let
Gi c G, Q £ iSΓ be neighborhoods of &, resp. α, such that f~\Sb) ΓΊ GL

has pure codimension s for all beQ. Then /(GJ constains a nonvoid
open subset Q, of Q. Define Fδ = f~\b) Π Gx for δ e Q, and Λ = h'~\R).
According to [1, 1.26], the set T = {bsQ\VhV[R is not thin in Vb}
is almost thin in Q. Since In! maps /-1(δ) homeomorphically onto
f~XSh), there is an open set Hb Q Gt such that Hh Π /"'(SJ = h\Vb)
(for each 6 e Q). Let Z6 = (ίί6 - R) n Z " 1 ^ ) . Then

ζ Λ /*α>r - ( iV>(Gw S6, ζ)α>

JQ-T\Jvb-R

rVJzj /
ω>0

Let f:X—^Y be a meromorphie map. Relative to a family of
subvarieties in Y, say Sί = {Sδ}66iv> the so called First Main Theorem
for / measures the difference between the valence of Sb and its mean
value on N. The theorem requires the existence of certain differential
forms {Λb}beN (where Λb is singular on Sb) with special properties.
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For instance, if Sί = Sί09 (the family of projective g-planes in P(V)),
the explicitly constructed Chern-Levine forms ([4] [22]) suffice for
this purpose. In general, if Sί satisfies (A1)-(A4), the forms Λb may
be obtained by fiber integration from a singular potential λ on JV.
The latter means that λ is a set of forms {λ6}6eiV depending infinitely
smoothly on b such that (i) Xb is ^0, C°° on N — {6} of bidegree
(fc — 1, k — 1); (ii) Xb is singular at b as described in [23, p. 55, (2)-(3)]
([28, 7.2.1] if N is singular); (iii) ddcXb extends to a nonnegative,
C°° form on N independent of 6. For a compact Kahler manifold
the existence of such forms was proved by Wu [31, I, II], Hirsch-
folder [14] (see also [13]), and Stoll [23]. By the method of elliptic
operators, Dektyarev [8] [9] constructed similar forms without requir-
ing the Kahler condition. Actually, combining [8] and [23], the
following can be proved:

THEOREM 2.5. Assume Nis a connected, compact complex manifold
of dimension k > 0. Let ω be a volume form on N normalized so

that \ ω — 1. Then there exists a singular potential X = {λ6}6eτ\r such
JN

that ddcXb = ω on N — {b}.

Proof. By [23, 5.3], there exist differential forms {λδ*}6ê  depend-
ing infinitely smoothly on b such that Xf satisfies the above conditions
(i)-(ii), and for some C°° g: N x N-+R,

ddeXf = gbω on N - {b} .

(Here gb(x) = g(χ, b) if xeN.) Take a positive form ξeAίrltk''1(N).
Consider the linear operator E on the space ^°°(N) of real-valued
C°°-functions such that for ue^

{Eu)ω = ddc{uξ) .

The adjoint operator £7* is given by

(E*u)ω = dd°u A ξ .

Then E and 2£* are elliptic. By the maximum principle, the kernel
of E* consists of constant functions. The residue theorem ([23, 6.4])

applied to the identity map of N gives \ ghω = 1 for b e N. Hence

the equation

Eu = 1 - gb

has a solution uh^
c^"°{N) depending infinitely smoothly on b (see,

for example, [15, 10.5.3] [19]). According to [8, p. 961], the form
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ξ can be chosen so that ddcξ = 0. Hence for some positive constant
C, λδ = (C + ub)ξ + X* defines a set of forms with all required properties.

If G is an open subset of the complex space X, there exists a
maximal open subset dG of dG Π Xreg such that dG is a smooth,
(oriented) C°°-boundary manifold of G in Xreg. A relatively compact
open set G £ X is called a Stokes domain iff dG has locally finite
(Hausdorίϊ) (2m — l)-measure and dG — dG has zero (2m — l)-measure.
A bump (g, G, ̂ ) in X is given by Stokes domains G and # in X
with 0Qg<cG and a continuous function ^:X-^JB[0, oo) such that
(i) supp ψQG; (ii) ψ\G — g is of class C2; (iii) ψ |j/ — MaxψlG > 0
(if g Φ 0 ) .

