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INVARIANTS OF INTEGRAL REPRESENTATIONS

IRVING REINER

Let ZG be the integral group ring of a finite group G.
A ZG-lattice is a left G module with a finite free ^-basis.
In order to classify ZG-lattices, one seeks a full set of
isomorphism invariants of a ZG-lattice M. Such invariants
are obtained here for the special case where G is cyclic of
order p2, where p is prime. This yields a complete classifi-
cation of the integral representations of G. There are also
several results on extensions of lattices, which are of
independent interest and apply to more general situations.

Two ^G-lattices M and N are placed in the same genus
if their p-adic completions Mp and Np are ^G-isomorphic.
One first gives a full set of genus invariants of a ZG-lattice.
There is then the remaining problem, considerably more
difficult in this case, of finding additional invariants which
distinguish the isomorphism classes within a genus. Generally
speaking, such additional invariants are some sort of ideal
classes. In the present case, these invariants will be a
pair of ideal classes in rings of cyclotomic integers, to-
gether with two new types of invariants: an element in
some factor group of the group of units of some finite ring,
and a quadratic residue character (mod p).

For arbitrary finite groups G, the classification of i?G-lattices
has been carried out in relatively few cases. The problem has been
solved for G of prime order p or dihedral of order 2p. It was also
solved for the case of an elementary abelian (2, 2)-group, and for
the alternating group A± (see [10a] for references).

The main results of the present article deal with the case where
G is cyclic of order p2, where p is prime. In Theorem 7.3 below,
there is a full list of all indecomposable iΓG-lattices, up to isomor-
phism. Theorem 7.8 then gives a full set of invariants for the
isomorphism class of a finite direct sum of indecomposable lattices.

Sections 1 and 2 contain preliminary remarks about extensions
of lattices over orders. Sections 3 and 5 consider the following
problem: given two lattices M and N over some order, find a full
set of isomorphism invariants for a direct sum of extensions of
lattices in the genus of N by lattices in the genus of M. The
results of these sections are applied in §§ 4 and 6 to the special case
of iftr-lattices, where G is any cyclic p-group, p prime. Finally,
§ 7 is devoted to detailed calculations for the case where G is cyclic
of order pz.

Throughout the article, R will denote a Dedekind ring whose
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468 IRVING REINER

quotient field K is an algebraic number field, and A will be an R-
order in a finite dimensional semisimple iΓ-algebra A. For P a
maximal ideal of R, the subscript P in RPJ KP, ΛPf etc., denotes
P-adic completion. Let S(Λ) be a finite nonempty set of P's, such
that ΛP is a maximal iuP-order in AP for each PgS(A); such a set
can always be chosen. (In the special case where A — RG, S(A)
need only be picked so as to include all prime ideal divisors of the
order of G.) A A-lattice is a left Λ-module, finitely generated and
torsionfree (hence protective) over R. Two ^[-lattices M, N are in
the same genus if MP = NP as ΛP-modules for all P (or equivalently,
for all PeS(A)). For M a yl-lattice, End/ilf) denotes its endomor-
phism ring, and M{n) the external direct sum of n copies of M. Let

denote the external direct sum of a collection of modules

1* Generalities about extensions of modules* We briefly review
some known facts about extensions (see, for example, [3] and [16]).
Let A be an arbitrary ring, and let M, N be left ^(-modules. We
shall write Ext(iV, M) instead of Exti(JV, M) for brevity, when there
is no danger of confusion. Let

Γ - EncUΛf), Δ - EnάΛ(N) ,

and view Ext(JV, M) as a (Γ, J)-bimodule. For later use, we need
to know explicitly how Γ and A act on Ext(iV, M).

Consider a Λ-exact sequence

f:0 >M-^X-^-*N >0, f eExtCZV, M) .

For each 7 e Γ, we may form the pushout rX of the pair of maps
y.M^M, μ:M-+X, so

rX = (X@M)/{(μm, —7m): meM} .

Then we obtain a commutative diagram with exact rows:

< L I > 4 4 4

and the bottom row corresponds to the extension class 7ξ e Έxt(N, M).
Applying the Snake Lemma to the above (see [11, Exercise 2.8]), we
obtain

(1.2) ker 7 = ker φ , cok 7 = cok φ .

Analogously, given any δ e A, let



INVARIANTS OF INTEGRAL REPRESENTATIONS 469

Xδ = {(x, n)eXφN: vx = δn} ,

the pullback of the pair of maps v:X->N, δ:N->N. Then we
obtain a commutative diagram with exact rows:

5:0 >M-^->X-^»N >0

if f]
ζδ:O >M >Xδ >N >0,

and the bottom now gives the extension class ζδ. By the Snake
Lemma,

ker ψ = ker δ , cok ψ = cok δ .

Formules such as (τγ')f = τ(τ'ί) are easily verified, and yield Λ-
isomorphisms

γX ~ X if 7 6 Aut(Λf) , Xδ = X if δ e Aut(iSΓ) ,

where Aut means Aut^.
For later use, an alternative description of the action Δ on

Ext(iV, M) is important. Consider a Λ-exact sequence

0 >L-L>P >if >0

in which P is Λ-projeetive Applying Hom,ί( ,M), we obtain an
exact sequence of additive groups

0 > Kom(N, M) > Hom(P, M) - ^ U Hom(L, M) > Exti(iSΓ, M) > 0,

and thus

Ext(i\Γ, M) = Hom(L, M)/im i* .

Each ζ eExt(iSΓ, M) is thus of the form / , where / e H o m ( L , M) and
where / denotes its image in cokΐ*. Now let δeJ; we can lift δ
to a map δx e End(P), and δ± then induces a map δ2 e End(L) for which
the following diagram commutes:

0 >L >P >N >0

0 >L >P >N >0.

Of course End L acts from the right on Horn (L, M), and for ζ = f
as above, we have ξδ = fδ2 in Ext (N, M).

PROPOSITION 1.3. For ί = 1, 2, let Mi and Nt be Λ-rnodules,
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and let ξ{ e ExtX N,, Mt) determine a Λ-module Xt. Assume that
Horn/Mi, N2) — 0. Then Xt = X2 if and only if

(1.4) τίi = ξ2δ for some Λ-isomorphisms 7: Afi=Λf2, δ: N^Nz .

Proof. Let <p 6 Horn (Xx, X2), and consider the diagram

£ - 0 • M — -̂> X -^-» JV > 0

f 2: 0 > M2 - ^ X2 -^^> ΛΓ2 > 0 .

Since Horn (Jbfw N2) — 0 by hypothesis, we have v2φμt — 0. Therefore
φμ^M^) c im μ2, so <̂> induces maps 7, δ making the following dia-
gram commute:

0 > Mt > X, > N, > 0

Ί A i
0 >M2 >X2 >N2 >0.

But this means that 7?, = f2δ in Ext (Nlf M2). Furthermore, by the
Snake Lemma, φ is an isomorphism if and only if both 7 and δ
are isomorphisms. Hence (1.4) holds if Xt = X2.

Conversely, assume that (1.4) is true; since 7^ = ί2δ, there exists
a commutative diagram

0 > Mx —^ X, > Nx > 0

A
Mt

ij

i

—>χ,

—>Y,

— > y 2

>Nt

>N,

A
>N,

A
0 >M2 >Xt >N£ >:0.

But 7 and δ are isomorphisms, whence so is each ψi9 Thus X^X2,
as desired. (This part of the argument does not require the hy-
pothesis that Horn (M19 N2) ==. 0.)