THEOREM 2.6 (F.M.T.). Let f:X-^Ybe a meromorphic map of a
complex space X of dimension m > 0 into a complex space Y. Assume
Sί = {Sb}beN is admissible in Y with q = m — codim Sί Ξ> 0. Assume
ω e Jfi(iV) ΐs nonnegative and λ = {λδ}δeî  is α singular potential with
ddcXb = ω. Define Λb = ?Γ(λ6) o^ F — Sδ αwd i2 = Ψ{ώ) on Y. Assume
% e Al'q(X) is closed, strictly nonnegative. Let (g, G, ψ) be a bump
in X, and K — G Π supp χ. Then for every b e NKtf,

Tf{G) - NS{G, b) = mf(Γ, b) - m,(τ, b) - Df(G, b) .

Here

Nf(G, b) = \ vVψ'l (valence)
jF~Hsb)n'G

mf(Γ, b) — \ /*/ί6 Λ dλψ Λ ^ ^ 0 (exterior proximity)

mf(Ί, b) = \ /*/l6 Λ ώ 1 ^ Λ Z ^ O (interior proximity)
h

Tf(G) = [ ψf*Ω A % (characteristic)
JG

Df(G, b) = \ _f*Λt A dd^ψ Λ χ (deficit)
JG-9

are continuous functions of b on NKtf; 'G, 'ψ, resp. 'χ, denotes its
lifting to 'X; Γ = dG, Ί = dg, and dL = i(d - d) = -ώ c .

REMARKS 1. If, in the F. M. T., / is almost adapted to % the
hypothesis "χ > 0" can be weakened to "χ ^ 0 in a neighborhood of
G — g". 2. The theorem was proved in [28] for a holomorphic map;
the case of a meromorphic map is an easy consequence.

3* Integral averages* Some general assumptions shall be stated
here for later reference.
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( I ) X is a complex space of dimension m > 0 with at least one
noncompact branch.

(II) Sί = {Sδ}δeiy is admissible in a complex space Y, where N
is compact, connected and nonsingular. Let k = dim N, s = codim Sh9

and q = m — s.
(III) / : X -* Y is a meromorphic map almost adapted to 3Ϊ.

(IV-a) ωeA£(N) is semi-positive, normalized so that I ω =

1; {̂ δlδê  is a singular potential with dcίcλ6 = ω. Define Λb = ?Γ(λ6),
42 = α)F.

(IV-b) 0)^,! is the fundamental form on N of a Hermitian metric

normalized so that \ ω% x — 1. Define ίϊ, = (ά)^"ί+ί)y, 0 ̂  Z ̂  s.
JiV

(V) If q = 0, let χ = 1, if g > 0, assume χe^Lf ff(X) is closed,
nonnegative.

(VI) Either χ is semi-positive on an effective open subset of X
o r χ A f * Ω ΐ O o n X°.

Assume (I)-(IV-a). For a measurable function u on N, define

I(u) = \ uω (if the integral exists). By [23, 6.3], the integral average

Λ(y) = \ ω(b) ® λ6(#), yeN, defines a nonnegative form A e Ao~1>k~\N).
JN

LEMMA 3.1. Let Gζ^Xbe a relatively compact open set. Assume
ζ e Al+1'q+\X). Then the integral

Df(G; ζ) = ( f*Λr A ζ

exists and

(3.1) 7 ( S / * ^ Λ ° =

Proof. The existence of Df(G; ζ) follows from the continuity of

F*AY A X on 'G. By [28, 7.2.2 and §8.2], the integral ( f*Ah A ζ
JG

is a continuous function of b on No,f. Also by [28, §9.1], F*Λb^>0
on 'X - F-'CSj). Let ζ = A'*('ζ). If ζ ̂  0 on G, then

ζ ) = LG/*λ>Λ ζ >

If ζ is real, there exists a positive form η e Al+1'q+\X) such that
7] + ζ > 0 on G. Then (3.1) holds for η and 77 + ζ, hence also for ζ.
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If ζ is complex-valued, a splitting into real and imaginary parts
yields the result.

LEMMA 3.2. Let χeAlq(X) and G Q X be a Stokes domain.
Assume ψ: X-+ R is of class C2 with ψ\dG — 0, and, for some neigh-
borhood W of dG, either ψ\ W Π G ^ 0 or ψ\ W - G ^ 0. Then

l(\ f*Λh A dcψ A χ) = \ f*Λγ Λ d V Λ Z
\JdG / JdG

= Df{G; dd°(M))

Proof. For each b e N^,/, it was proved in [30] that the following
residue formula holds:

ί Ψf*ΩΛχ-\ f*Λb A dd'(ψχ) = Nf(G, Sb, ψχ) - \ f*Λh A d'ψ A χ .
JO J<? Jiff

Therefore (3.1) and the Crofton Formula yield

/ ( L / M * A d°ψ Λ χ ) = D / i G ; dd%irχ)) •
Now assume χ ^ 0 in a neighborhood of G. Let Γ = dG, Ύ = P~ι{Γ),
Γ = h'-'CΓ), etc. By [23, 3.2 and All, 4.11, 4.6],

*Λb A d°ψ A χ) = m ^ Λ * Λ d"ψ A '

Λ d"ψ A 'X
'Γ

= \ f*Λr

The general case follows the same way as in Lemma 3.1.

Assume (I)-(IV-a) and (V). Assume (g, G, ψ) is a bump in X.
Let Tf, Nff mf, and Df denote the associated value distribution func-
tions. Let ψ be a C2-extension of ψ on X. Then Lemma 3.2 applied
to φ, resp. (φ\g) — ψf shows that the mean proximities mf(Γ) =
I(mf(Γ, b)) and mf(j) — I(mf(y, 6)) exist. Moreover, with Gμ — G or ^,

(3.2) mf(dGμ) = ( / Λ Λ ^ I Λ Z ^ J5/(G,; dcώt Λ

Hence

(3.3) mf(Γ) - m/(7) - I(Df(G, b)) .
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4* Equidistribution theorems. Let X be a complex space of
dimension m > 0. A semi-exhaustion function of X is an upper semi-
continuous map <p: X-> R-^ = R[J {— °o} such that the half spaces
X[r] — {x e X\φ(x) g r} are compact for all r ^ 0 An exhaustion
function of X is a semi-exhaustion φiX-^R^^ which is C00 outside
a compact set.

Let 9 be a semi-exhaustion function of X. If r > r' ̂  — °o,
define X(r) = {# 6 X| ̂ (α?) < r}, X[r', r) = X(r) - X(r'), X(r'f r) = X(r) -
X[r']f etc. Assume £7: i?[r0, r)-± R is absolutely continuous and let
u = U'. For r > r' ̂  r0, define

O , if xeX[r, oo)

if a e X(r) .

Here 9>[r/](ίc) = Max (r', 9>(»)). Define i79 = JJoφ.

LEMMA 4.1. (Cf. [23, 8.3] [25, 10.6].) Assume ζ is a locally
integrable 2m-form on X. Take a0 eR[— oo9 γ). Define

v(t) = \ ζ , v[t] = \ ζ (t > α0) .
Jl[αo,ί) JX[ao,tΊ

Then if r > r' ̂  Max (α0, r0),

\ φrr,uζ= [v(t)u(t)dt
/ ^ ,- . JXUo.co) Jr '

= I7(r)«(r) - U(r')v[r'] -\ UΨζ .
JKr'.r)

Proof. Observe that <prr'« is bounded, measurable on X. W.l.o.g.
assume ζ is real. There exist nonnegative, integrable forms ζ, (j" = 1, 2)
on Xτes[r] such that ζx — ζ2 = ζ. Hence it may be assumed that ζ Ξ> 0
on X r e g[r]. Likewise assume u ̂  0. Let C(x, t) — 1 if £>(#) < ί, and
C(x, ί) = 0 if 9>(a?) ̂  *. Then

ί 9rr.C
JX[α0,oo) ]

= \Ί\ C(x, t)ζ(χ))u(t)dt

= Γ v(t)u(t)dt .
Jr'