COROLLARY 1.5. Let M, N be Λ-modules such that Horn (M, N) —
0. Let ξt 6 Ext (N, M) determine a A-module Xi9 i = 1, 2. Then
Xt = X2 if and only if

(1.6) 7ίχ = ί2δ for some 7 e Aut (AT), δ e Aut (N) .
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We shall call ξλ and ξ2 strongly equivalent (notation: ξί ** ζ2)
whenever condition (1.6) is satisfied.

2. Extensions of lattices* Keeping the notation used in the
introduction, let A be an iϋ-order in the semisimple if-algebra A.
Choose a nonempty set S(A) of maximal ideals P of R, such that
for each PgS(A), the P-adic completion AP is a maximal jβP-order
in AP. Now let M and N be /ί-lattices, so MP and NP are ^-lattices.
For P$S(A), the maximal order ΛP is hereditary, and so the
Jp-lattice NP is ΛP-projective (see [11,(21.5)]); thus ExtΛp(NP, MP) = 0
for each P$S(Λ).

Now consider Έxtι

Λ(N, Λf), which we will denote for brevity by
Ext (N, M) when there is no danger of confusion. Then Ext (N, M)
is a finitely generated torsion i?-module, with no torsion at the
maximal ideals PίS(Λ). As in [4, (75.22)], we have

(2.1) Exti(iV,Λf)s Π Extip(JVp, MP) .
PeS(Λ)

The following analogue of SchanuePs Lemma will be useful:

LEMMA 2.2. Let X, X', Y, Yf be A-lattices, and let T be an R-
torsion Λ-module such that TP = 0 for each PeS(Λ). Suppose that
there exist a pair of Λ-exact sequences

o — > x f — > x - t ~ > τ — • o , o — > Y'—> r- iU T—>o .

Then there is a Λ-isomorphism

Proof, Let W be the pullback of the pair of maps /, g. Then
we obtain a commutative diagram of ,4-modules, with exact rows
and columns:

0 —

0 —

-» Y'

H
->Y'

i
0

0

JΓf )

i
>W »•

i
—>• Y—>

i
0

0
i

X'

I
X —

i
T —- > 0 .

At each PeS(A)f we have TP = 0 by hypothesis. However, the
process of forming P-adic completions preserves commutativity and
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exactness, since RP is iϋ-flat. Hence both of the Λ-exact sequences

(2.3) 0 >X' > W >Y >0, 0 >Y' >W >X >0,

are split at each PeS(Λ). On the other hand, for PgS(Λ) we know
that ΛP is a maximal order, so the ΛP-lattices XP, YP are ΛP-projec-
tive. Hence the sequences (2.3) are also split at each P&S(Λ).
Therefore they split at every P, and hence split globally (see [11,
(3.20)]). This gives

W=X'®Y, W=X®Y' ,

and proves the result. This result is due to Roiter [15].
We shall apply this lemma to the following situation. Each ζ e

Ext (Nf M) determines a Λ-exact sequence

ξ: 0 >M >X >N >0 ,

with X unique up to isomorphism. The sequence is jR-split since
N is i2-projective, and so X = Λf0 N as j?-modules. Thus X is
itself a ^-lattice, called an extension of N by M. There is an
embedding M —> K ®B M, given by m —> 1 (x) m for m e M; we shall
always identify M with its image 1 (x) M, so that K (g)Λ M may be
written as KM. We shall set

Γ = End^(M) , Δ = End^(iV) .

Then KΓ = End^(iθί), and Γ is an j?-order in the semisimple K~
algebra KΓ. Likewise KΔ = EnάA(KN), and Δ is an iϋ-order in the
semisimple iΓ-algebra KΔ. For each 7 e Γ, δ e Δ, we may form the
Λ-lattices rX and Xδ as in § 1. We now prove

(2.4) EXCHANGE FORMULA. Let X and Y be a pair of extensions
of N by M, and let 7 6 End (M) satisfy the condition

(2.5) ΊP e Aut (MP) for each P e S(Λ) .

Then there is a Λ-isomorphism

(2.6) X®rY=rXφY.

Proof. For each PeS(Λ), we have

(ker 7)P = ker (7P) = 0 , (cok y)P = cok (yP) = 0 .

Now ker 7 is an j?-submodule of the Λ-lattice M, and thus ker 7 is
itself an iϋ-lattice. Since (ker y)P = 0 for at least one P (namely,
for any PeS(Λ)), it follows that ker 7 = 0.

From (1.1) and (1.2) we obtain Λ-exact sequences
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0 >X >TX >cok7- >0, 0 > Y >γY >cok7 >0,

where cok 7 = M/y(M). But (cokτ)P = 0 for each PeS(Λ), so we
may apply Lemma 2.2 to the above sequences. This gives the
isomorphism in (2.6), and completes the proof.

In the same manner, we obtain

(2.7) ABSORPTION FORMULA. Let X be an extension of N by M,
and let 7 6 End (M) satisfy condition (2.5). Then

Proof. Apply Lemma 2.2 to the pair of exact sequences

0- >X >γX >cok7 >0, 0 >M-L-^M >cok7 >0.

REMARK 2.8. There are obvious analogues of (2.6) and (2.7), in
which we start with an element δ e End (N) such that δP e Aut (NP)
for each PeS(Λ).

Now let M, N be ^[-lattices, and let M'VM, N'VN. It is clear
from (2.1) that Ext (AT, M') = Ext (N, M). In fact, by Roiter's
Lemma (see [11, (27.1)]), we can find /ί-exact sequences

(2.9) 0 >M-^Mr >T >0, 0 >Nr-—^N >U >0,

in which TP = 0 and UP = 0 for all PeS(Λ). The pair (φ, f) in-
duces an isomorphism

(2.10) t: Ext (JV, M) = Ext (N', M') ,

(hereafter called a standard isomorphism), which may be described
explicitly as follows: if ξ e Ext (ΛΓ, M), then t(ξ) = ψζψ' (in the nota-
tion of § 1). Thus, if ζ determines the /ί-lattice X (up to isomor-
phism), then t(ξ) determines the yl-lattice φ(X)ψ,, which lies in the
same genus as X.

LEMMA 2.11. The inverse of a standard isomorphism is also a
standard isomorphism.

Proof. We may choose a nonzero proper ideal α of R, all of
whose prime ideal factors lie in S(Λ), such that α Ext(iV, M) = 0.
If μeEnd(M) is such that μ — l e α End(Λf), it then follows that
μ acts as the identity map on Ext (N, M).

Let ί be a standard isomorphism as in (2.10), induced from the
pair of maps (φ, ψ') as in (2.9). Since φP is an isomorphism for each
PeS(Λ), we can find a map φ' e Horn (If', M) such that φ'P approxi-
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mates φp1 at each PeS(Λ); indeed, we can choose φτ so that

ψ'-φ ΞΞ 1 mod α End(ikf) .

Then φτ is an inclusion, and φ'φ acts as 1 on Ext (JV, M). Likewise,
we may choose an inclusion ψ:N->N' such that ψ'ψ acts as 1 on
Ext (N, M). The pair {φ\ ψ) then induces a standard isomorphism
V: Ext (Nf, M') ~ Ext (N, M) such that t't = 1. This completes the
proof.

We wish to determine all isomorphism classes of Λt-lattices X
which are extensions of a given lattice N by another given lattice
M. Let us show that under suitable hypotheses on M and JV, this
determination depends only upon the genera of M and N. A
yl-lattice M is called an Eichler lattice if End^JOf) satisfies the
Eichler condition over R (see [11, (38.1)]). This condition depends
only on the A-module KM and on the underlying ring of integers
R. (In the special case where R = alg. int. {K}> M is an Eichler
lattice if and only if no simple component of End^(iθί) is a totally
definite quaternion algebra.) Of course, M is an Eichler lattice
wherever End^(JOf) is a direct sum of matrix algebras over fields.

We now establish

THEOREM 2.12. Let M and N be Λ-lattiees such that M(&N is
an Eichler lattice, and let Mf V I , N' V N. Let

t: Ext {N, M) = Ext (N'9 M')

be a standard isomorphism as in (2.10). Then t induces a one-to-
one correspondence between the set of isomorphism classes of exten-
sions of N by My and that of extensions of 2V7 by itf.

Proof. Each /ί-lattice X, which is an extension of JV by M,
determines an extension class ξ e Ext (N, M). Two X's which yield
the same ξ must be isomorphic to one another, but the converse of
this statement need not be true. (Herein lies the difficulty in the
proof.) In any case, given the extension X, let ξ be its extension
class; set ξ' = t(ξ) e Ext (JV', M'), and let ξ' determine the ^-lattice
Xf (up to isomorphism). Then Xf is an extension of JV' by M',
and X' V X. Now let Y be another extension of N by M, and let
Y' be the corresponding extension of JV by ikf\ We must prove
that X = Y if and only if X' = Y\ (Note that every extension of
JV by Mf comes from some X, by virtue of Lemma 2.11.)

It suffices to prove the implication in one direction, since by
(2.11) the inverse of a standard isomorphism is again standard.
Furthermore, every standard isomorphism can be expressed as a
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product of two standard isomorphisms, each of which involves a
change of only one of the "variables" M and N. It therefore suffi-
ces to prove the desired result for the case in which there is a
change in only one variable, say M. Thus, let us start with an
inclusion φ: M > Mr as in (2.9), such that (cok^)P —0 for all
PeS(Λ). Given an exact sequence

0 >M-^X >N >0,

define a ^-module X' as the pushout of the pair of maps (μ, φ). We
then obtain a commutative diagram of /ί-modules, with exact rows:

0 >M-^X >N >0

(2.13) ^| I lj
0 >M' >Xf >N >0 .

Then Xr is precisely the ^-lattice determined by X as above, by
means of the standard isomorphism t: Ext (N, M) ~ Ext (N, Mf)
induced by φ. Let Y be another extension of N by M, and let Y'
denote the extension of N by Mf corresponding to Y. It then
suffices for us to prove that Xf = Yf whenever X = Y.

Applying the Snake Lemma to (2.13), we obtain an exact sequence
of yl-modules

0 > X > X' > cok φ > 0 ,

with (cok^)p = 0 for all PeS(Λ). Likewise, there is an exact
sequence

0 > Y > Y' • cok φ • 0 .

Therefore we obtain

(2.14)

by Lemma 2.2.
Suppose now that X = Y; since Xf V X and Y' V Y, the lattices

X, X\ Y, Yf are in the same genus, and we may rewrite (2.14) as

(2.15) leF^IφΓ.

Clearly KX~K(M($N), and thus X is an Eichler lattice (since
Λf φ JV is an Eichler lattice by hypothesis). By Jacobinski's Cancel-
lation Theorem [8], we may then conclude from (2.15) that X ' ~ Γ \
This completes the proof of the theorem.

REMARKS. ( i ) It seems likely that the conclusion of the theorem
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holds true whether or not MφN is an Eichler lattice.
(ii) Suppose that Horn (M, N) = 0. By (1.5), there is a one-to-

one correspondence between the set of all isomorphism classes of
Λ-lattices X which are extensions of N by M, and the set of orbits
of the bimodule Ext (N, M) under the left action of Aut (N) and
the right action of Aut (M). By definition, two elements of
Ext (N, M) are strongly equivalent if they lie in the same orbit. The
preceding theorem then shows, in this case where Horn (M, N) — 0
and where M 0 N is an Eichler lattice, that the orbits depend only
upon the genera of M and N. Indeed, we have shown above that
under these hypotheses, standard isomorphisms preserve strong
equivalence.

(iii) In the special cases of interest in §§ 4-7, one can prove
(2.12) directly without using Jacobinski's Cancellation Theorem (see
[13], for example).

The author wishes to thank Professor Jacobinski for some
helpful conversations, which led to a considerable simplification of
the original proof of Theorem 2.12.

3* Direct sums of extensions* As in § 2, let Λ be a i?-order
in a semisimple ϋΓ-algebra A, where K is an algebraic number field.
Given Λ-lattices M, N with RomΛ(M, N) = 0, we wish to classify up
to isomorphism all extensions of a direct sum of copies of N by a
direct sum of copies of M. Let ξ19 ξ2 e Ext1(iVr(β), Jkf(r)), and let ζt

determine the extension Yt of Nίs) by M{r). Since RomΛ(MLr), N{s)) =
0, we may apply (1.5) to obtain

PROPOSITION 3.1. The Λ-lattices Ylf Y2 are isomorphic if and
only if

(3.2) aζx = ξβ for some a e Aut M{r}, β e Aut N{s) .

As before, call ξ1 strongly equivalent to ξ2 (notation: ξt ^ ξ2)
whenever condition (3.2) is satisfied. We may rewrite this condition
in a more convenient form, as follows: there is an isomorphism

Ext (N{8), M{r)) = (Ext (N, M))rxs ,

where the right hand expression denotes the set of all r x s matrices
with entries in Ext (N, M). If we put

Γ = EndΛ(M) , Δ = EndΛ(N) ,

acting from the left on M and N, respectively, then we may iden-
tify Aut M{r) with GL(r, Γ), and Aut N{s) with GL(s, Δ). Then
(Ext (JV, M))rxs is a left GL(r, / > , right GL(s, z/)-bimodule, and
& ** ζ2 if and only if aξ, = ξJ3 for some a e GL(r, Γ), β e GL(s, Δ).
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As a matter of fact, we may choose a nonzero ideal α of R,
involving only prime ideals P from the set S(A), such that
α-Ext(iV, M) = 0. Then Γ acts on Ext (AT, M) via the map Γ-+Γ,
where Γ = Γ/αΓ. Hence GL(r, Γ) acts on (Ext (JV, M))rxs via the
map GI#(r, Γ) —> GL(r, Γ). A corresponding result holds for Δ.

We are thus faced with the question of determining the orbits
of (Ext (ΛΓ, Λf )) r x s under the actions of GL(r, Γ) and GL(s, Δ). We
cannot hope to specify these orbits in general, but we shall see
that they can be determined in some interesting special cases which
arise in practice. Before proceeding with this determination,
however, it is desirable to adopt a slightly more general point of
view.

Let M and N be as above, and let Mt V Λf, Nό V N for 1 <£ i <; r,
1 ^ j ^ s. By hypothesis Horn (Λf, N) = 0, so also Horn (Mif Nj) =
0 for all i, i . Now let f eExt(ΠΛΓ>> 11 Mt) determine an extension
X. It follows from § 1 that a full set of isomorphism invariants
of X are the isomorphism classes of Y[Mt and ]1N3, and the strong
equivalence class of ζ. Further, since JJMtVM{r) and JJN3-VN{$},
there is a standard isomorphism

t: Ext (Π-N* Π ^ ) = Ext (iV(s), Λf(r))

as in (2.10). If we assume that both M{r) and Nis) are Eichler
lattices, then by (2.11) t gives a one-to-one correspondence between
strong equivalence classes in these two Ext's. We remark in pass-
ing that M{r) is necessarily an Eichler lattice if r > 1.