On the other hand,

\ φrruζ \
JX[α0,oo) JXίaQ,r)

= U(r)v(r) - U(r')v[r'] ~\ Uφζ .
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Assume (I) and let φ:X-*!&-.„ be an exhaustion function. Call
r > — oo ̂ -admissible if X(r) is a Stokes domain. A strictly increasing
sequence {r, }JLi is said to be φ-admissible if each r3- is ^-admissible
and Tj—> oo. The set of non-<p-admissible values > r ' has measure
zero in R[r', oo) for large r' (cf. [28, 7.1.6]). If φ is C°° on X, this
is true for arbitrary r\

LEMMA 4.2. Lei L(φ) = dcίV δβ ίfte Lew /orm ofφonX — X[r0]
(where φ is C00). Assume U: R[r0, oo) —> U is o/ cZαss C2 αra£ u = Z7'.
Let ζ 6 AΓ""1 1""'1(X). (1) If r, rf are φ-admissible with r > rf > r0, then

,.

(2) Assume φ\ X —»R is C°° and ζ is dcd-closed. Then for all r >
r' > r0,

(4.3) u(r) ί L(φ)Λζ- u(r') \ L{φ) A ζ - ( L( f/,) Λ C .

Proof. By Lemma 4.1, if r, r' are ̂ -admissible with r > r' > r0,
then

(r) \ d'φΛζ- u(r') \ dcφ A ζ

- S L(J7f) Λ C + Γ (( dd%)u(t)dt .

Γ (S ddcζ)u(t)dt - CΓ(r) ( dd ζ - ?7(r')( dd% - \ Uφdd%

d(UΨ)Λd%

X(r',r)

Kr'.r)

dζΛd°(UΨ)

ί V Λ C - w(r') \ dcφ A ζ
dX(r) JdX(r')

ζΛL(Uφ).
JX(r',r)

Now assertion (2) follows from (1) by repeated application of the

Stokes theorem ([28, §7.1]) and the left-continuity of v(t) = \ χ
JXU)

(where χeA&(X)).

Let φiX—ϊR-oo be an exhaustion function. If there exists an
increasing g: JB(c0, oo)—>R (c0 ̂  0) of class C1 such that

( i ) L(9>) ̂  g'ψdφ A deφ on X reg - X[c0],
(ii) |Ie~ |̂|Γ0~> oo as r-* oo,

then >̂ is called g-convex. If instead of (i),
( i ) ' L{φ) ̂  flr^ Λ dV on Xreg - X[c0],
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and (ii) hold, then φ is called g-concave.
A ^-convex exhaustion function may not be logarithmic pseudo-

convex. As an example, consider the variety A = {zeCn\zι+ •••
+ zn^ = 0},n> 1. Let \\z\\* = Σzβό, zeCn. Then φ = log | |z | | 2 : A->
JB_OO is pseudoconvex (i.e., ^-convex with g — constant). Let Z ~
{zeCn\zι = = z%-i = 0} and r. Z —> A be the inclusion. Then

Λ **) - "2 c f a» Λ d»» < 0

Kl2φ

on Z — A[0] (where sΛ = ίcw + iyn). Hence φ is not logarithmic psc.
( = log — convex). Similarly, one can construct a gr-concave exhaustion
function which is not pseudoconcave.

Assume g: R(c0, ©o) —> R (c0 ^ 0) is of class C1 and ^ = e~g. Let
C/j, be a primitive of u p on R(cQ> c>o) for peZ[l, m]. Define

(4.4) ωu = uφ[L(φ) — g'φdφ A dcφ]

off a compact set, say X[c], e ^ c0. Setting χ̂  = L{φ)1, (4.4) yields

(4.5) {ωuy = ddc(Upoφ) A χP-, on X - X[c] .

Now assume (I) and the exhaustion φ:X~>R is C°°. Let ζ e
be ddc-closed; if p = 0, set ζ = 1. Define

r Λ 7 (r > cΛ)
Jl(r)

For r > r ' > c, (4.3) yields

A*(r) - A;(r') = \ ζ Λ {ωu)
m~p .