As a consequence, we deduce

PROPOSITION 3.3. Let M, N be Eichler lattices such that
Horn (Λf, N) = 0, and let MtV M, NtV N, 1 <; i <: r. For eαc/i ί, ϊβί
ίt e Ext (iVi, Λft) determine an extension Xi of Nt by Mi9 and let
ti'. Ext (Nif Mi) = Ext (N, M) be a standard isomorphism. Then a
full set of isomorphism invariants of Π ^ <*<re the isomorphism
classes of JIMi and ]JNίf and the strong equivalence class of

in Ext (Nlr), M{r)).

Proof. The element diag (ξ19 , ζr) e Ext (]lNif ΠΛf*) determines
the extension Π ^ i of II Nt by Π ^ There is a standard isomor-
phism

Ext (HΛΓ,, IIΛf,) ^ Ext (iV(?>), M{r))

which carries d i a g ^ , « , ί r ) onto diag (^(£0, •• ,ί r (ί r )) The pro-
position then follows at once from the above discussion.
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4* Cyclic p-groups. We consider here the special case where
G is cyclic of order pκ, where p is prime and K ̂  1. We shall
identify ZG with the ring Aκ = Z[x]/(xpK — 1), which we denote by
A for brevity when there is no danger of confusion. Let Φt(x) be
the cyclotomic polynomial of order 'pi and degree φ(pι), 0 ^ i ^ tc.
Let ωt denote a primitive p^th root of 1, and set

Kt - Qicot), Rt - alg. int. {JSΓJ - Z[ωt], P< - (1 - α>4)5t .

Then Ri = [̂a?]/(Φi(a?)), a factor ring of Λί, so every i^-module may
be viewed as Λ-module.

Given a /ί-lattice M, let

L = { w e l : (aj**"1 - ΐ)m = 0} .

Thus L is a y4Λ_Γlattice, and it is easily verified that M/L is an
^-lattice. Assuming that we can classify all L'a, the problem of
finding all /ί-lattices M becomes one of determining the extensions
of ^-lattices by such L's. This procedure works well for K = 1, 2
(see [1], [7]), but gives only partial results for K > 2.

Let us first establish a basic result due to Diederichsen [5]:

PROPOSITION 4.1. Let 1 ^ j ^ tc, and let L be a A-lattice such
that (a^-1 - 1)L - 0. T/iβ^

ExtiίΛi, L) - L/pL .

Proof. From the exact sequence 0 —> Φj(x)A -+ A -~* R3 -± 0 we
obtain

Ext (JR, , L) ~ Horn (ΦXa?)̂ , L)/image of Horn (Λ, L) .

Each /1-homomorphism / : Φj(x)A -> L is completely determined by
the image f(Φj(x)) in L; this image may be any element of L which
is annihilated by the Λ-annihilator of the ideal Φ5(x)A. This ./f-anni-
hilator is {ΠίW+i Φ»(α)} (scpί'~ι—lM, which annihilates L by hypothesis.
Thus every element of L may serve as the image f(Φ3{x)), and so
Horn {Φβ{x)A, L) = L. In this isomorphism, the image of Horn (Λ, L)
is precisely Φ3 {x)L. But

which acts on L as multiplication by p. Therefore Ext (Rίt L) ~
L/pL, as claimed.

We shall consider the problem of classifying extensions of Rr

lattices by 2^-lattices, where 0 ^ i < j <Z tc. However, a slightly
more general situation can be handled by the same methods, and
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this extra generality will be needed later. Let E be any Z-torsion-
free factor ring of Λ3-_lf so E is a border in a Q-algebra which is
a subsum of U ϊ i Γ ^ Let / be the kernel of the surjection Z[x]->E.
If α /(x)eJ, where aeZ is nonzero and f(x) eZ[x], then also
f(x) e J since E is Z-torsionf ree. This implies readily that / is a
principal ideal (h(x)), generated by a primitive polynomial h(x) e J
of least degree. Since xp3~ι—le/, we find that h{x) divides x^~l — l,
so h(x) is monic. This shows that E is of the form Z[x]/(h(x)),
for some monic divisor h(x) of xp3~1 — 1 in Z[x].

Let E be as above; an ^-lattice L is called locally free of rank
r if L V i? ( r ). (Note that all ^-lattices are necessarily locally free.)
We intend to classify extensions of ϋ?rlattices by locally free E-
lattices. From (4.1) we have

Exti(Λy, E) s E/pE - #(say) .

LetZ = Z/pZ; the surjection Λό_ι—>E induces a surjection Λά_x-+E.
Here

Λ^x = ^ / ( α ^ " 1 - 1) = ZtλJ/ίλ^"1), where λ - 1 - x .

Thus E is a factor of a local ring yϊ^, and hence is itself a local
ring of the form

E = Z[X]/(Xe), where e = degfe(x) .

The action of E on Ext (i^ , ΐ?) is given via the surjection E->E.
On the other hand, Φ3 (x) — p in Λs _lf hence also in E, so there is
a ring surjection it^ —> E. Then i2y acts on Ext (Rj} E) via this
surjection. Now let N be any ϋ?rlattice. By Steinitz's Theorem,
we may write iV~ Ufc=iCfc where each ck is an JSrideal in Kό. The
isomorphism class of N is determined by its rank s and its Steinitz
class (namely, Uck computed inside Ks). Analogously (see [11, Exer-
cise 27.7]), a locally free S-lattice L may be written as L = Π£=i &&>
where each bfc is an ^/-lattice in Q®ZE { — QE) such that hkVE.
The isomorphism class of L is determined by its rank r and its
Steinitz class (that is, the isomorphism class of Tΐbk computed inside
QE).

Suppose that L and N are given, and let ζ 6 Ext^JV, L) deter-
mine a /{-lattice X. We wish to classify all such X's up to isomor-
phism. We have

Ext (N, L) ~ Ext (Rγ\ E{r]) = {Ext (Ri9 E)}rxs ^ Erxs ,

where Erxs denotes the set of all r x s matrices over E. Note
that Ή,omΛ(E, R5) = 0 since Φ3-(x) annihilates Rjf but acts as multi-
plication by p on the Z-torsionfree ^-lattice E. Furthermore, both
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Rj and E have commutative endomorphism rings, hence are Eichler
lattices. If t: Ext (N, L) = Erxs is the isomorphism given above, it
follows from § 3 that a full set of invariants of the isomorphism
class of X are

( i ) The rank s and Steinitz class of N,
(ii) The rank r and Steinitz class of L, and
(iii) The strong equivalence class of ί(£) in Erxs.
We shall assume that the problem of classifying all lattices N

and L can be solved somehow. To classify all i^-lattices, we must
determine all 22, -ideal classes in Kίf and we assume that this has
been done by standard methods of algebraic number theory. To
classify all Us, we need to determine all classes of locally free E-
ideals in QE. This is a difficult problem when j *> 3, and can be
handled to some extent by the recent methods due to Galovich [6],
Kervaire-Murthy [9], and Ullom [18], [19].

Supposing then that N and L are known, we shall concentrate
on the problem of determining all strong equivalence classes in Erxs.
There are homomorphisms

GL{χ, E) > GL(r, E), GL(s, Rd) > GL(s, E) ,

induced by the ring sur jections E > E, Rά > E. The strong
equivalence classes in Erxs are then the orbits in Erxs under the
actions of GL{r, E) on the left, and GL(s, Rs) on the right. In
the next section, we shall treat a somewhat more general version
of the question of finding all strong equivalence classes.

5* Strong equivalence classes* Throughout this section, let Γ
and A be a pair of commutative rings, and let

φ:Γ >Γ, ψ:A >Γ ,

be a pair of ring surjections. We assume that Γ is a local princi-
pal ideal ring, whose distinct ideals are given by {XkΓ: 0 ̂  k ̂  e),
with XeΓ = 0. Here, e is assumed finite and nonzero. Let Γmxn

consist of all m x n matrices with entries in Γ. The maps φ, ψ
induce homomorphisms

(5.1) φ*\ GL(m, Γ) > GL(m, Γ), ψ#: GL{n, A) > GL(n, Γ) ,

which permit us to view Γmxn as a left GL(m, Γ)-, right GL(n, A)-
bimodule. As suggested by our earlier considerations, we call two
elements ξ, ζfeΓmχφ> strongly equivalent (notation: ξ ̂  ξf) if ζ'=aξβ
for some aeGL(m, Γ), βeGL(n,A); here, a acts as φ*(a), and β
as ψ*(β). We wish to determine the strong equivalence classes in
ΓfflXW
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(We have already encountered this problem in § 4, where we
had a pair of rings Rό and E, with ring sur jections Rd —> E, E -+E,
and where E was a local principal ideal ring. In order to classify
all extensions of an .By-lattice of rank s by a locally free ^-lattice
of rank r, we needed to determine the strong equivalence classes
of Erxs under the actions of GL(r, E) and GL(s, Rj).)

Returning to the more general case, we note that if ξ & ζ' in
Γmxn, then ζ is equivalent to £' in the usual (weaker) sense, that is,
ξ' = μξv for some μ,ve GL{Γ). We can use the machinery of ele-
mentary divisors over the commutative principal ideal ring Γ; these
elementary divisors may be chosen to be powers of the prime
element λ. Letting el. div. (£) denote the set of elementary divisors
of ξ, we have at once

PROPOSITION 5.2. If ζ ^ £', then el. div. (f) = el. div. (£')•

As before, let u(Γ) denote the group of units of Γ. The next
two lemmas are simple but basic:

LEMMA 5.3. For u e u(Γ), let Du denote a diagonal matrix in
GL(m, Γ) with diagonal entries u, u~\ 1, , 1, arranged in any
order. Let D'u denote an analogous matrix in GL(n, Γ). Then for
any ξeΓ mxn,

Proof. There is an identity

u 0 \ (1 u-Λll 0\/l u-1 - 1 \ / 1 0'
( 5 ' 4 ) \o u-η \o l Λi iy\o l l\-u

in GL(2, Γ). This implies that Du is expressible as a product of
elementary matrices in GL(m, Γ). Each factor is the image of an
elementary matrix in GL(m, Γ), so ξ ̂  Duξ. An analogous argument
proves that ξ ** ξD'u.

LEMMA 5.5. If m ^ n, then each ξeΓmxn is strongly equivalent
to a matrix [D 0], where

(5.6) D = diag (λ*X, , Xkmum) , 0 ^ kγ ^ ^ km ^ e, ut e u(Γ) .

r, , where D' is a diagonal n x n matrix of

the above type.

Proof. Let ξ eΓmxn, where m <L n. Since Γ is a local principal
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ideal ring, we can bring ζ into the form [D 0], with D as above,
by a sequence of left and right multiplications by elementary
matrices in GL{Γ). Each such elementary matrix lies in either
im (9*) or im (ψv), and thus ζ ̂  [D 0] as claimed. An analogous
proof is valid for the case where m ̂  n.

Suppose now that ζeΓmxn; for convenience of notation let us
assume that m ̂  n, and let ξ ̂  [D 0] with D as in (5,6). Then
obviously

el. div. (£) = {λ*1, •• ,λ*"}.

It follows at once from (5.2) that the set {λ*1, •••, xkm} is an invari-
ant of the strong equivalence class of ξ. Let us show at once that
this is the only invariant when m Φ n.

PROPOSITION 5.7. Let ξ, ξ' e Γmxn, where m Φ n. Then ξ ** ζ' if
and only if el. div. (f) = el. div. (ξ').

Proof. By (5.2) it suffices to show that if m Φ nf then ξ is
determined up to strong equivalence by its set of elementary divi-
sors. For convenience of notation, assume that m ̂ n, and write
ξ ** [D 0], with D as in (5.6). By (5.3) we have

[D 0] ̂  [D 0] diag (uϊ1, uϊ\ , u~\ uy um, 1, - - , 1) .
n—m

This gives

ξ ** [A 0] where A = diag (λ\ , λ*~) ,

and so the strong equivalence class of ξ is determined by el. div. (£).
This completes the proof.

We are now ready to turn to the question as to when two
elements ζ and ξ' in Γmxm are strongly equivalent. By (5.2), it
suffices to treat the case where ζ and ξ' have the same elementary
divisors. We shall see that there is exactly one additional invari-
ant needed for this case. To begin with, we introduce the follow-
ing notation: let ζeΓmxm

f and suppose that ζ ̂ A where D is given
by (5.6). We set

(5.8) Γ == Γ/V-fc-f, U = u{Γ')lu*{Γ)u*{A) ,

where u*(Γ) denotes the image of u(Γ) in u(Γ')9 and u*(Δ) the
image of u(Δ). Define

(5.9) u(ζ) — image of ur"Um in U .

The main result of this section is as follows:
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THEOREM 5.10. Let ζ, ξ' e F m x m . Then ξ^ζ' if and only if
( i ) el. div. (ξ) — el. div. (£'), and
(ii) u(ζ) = u(ξ') in U.

Proof. Supposing that conditions (i) and (ii) are satisfied, let

ζ & D, ζ f* diag (Xkίu[, , Xkmu'm), u'i G u(Π >

where D is given by (5.6). Setting u = ΐluit v! = Uu'ίf it follows
from the proof of (5.7) that

(5.11) ξ & diag (λ\ , λ**-*, Xkmu), £' ^ diag (Xk^, , λ*«-J, λ&^') .

By virtue of (ii), there exist elements yeu(Γ), deu(A), such that
in Γ'. But then

Λ,**wf = 7 λfc«w δ in Γ ,

so

diag (1, , 1, 7) diag (λ\ , λ*~-i, λ*^).diag (1, , 1, δ)
= diag (λ\ , λΛ»-s Xk™ur) .

Therefore ζ' p& ξ9 as desired.
Conversely, assume that ξ p& ξ', so (i) holds by (5.2). In proving

(ii), we may assume without loss of generality that ξ and £' are
equal (respectively) to the diagonal matrices listed in (5.11). Since
ζ**ζ'f we have μξ' = ξv for some μ e GL(m, Γ), v e GL(m, Δ). It is
tempting to take determinants of both sides, but this procedure
fails because λe = 0 in Γ. Instead, we proceed as follows: let DQ—
diag(λ*s •• ,λfc™), and put

A = ?>*(Aθ diag (1, , 1, v!)t v, - diag (1, , 1, u)-f*{v) .

The equation μζ' — ζv then becomes μ^DQ = A î By (5.12) below,
this implies that (det μ^)Xkm = (det vjλ**1. But detft = ^'
and d e t ^ = u ψ(detv). Therefore the images of u and u' in
differ by a factor from u,*(Γ)u*(d), which shows that u(ξ) — u(ξ') in
U, and completes the proof.

It remains for us to establish the following amusing result on
determinants:

PROPOSITION 5.12. Let R be an arbitrary commutative ring,
and let D — diag (ζlf , ξm) be a matrix over R such that

for some elements rteR. Let X, YeRmxm be matrices for which
XD -= DY. Then
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in R.

Proof. Let X = (xid), Y = (#<,•). The equation XD = J9F gives

Let π: 1 —> iw , m -> ΐm, be a permutation of the symbols {1, , m}.
A typical term in the expansion of det X is of the form ±xUί -xmim,
and we need only show that for each π we have

(5.13) XUl *XmiJm = yih 'Vmijrn

Write π as a product of cycles, and suppose by way of illustration
that (a, 6, c) is a 3-cycle occuring as a factor of π. Then

The same procedure applies to each cycle occuring in TΓ, which
establishes (5.13), and completes the proof of the proposition.