JxCr'.r)

Hence if <p is c.^r-convex (cQ — 0) and if ζ ^ 0, A;(0) = limr_0+ A;(r)
exists and

(4.6) i l (r) = A*(0) + ( ζ Λ ( ω j - ^ (r > 0) .
Jj(r)

A c.^-convex exhaustion φ of a complex space X is called #-
quasiparabolic if

Γ

Consider the following example. Let M Z Pn be a protective
variety of dimension m — 1 > 0. Let U be the restriction of the
universal line bundle (over Pn) to M. There is a proper, holomorphic
map σ oί U onto an algebraic set A in Cw + 1 such that σ: U — σ"1^) ~>
4̂. — {0} is biholomorphic. Let ψ — l+\\z\\2: A—>R and φ — σ*ψ:U—>R.
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With g = logr in (4.4), the (1, l)-form ωu is ^ 0 on U and > 0 on
U — σ~\0). Moreover,

\ (ωur = \ (L(log ̂ )T = 0(1) (r

Thus the exhaustion φ of U is log-quasiparabolic but not parabolic
in the sense of [25].

LEMMA 4.3. Assume u, A: R[r0J ^ ) >R where u is positive,
continuous, and A ^ 0. Assume

There exists a continuous a: R[r0, oo) —> R(0, oo) such

that \\ua\\r0 ~> °° and A/a is increasing in r.

Then

0 r-+~ a{r)

Proof. Let G(r) = \\ua\\r

r^ For all r > rr > r0,

From this the lemma follows.

THEOREM 4.4. Assume (I)-(IV-a), (V)-(VI). Let φ:X-^R^ be
an exhaustion function. Let U: R[r0, oo) —> R be of class C2 with
Ur = u > 0. For r > r' ^ r0,

JV;(r, r', S6) = Γ Nf(X(t), Sb, χ)u(t)dt , (b e NxM,f)

T%r, r', Ω) = \ φrr,J*Ω A I ,

and for φ-admissible r > r0,

m j ( r ) = u{r) \ f*Λγ A dcφ AX.
JdX(r)

Assume one of the following holds:
( 1 ) L{ Uφ) Λ I ^ O off a compact set, and

(4.8) m%a) = o'(T}(a, rQ, Ω))

over some φ-admissible sequence σ — {a3 }T=i (this fact is denoted by

V " ) .
( 2 ) L( Uφ) A X ύ 0 off a compact set and T}(r, r0, Ω) -> co. Let
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a = {aά} be any φ-admissible sequence.
Then there exists a set No £ N of measure zero such that for

every b e N — Nσ, there is a subsequence {rμ} Q σ, rμ —> °o, for which

ιimN}(rμ,rlfSb) = 1 >

/— T%rμfrί9Ω)

Proof. There exists α ^ ^ r0 such that that on X — X[αz_J <p is
C00 and L(U9) A X ^ 0(or ^ 0 ) . Define iV™ - n~=* #*[.,],/. Let (?,- =
X{aά), f5 = ^α i α ί %; associated to the bump ((?„ G i ? fa), j > Z, there are
the deficit Df(aj9 b) = Df(Gd, 6), proximity mf(ajf b) = mf(dGjf b), etc.,
for all beNίσ\ Observe that

Mf(a3; b) = tt(α5.) \ /*Λ6 Λ dcφ Λ χ (i ^ i) .

For beNίa\ define

J/(αy, 6) = I D/(αy, 6) | + mf(aόy b) + mf(al9 b) (j > I) .

Then it follows from (3.3) and (4.8) that

I{Δf{aβ9 b)) = o{Tf{a5)) (j > - ) .

Define

N j μ = { b e N w I Δf{fli9 b) ^ 2-PTfias)} ( j ^ μ > l ) ,

- n Niμ.

Then N{μ) is measurable, and since

I{Δf{aif b)) ̂  2-^

each N{μ) has measure zero. Define

NC = (N- i\ΓCσ]) U U ^ ^

Then iV^ has measure zero. For each beN — Nσ, t h e r e exists a
subsequence {rμ}^=,i £ <τ wi th αz ^ r x < r u -> °o such t h a t

,, 6) - o(Tf(rμ)) (μ > co) .

Hence from this and the F. M. T. the theorem follows.

THEOREM 4.5. Assume (I)-(III), (IV-b), (V). Let φ, U, u be the

s a m e a s i n T h e o r e m 4 . 4 . Assume A ( r ) = \ f * Ω s Λ Z ΐ O a n d ( 4 . 7 )
JX(r)

holds for (u, A). Assume ζ = L(Uφ) Λ X ^ 0 off a compact set. (1)
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If

(4.9) (
JX(ro.r)

(over some φ-admissible sequence σ = {r,-}), then Im [/] intersects
almost every Sb e 9ί wΐ£/z<

(4.10) lim' ^ S\
}(r,ro,Ωs)

Here r runs over a subsequence (of σ) —• oo depending on Sb.
(2) (C/. Griffiths-King [12, 5.3].) // ω ^ , α ) ^ , are cohomologous
Kahler forms and if there exists a positive form ζ e Ao~ltk~\N) such
that

(4.11) ί /*fF Λ ζ = o'(T}(r, r0, fl.))
Jj(ro,r)

σ as above), then

(4.12) lim ffi* ̂ o, g) = i .

Proo/. By (4.1) and Lemma 4.3, T}(r, r0, β.) -> oo. (1) Let r, r'
be 95-admissible with r > r' > r0. By (3.1) and (3.3),

f / * ^ r Λ ζ = 0(1) + \ f*Λγ A d°dΨrr,u A X
JX(ro,r) JXW',r)

= 0(1) + m%r) - m}(r') .

Thus (4.8) follows from (4.9) and therefore (4.10) holds. (2) Lemma
2.2 and (4.11) yield

(4.13)
JX(ro,r)

There exists η e A£rltk"\N) such that ddcη = ω'£yl — ω%Λ. Assume r, rf

a r e ^ - a d m i s s i b l e , r > rr > r 0 , a n d ζ ^ O o n l - -XΊrΊ B y (4.2),

u(r) \ dcφ A f Ω.^ A X = 0(1) + ( L( UΨ) A f*Ωβ^ A X .
JdXίr) JX(rQ,r)

Observe that on dX\r),

dcφ A PVY A l ^ const. dcφ A / * ΰ . - 1 Λ X

([23, 3.2]). Therefore (4.2) yields
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T}(r, r', Ω'.) - T%r, r', Ω.)

= 0 ( 1 ) + u(r) \ d°φ A f * η Y Aχ-[ f*Vr Λ ζ
JdZ(r) JZ(r',r)

£ 0(1) + const. ( /*£._, Λ ζ .
JX(ro,r)

Now (4.12) follows from (4.13).

COROLLARY 4.6. Assume (I)-(IV-a), (V)-(VI). Assume φ is a C°°, g-
convex exhaustion function of X. If (with u — e~9 defined on R[r0, °o))

u{r) \ f*
Jl(r)

Λγ Λ L Λ Z = o'(T}(r, r0, Ω)) ,

/or almost every Sb e Sί,

(4.14) lim' Wr, U, Sj) = χ
, r0, β)

Proof. If r > r0 is ^-admissible, Lemma 3.2 yields

D/(ί(r); JU Λ χ) = ( f*ArAd'φAχ.
JdXίr)

Hence Theorem 4.4 concludes the proof.

COROLLARY 4.7. Assume (I)-(IV-a), (V)-(VI). Assume φ:X-+ R-w

is a g-concave exhaustion function. Let σ = {r^} be an arbitrary
φ-admissible sequence. Then there is a set Nσ £ N of measure zero
such that (4.14) holds for every Sb with b e N — Nσ.

Proof. Apply Theorem 4.4.

Let W-^7 be a holomorphic vector bundle of fiber dimension
p ;> 1 over a complex space Y. Assume Γ(Y, W) contains an ample
linear subspace V (see [17]) of dimension n + 1 ^ 2 . Take q e
Z[0, n - p]. For 6 e Gq(V), define Zb = f\ {Zero (<τ) | σ 6 JE(6)}. Let
d(q, n) = dim(?g(F). Let α>g>1 be a normalized Kahler form on Gq(V)
such that, setting ωίq] — a)*^, \ ωίq] = 1. The classifying map

jGgiV)

cv:Y-± Gn-p(V) is given by

E(cv(y)) = {σe V\σ(y) - 0} (yeY).