The special case where Γ = A = Z> Γ — Z/(pe), p prime, is of
interest. For a matrix XeZmxn, let p-el. div. (X) be the powers
of p occurring in the ordinary elementary divisors of X (over Z).
If X is square, write det X = (power of p)-ux, where p)fux.
(Take ^ x = 1 if det X = 0.) For X, Γ, e Z m x % , we write X ^ Y if

Γ Ξ PXQ (mod pe)

for some PeGL(m, Z\ QeGL(n, Z). From (5.10) we obtain

COROLLARY 5.14. Let X, Ye Zmxn. Then X ** Y if and only if
( i ) p-el. div. (X) = j>-el. div. (F),
(ii) ^fce^ m = n,

uγ = ± ^x(mod pe~k) ,

where k is the maximum of the exponents of the p-elementary
divisors of X. (If k ^ e, condition (ii) is automatically satisfied.)

For the particular cases needed in §§ 6-7, one can easily deduce
(5.7) and (5.10) as special cases of the results of Jacobinski [8].
However, it seemed desirable to give here a self-contained proof of
(5.7) and (5.10).

6* Invariants of direct sums of extensions* We now return
to the study of integral representations of a cyclic group G of
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order p% keeping the notation of § 4. Let N be an i?Γlattice of
rank s, and L a locally free ϋMattice of rank r. We have seen
that

where E = Z[X]/(Xe) is a local principal ideal ring. Each extension
X of N by L determines a class ξxeErx% and an element u(ξx) in
a factor group of the group of units of some quotient ring of E
(see (5.9)). It follows from the results of §§ 4, 5 that a full set of
isomorphism invariants of X are as follows:

( i ) The rank s of N, and its Steinitz class,
(ii) The rank r of L, and its Steinitz class,
(iii) The elementary divisors of the matrix ξx,
(iv) For the case r = s only, the element u(ξx).
Since G is a p-group, the genus of X is completely determined

by the p-adic completion Xp. In the local case, however, the ideal
classes occurring above are trivial, as is the group in which u(ξx)
lies. Therefore the genus invariants of X are just r, s, and
el. div. (fx). Furthermore, by (5.5) the extension X must decompose
into a direct sum of ideals b of Rj7 locally free ideals c of E, and
nonsplit extensions of c by b. Let us denote by (b, c; Xku) an ex-
tension of c by b corresponding to the extension class Xku e E, where
0 2* k < ef ue u(E), and we have chosen some standard isomorphism
Ext(c, b) = E. By (1.5), the lattice (b, c;Xku) is indecomposable since
Xku Φ 0 in E.

Some further notation will be useful below. Let us set Er =
E/XmE = Z[X]/(Xm), where 1 ^ m ^ e. There are ring surjections
E->E', Rό->Ef\ let u*(E) denote the image of u{E) in u(E'), and
define u*(Rs) analogously. We now set

It follows from the above discussion that a full set of isomorphism
invariants of (b, c; Xku) are the isomorphism classes of b and c, the
integer k, and the image of u in Ue_k. The genus of X depends
only on k.

We may remark that the group u(E') is easily described, namely,

u(E') ^ u(Z) x f ( l + V> ,

where in the product i ranges over the integers between 1 and
m — 1 which are prime to p. On the other hand, the calculation
of u*(E) and u*(Rj) is considerably more difficult, and the results
so far known are given in [6], [9], [18], and [19]. It is easily veri-
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fied that u*(Rj) contains the factor u(Z), and further that 1 + λ e
u*(R/) since 1 + λ = x. It follows at once that U1 and U2 are
trivial for all p.

In the special case where E = Rt with i < j, we claim that
u*(Rj)ciu*(Rt), and hence that

Um - u(E')!u*(Rt) .

Indeed, as pointed out in [6], there is a commutative diagram

u(Rd) -£> u(Rt)

i
u(R<) ,

where Rt — RJpRi and N is the relative norm map. Hence i m ^ c
im^, which implies that u*(Rs)cu*(Ri) in u(E').

The structure of Um has been studied in detail by Galovich
[6] and Kervaire-Murthy [9], especially for the case of regular
primes. An odd prime p is regular if the ideal class number of R1

is relatively prime to p (see [2]). For regular p, we have

(6.2) u*(Rs) = u{Z) x <1 + λ> x n 2i+l\
^ /

where each at e E', and where i ranges over all integers from 1 to
[(m — l)/2] which are prime to p. Furthermore, u*(E) c u*(Rj) in
this case, so Um is of order pfim), where /(m) is the number of odd
integers among 3, 5, , m — 1 which are prime to p.

Some additional information is available for the special case
where j = 2; here, e ^ p and Um is an elementary abelian p-group.
Let δ(k) be the number of Bernoulli numbers among Bίf B2, •• ,β f c

whose numerators are divisible by p. Then (see [2]) the prime p
is regular if and only if δ((p-3)/2) = 0. Call p properly irregular
if p divides the class number of Rx but not that of Z[ωx + ωΓ1].
For such p, one must omit from the formula (6.2) all those factors
1 + λ2ί + aiX2ί+1 for which 2i ^ p — 3 and the numerator of Bt is a
multiple of p. Thus for properly irregular primes p, Um is ele-
mentary abelian of order pg{-m\ where

ran f ^ f[(™ ~ 2)/2] + δ[(m
(6.3) aim) — \

\(P ™ 3)/2 + δ((p - 3)/2) , m = p - l , p .
Here, we must interpret the greatest integer function [(m — 2)/2]
as 0 when m < 2. Further, for j — 2, TJm is trivial when p = 2.

For the case where i? = Z[x]/(xp — 1) and i = 2, it is known
(see [6], [9], [19]) that u*(E) = i6*(J?2) for all m and all regular or
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properly irregular primes p. It seems likely that a corresponding
result holds for j > 2 for arbitrary E, for all primes p (in this
connection, see [19]).

From the results stated earlier in this section, we obtain

THEOREM 6.3a. Consider the direct sum

(6.4) Y=UKθήC®tί (K c(; λ*%) ,
fc=l »=1 ί = l

where each h is a locally free E-ideal9 each c an Rj-ideal, and
0 ^ ki < e9 Uiβ u(E) for each i. We may view Y as an extension
0 — Yo -> Y -• Γ x -> 0, wfeβre

Γo^πb eπb,, r, = πc;eπc,,

corresponding to the (b + ώ) x (c + ώ) matrix ( Λ Λ )

d V ^ , •••, Xkdud). Define Um as in (6.1),

m = Min{β — k^. 1 <Ξ i ^ d} .

( i ) The genus of Y is determined by the integer b + d
( — E-rank of Yo), the integer c + d ( = Rrrank of YJ, and the set
of exponents {fcj.

(ii) The additional invariants of the isomorphism class of Y,
needed to determine this class, are the isomorphism classes of

ΠbMlί), and ΠC-Πc, ,

and one further invariant which occurs only when b = c = O, namely
the image of uγ ud in Um.

Several remarks are in order concerning the above result. First
of all, we note that

(6.5) V 0 (ϊ>, c; Xku) = V 0 (ϊ>, c; λfc)

as a consequence of the Absorption Formula (2.7). Namely, choose
w eE with image ueE, so then

(ί>, c; Xku) = wQb, c; λfc)

in the notation of § 2. Since h'/wh' = b/wb because b V b', formula
(6.5) follows from the proof of (2.7). Likewise, we have

c' 0 (ί>, c; \*u) = c'φ (b, c; λ*)

always, by using the fact that R5 maps onto E. Thus, if either 6
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or c is nonzero, we may replace each ut in (6.4) by 1 without affect-
ing the isomorphism class of Y. This agrees with our previous
result.