It can be easily shown that Zb = Cv\Sb) for every S6 e SU-^. Here
S6 has codimension s = p(g + 1) in GΛ_P(F) (see [27]). Define

Ωp,q =

Then fl, α > 0 and dΩv a = 0.
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COROLLARY 4.8. Assume X satisfies (I) and φiX-^R-^ is a g-
concave exhaustion function. Let W, V, q be as above, and f:X-*Y
be a meromorphic map. Assume for every branch X3 of X there is
a point (xjt bj)e(X3 — If) x Gq(V) such that codimXjfό

1(Zbj) — s.
Assume χ e A™~8'm~s(X) is closed, nonnegative, and χ > 0 at some
point of X, (if m = s, take χ = 1). Then for almost all beGg(V),
fβXZb) has pure codίmension s and

lim' N}^ r Z ) 1 .
T}(r, rQ, Ω,,q)

(Cf. the definitions in Theorem 4.4.)

Proof. The meromorphic map cv°f: X-^Gn-p(V) is almost adapted
to ^Άn-P,q by Corollary 1.4. Hence Corollary 4.7 yields the result.

THEOREM 4.9. Assume (I)-(III) and (IV-b). Assume φ is a c.g-
convex exhaustion function of X such that (VI) holds with χ = χq

and Ω = Ω8. (1) Assume for some positive form ζeAo"ltk"1(N)f one
of the following conditions holds (over a φ-admissible sequence σ):

(a) A},s^(r, ξγ) = o'(T},s(r,l, Ωs))

(b) D},Ur, ξY) = o'(\rD},.(fi, Ωs)u(t)dt + AJUO, Ωs)\\u\\ί).

Then there is a set Nσd N of measure zero such that for every b e
N - Nσ,

(4.15) ^ f r g j
r->oo T},8(r, r0, Ωs)

(Here r0 > 0 is an arbitrary constant.) (2) If φ is g-semiparabolic
and if 8 = 1, the above conclusion holds for every φ-admissible
sequence σ.

Proof. For fixed r' > 0, T}yS(r, r\ Ωs) -> oo by (4.7), Lemmas 2.4
and 4.3. Let f e ASr^'XN) be a enclosed positive form ([8, p. 961]).
Then (4.6) and Lemma 2.2 imply

Df,.-i(r, &) ̂  const. A},8^(r, ξγ) .

Therefore (a) =» (b). (Similarly (b) => (a).) Now (4.5) and Theorem
4.5 yield (4.15). Clearly (2) is a consequence of (1).

COROLLARY 4.10. Assume (I)-(III), (IV-b) and 31 is strictly adm.
of codimension 1. Assume φ is an exhaustion function of X such
that one of the following holds:

(a) φ is e.g-convex and
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A%(r) = o'(TUr, 1, Ωx)) .

(b) φ is g-quasίparabolic.
If m>l, assume χmφQ. Assume either Y is compact, or dωNΛ = 0
and Y has a finite number of connectivity components. Then (4.15)
holds for all Sb with b e N — Nσ. (Here Nσ has measure zero, and
in the case of (b), a is an arbitrary φ-admissϊble sequence.)

Proof. Since χx ^ 0, χm Φ 0 implies χ1 > 0 at some point of X r e g .
Also, by hypotheses, Ωo is a bounded function on Y. Hence the
corollary follows from Theorem 4.9 and Lemma 4.3.

LEMMA 4.11. Let V,W: R[c0, oo)-+R[0f oo), where W is increasing
^ 0 , and V is measurable, locally bounded. Let u, 7: R[c0,00) -+R(Q, 00)
be continuous functions with j | ΊU | |£0 —> °°. Assume for some constants

Ύ(r)\V(r) - B\« = 0(W(r)) (r > 00) .