Next, suppose that b = c = 0, and suppose the summands of Y
numbered so that kd = Max {fcj. The Exchange Formula (2.4) gives
Y~ W®X, where

W = Π (£>,, c<; λ**) , X = (bdf cd; \**u) ,
1

and u = ur- Ud. Let X' = (Jbd9 cd;X
kdu'). Our previous result then

takes the form of a Cancellation Theorem, namely,

(6.6) W@X=W®Xr if and only if X = Xf .

This is of special interest in that it applies to a situation in which
the summands lie in different genera. We may also deduce (6.6)
from Jacobinski's Cancellation Theorem [8, § 4] if desired.

To conclude these remarks, we may point out that the results
of § 5 yield a slightly more general cancellation theorem, as follows:
let A be any iί-lattice in a semisimple iΓ-algebra A, and let M, N
be ^-lattices with commutative Λ-endomorphism rings Γ, Δ, respec-
tively. For i = 1, , d, let Xi be an extension of N by M corres-
ponding to the class ζt e Ext(N, M). Suppose that for each i, we may
write ξd = Ύiζiδi for some 7* e Γ, δt e Δ, and let X' be any Λ-lattice.
Then

ΊϊU I . φ l ^ Ίϊ X, 0 Xf if and only if Xd = X' .
1 1

Further, the same result holds if each X% is replaced by a lattice
in its genus.

7* Cyclic groups of order p2. We shall now determine a full
set of isomorphism invariants of ^G-lattices, where G is cyclic of
order p2. To simplify the notation, we set

R = Z\ωχ S = Z[ω2], E = Z[x]/(x> - 1), E = E/pE = Z[X]/(\η ,

where Z = Z/pZ and λ = 1 — x. By § 4, every .E-lattice is an
extension of an iϋ-lattice by a Z-lattice. In this case, we have
Ext (R, Z) ~ Z, and u(R) maps onto u(Z). Thus by § 6, the only
indecomposable ^/-lattices are Z, b, and E(b) = (Z, b; 1), where b
ranges over a full set of representatives of the hR ideal classes of
R. Here, (Z, b; 1) denotes an extension of b by Z corresponding to
the extension class \eZ, using a standard isomorphism Ext (b, ̂ ) ~
Z. We note that E(b) V Ef so E(b) is a locally free S-lattice of
rank 1; conversely, every such lattice is isomorphic to some E(b).
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By § 6, every ^-lattice L is of the form

(7.1) L^Z«>®UV<U

and a full set of isomorphism invariants of L are the integers
α, by c (the genus invariants), and the ideal class of ΠbJ Πb-,-.

Now let M be any ^G-lattice. By § 4, M is an extension of an
S-lattice N by an ^-lattice L. A full set of isomorphism invariants
of M are the isomorphism class of L (just determined above), the
isomorphism class of N, and the strong equivalence class in Ext (N, L)
containing the extension class of M, Of course, N is determined
up to isomorphism by its S-rank and Steinitz class. Furthermore,
in calculating strong equivalence classes in Ext (N, L), we may
replace N by any lattice in its genus, and likewise for L. Thus it
suffices to treat the case where L is a sum of copies of Z, R, and
E, and where N is S-free. However, our conclusions can be stated
more neatly as an answer to the following equivalent question:
what are the isomorphism invariants of a direct sum of indecom-
posable ZG-lattices?

As shown in [7], a ZG-lattice M is indecomposable if and only
if Mp is indecomposable. The indecomposable i^G-lattices can be
determined explicitly by considering strong equivalence in the local
case (see [1] or [7]; the case p = 2 is treated in [14] and [17]).
Rather than repeat the local argument here, we just state the
conclusion: every indecomposable ϋίG-lattice is in the same genus as
one (and only one) of the following Ap + 1 indecomposable ZG-\at-
tices:

Zf R, E, S, (Z, S; 1) ,

(E, S; λr), 0 ̂  r ^ p - 1 ,

(Λ, S; λ'), 0 ̂  r ^ p - 2 ,

(Z@R9 S ; 1 0 λ r ) , O ^ r S p - 2 .

Here (Z, S; 1) represents an extension of S by Z with class ϊ e Z,
using the isomorphism Ext (S, Z) = Z. Further, (Z 0 E, S; 1 0 λr)
denotes an extension of S by Z @ E with class (1, λr) e Z 0 E,
using the isomorphism Ext (S, Z@ E) = Z@ E. Analogous defini-
tions hold for the other cases.

A full set of nonisomorphic indecomposable ^G-lattices may
now be obtained from (7.2), by finding all isomorphism classes in
each of the genera occurring in (7.2). This was done in [12], but
we take this opportunity to correct a misstatement in that article.
Let us denote by Um a full set of representatives u in u(R) or u(E)
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of the elements of the factor group Um, where the u's are chosen
so that U Ξ I (modλ). Recall that for l ^ m ^ p — 1, Um denotes
the group of units of Z[X]/(Xm) modulo the image of u(R), while
Up denotes u(E) modulo the images of u(S) and u(E). The nota-
tions Z7m, Up are then consistent with those introduced in § 6. Finally,
let n0 be some fixed quadratic nonresidue (mod p).

THEOREM 7.3. Let b range over a full set of representatives
of the hR ideal classes of R, and c likewise for the hs ideal classes
of S. A full list of nonisomorphic indecomposable ZG-lattices is as
follows:

(a) Z, b, E(b), c, (Z, c; 1).
(b) (#(&), c; Xru), u e Up_r, 0 ^ r ^ p - 1.
(c) {Z © E(b), c; 1 © X'u), u e Up+r, 1 ̂  r ^ p - 2.
(d) If p^l(mod4), (Z®E(b), c; l©λrww0), i * 6 ? H .
(e) (£>, c; λru), u 6 £/,,_!_,., 0 ̂  r ^ p - 2.
(f) (Z©b, c l φ Λ ) , u e C/^^, 0 ̂  r ^ p - 2.

Proof. Observe first that 6 gives all isomorphism classes in
the genus of R, and c these in the genus of S. Further E(b) gives
all isomorphism classes in the genus of E. It remains for us to
check strong equivalence classes in each of the remaining cases, and
for this it suffices to treat the cases where b — R, c — S and E(b) = E.

Next, we have Ext (S, Z) ~ Z} and u(S) maps onto u(Z). Hence
there is only one nonzero strong equivalence class in Ext (S, Z), so
all nonsplit extensions of S by Z are mutually isomorphic. Also,
Ext (S, E) = E = Z[X]I(XP), and by § 6 the nonzero strong equivalence
classes in Ext(S, E) are represented by {Xru: ue Up-r, 0 <£ r ^ p —1}.
This gives the lattices described in (b). A similar argument yields
those in (e).

Consider next the classification of lattices in the genus of
(Zφi2, S; 1 ® λr), where 0 ̂  r ^ p - 2. The following observation
is needed both here and later: each ίMattice L is expressible as an

a

extension 0 —> Lo —> L —• L1 —> 0, with Lo a ^-lattice uniquely deter-
mined inside L, and Lι an i2-lattice. The map θ induces surjections
L -* L1} Ext (S, L) —» Ext (S, Lx), where bars denote reduction mod p,
and where the surjections are consistent with the isomorphisms
Ext (S, L) = L, Ext (S, A) = Llβ Now let M be an extension of an
S-lattice N by L, so L (and hence also Lo) are uniquely determined
inside M. Then there is a commutative diagram

0 >L > If • N >0

I Ί
— - > M * >• iV »- 0 ,
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giving rise to a ZG-ex&ct sequence

0 >L0 >M >M* >0 .