Let E Q R[c0, 00) be a set of measure zero. Then there exists a
sequence {rό} in R[c0, 00) — E tending to infinity such that

V(rd) = OQ\uW\\r4) (j >oo).

Proof. Put H(r) = | |7^ | | ί 0 and let J be the inverse function of
H on JR[O, 00). There exist constants K > 0, r1 ^ c0 such that

7(r)17(r) - B\a ^ ΛΓTΓ(r) (r ^ r j .

For α > α 1 = Jϊ(r ι) define Q(α) = |F(/(α)) - 5 ^ , and P(α) - ((QIC,.
The case P(a) = 0 is trivial, hence assume P(α) > 0 for a > aλ. Then
with a = H{r) > alf

\V(r) -B\£ K[(P-"Q)(a)r«\\uW\\r

rί .

Since P~aQ e Lι([ar, 00)) for large a', there exists a sequence {r, } in
Λ[c0, 00) - E tending to infinity such that (P~aQ)(H{r5)) < 2~y for
every i . From this the conclusion follows.

COROLLARY 4.12. Assume (I)-(III) and (IV-b). Assume φ is a
c.g-convex exhaustion function of X such that (VI) holds with χ = χ
and Ω — Ωs. Assume there exists a positive form ξ e AJ""1'*"1^) and
a positive continuous 7: R[a0, 00) —> R with ||7w||;o—> °° such that for
some constants a > 1, B ^ 0, one of the following holds:

(a) 7(r)\D} tUr, ζγ) - B\« - O(D?,.(rf Ω.)).
(b) 7(r)|A?,s_x(r, ίF) - JB|« = O(A}>s(r, Ω,)).

Then there exists a φ-admissible sequence σ for which (4.15) holds
for almost every Sb e δί.

q
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Proof. Apply Lemma 4.11 and Theorem 4.9.

To give some applications of the preceding results, consider the
following:

1. Let / : JSΓ—̂  Gp( V) be a meromorphic map (where V has dim n+ϊ)
and ϊt — £2f9,n. If n — 1, assume / is nondegenerate; if n > 1, assume
every branch of X contains a point x$If for which there is a Σh e
^p,n with άimxfo\Σb) = m — 1. Assume φ\X-+R is an exhaustion
function such that either 4.10 (a) or 4.10 (b) (with Ωx = Ψ(ω[n^p^))
holds. If m > 1, assume χm Ξ£ 0. Then (4.15) holds for almost every

2. Theorem 4.6 of Stoll [26] for a family {Sv}veEu) of Schubert
zeros holds for a c.g-convex space (X, 9?) (under conditions similar
to (4.3), ibid.) in the stronger sense that the valence of almost all
Sv grows at the same rate as the characteristics of /. Especially,
the theorem holds if φ is #-quasiparabolic and q (see [26, assump.
(13)]) = <nι _ 1. This can be proved using Theorem 4.4 and Lemma
3.2.

3. (Cf. Stoll [23, 9.5].) Assume (I)-(IV-a) with X nonsingular,
connected, and Sί strictly admissible of codimension 1. Assume χe
AZ~1)m~ι(X) is closed and positive. Let σ = {GvJjU be a sequence of
domains in X such that 0 Φ Gj c Gj+1, X — <?0 has no compact com-
ponent, ciGv — SGj , and UG1,,- = X. Then there exist functions <^ : X—>
-B (i ^ 1) solving the Dirichlet problem

χ Λ rfώc^ = 0 on Gά — Go ,

with ψj\&0 -l,jrs\X — Gj = 0. The capacity of G,- (relative to χ)
is defined by

C{Gβ) = ϊ _ χ Λ dψj A dcψά (j ^ 1) .
JGj-G0

It follows that ψ, ^ f ί V l , and 0 < C(Gj+1) ^ C{Gό) ([23, 9.3]). Assume

either (a) C(Gi)-*0 or (b) TXG,-) - \ fa A f*Ω-+ 00. Then for

almost every Sδ e Sί,

This follows from (3.3), Lemma 2.4 and the proof of Theorem 4.4,
observing that for j ^ 1,

( f*Λγ A dλψj A X ^ const. C{Gό) .
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