The isomorphism class of M uniquely determines that of Λf *, and
the extension class of M* in Ext (N, LJ is the image of the class
of M in Ext (N, L), under the map induced by θ.

Suppose in particular that M = (Z@R, S; 1 0 Xru); then Λf*^
(R, S; Xru), and thus the image of u m Up^^r is an isomorphism
invariant of M. Conversely, any M' in the genus of M may be
written as (Z 0 ί>, c; q 0 λV), where q e u(Z). Then M' = (Z 0 ϊ>, c;
ί/S 0 Xrau'β) for any α 6 u(R), β e u(S). Choose β so that g/S = ϊ
in Z, and then choose a so that £w'/3 lies in Up^-r. This proves
that M' is isomorphic to one of the lattices in (f), and therefore (f)
gives a full list of nonisomorphic indecomposable ZG-lattices in the
genus of (Z 0 R} S; 1 0 λr).

Turning to the most difficult case, we have Ext (S,
Z@E, and we must determine strong equivalence classes in
under the actions of Aut(Z02?) and Aut (S). We may represent

- - ίz\
the elements of Z0 E as vectors (-) on which A u t ( Z 0 i ? ) acts
from the left, and Aut (S) from the right. Let Φ(x) denote the
cyclotomic polynomial of order p. Since Horn (£7, Z) = Z and
Horn (Z, E) = Φ(x)E, we obtain

(7.4) EndCZ0#) = ( / : / = (** . ^ , α, 6 e

There is a fiber product diagram

(7.5) J
β >Z ,

and an I?-exact sequence

0- > z θ 2

Each / e E n d ( ^ 0 ^ ) , given as in (7.4), induces a map f1 on ZQ)Z
and a map /2 on R, where

], /2 = multiplication by

Clearly, / is an automorphism if and only if /x e GI/(2, Z) and φ2(d) e
u(R). Furthermore, for each a e u(R) there exists an automorphism
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/ such that <pι(d) = a. Also, for each matrix μeGL(2, Z) whose
(2, 1) entry is divisible by p, we can find an automorphism / such
that /i = μ.

Now let M be a lattice in the genus of (Z 0 E, S; 1 φ λr) with

extension class ί-J. Since ί-j ^ (-) for some <?i, we may hereafter

assume that z — ϊ . Factoring out the submodule Z 0 Z of M a s
before, we obtain an extension M* of S by R, with extension class
%(β), where φ2: E -> JB is induced from gv The isomorphism class
of M* is determined from that of M. In particular, if the exten-
sion class of M is L , ), where 1 <g r ^ p — 2 and u e w(2ί), then the

\Λ* V// _

extension class of M* is λru, viewed as element of R. Therefore
the image of u in Up-^r is an isomorphism invariant of M. We
shall see that when p ^ 3 mod 4, this image of u and the integer
r are a full set of isomorphism invariants of M. On the other
hand, when p = 1 mod 4, an additional invariant will be needed,
namely the quadratic character of u (mod λ) viewed as element of
u(Z).

Let fe Aut (Z ®E), s e w(S), and let 1 ^ r ^ p - 2. The equa-
tion

ί a

\Φ()e d/\Xru)8 \λV

becomes (since λr& = 0 in Z)

asί = 1 in Z, Xru' = sdXru + Φ(x)cs in E .

Since det /x = ± 1, we have ad = ± l(mod λ) in E. Thus we obtain

(7.6) ur = sdu = ± a~2u (modλ) .

If p ΞΞ 3 (mod 4), then as a ranges over all integers prime to p so
does ±α~2, and (7.6) imposes no condition on u(modλ). However,
if p = I(mod4), then ±α~2 is always a quadratic residue (modp).
It follows from (7.6) that the quadratic character of u (mod λ) is

an invariant of the strong equivalence class of L r \ and is there-
fore an isomorphism invariant of M. This argument, together with
the discussion in the preceding paragraph, shows that no two of
the lattices listed in (c) and (d) can be isomorphic.

To complete the proof of the theorem, we must show that a

given lattice M with extension class ί * J, where 1 <; r ^ p — 2
and ueu(E), is isomorphic to one of the lattices in (c) and (d).
Choosing a = 1, & = 0, d = 1 in (7.5'), we see that we can change
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Xru modulo Xp~λ without affecting the strong equivalence class of

Now suppose that u = ± q2 (modλ), where qeZ; we may

choose p e u(R), s e u(S), such that p = s = q 1 (mod λ). There exists
a n / e A u t ( 2 φ £ ) , given as in (7.4), with φ2(d) = p and detf = ± 1 .
Therefore ad = ±l(modλ), and so a = ±q(modp). Thus (7.6) yields

uf = (± α~2)(± <f) Ξ 1 (mod λ) .

Now choose u e Uv-^r so that u and uf have the same image in
Up-^r, S O Ϊ Ξ <m' (mod XP~L) for some αew(iί). Then a = l(modλ),
since u' Ξ ίϊ = 1 (mod λ). It follows from (7.5) that a = <£>2W for
some deu(E). Then d-Xrur = Xru(modXp~1), which shows that

ϊ
XruJ \Xru' 1 \Xru

as desired. On the other hand, when p = 1 (mod 4) and u (mod λ)
is not a square in u(Z), then u = n0q

2 (mod λ) for some q e Z. The
above reasoning shows that

ϊ
Xruj \Xτun0

so M is isomorphic to a lattice of type (d). This completes the proof
of the theorem.

COROLLARY 7.7. The number of isomorphism classes of inde-
composable ZG-lattices equals

l + 2hR + 2hs

where

p-2

and εp — 2 if p = 1 (mod 4), εp = 1 otherwise. If p is a regular odd
prime (or if p — 2), έ/̂ ew | Um\ — p^m-2)/2^ for 0 <; m ^ j> — 1, where
the greatest integer function is interpreted as 0 if m < 2. Further,
I Ϊ7p I = I ίfp-i \ if P is regular or properly irregular) in the latter
case, I C7m| = p9{m) where g is given by (6.3).

Proof. In (7.3) there are 1 + 2hR + 2hs lattices of type (a), and
hpfisN! lattices for each of types (e) and (f). Further, there are
hRhs(N1 + \UP\) lattices of type (b), and ε^/i^iVi — l^-il) of types
(c) and (d). This gives the desired result.
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We note that for p = 2, 3, 5, the number of indecomposable
iftr-lattices equals 9, 13, 40, respectively.

We are now ready to give a full set of isomorphism invariants
for a direct sum M of indecomposable lattices chosen from the list
in (7.3). Since the Krull-Schmidt-Azumaya Theorem holds for ZPG-
lattices, it is clear that the number of summands -in the genus of
each of the 4p + 1 types in (7.2) must be an invariant. This gives
us a set of Ap + 1 nonnegative integers, which are precisely the
genus invariants of M. Furthermore, the ideal class of the product
of all ϋMdeals b occurring in the various summands must be an
isomorphism invariant of M. Likewise, the ideal class of the pro-
duct of all jS-ideals c which occur is another invariant.

Now let M be a direct sum of indecomposable ^G-lattices chosen
from the list (a)-(f) in (7.3). For each summand of type (b)-(f),
the symbol u or unQ occurring therein may be viewed as an element
of u(E). We may then form the product uo(M) of all u's and uno's
which occur in the summands of M of types (b)-(f); if there are
no such summands, we set uo(M) = 1. Let rt{M) be the largest
exponent r which occurs in any type (b) summand, and let r2(M) be
the largest exponent r among all summands of types (c), (d), (e),
and (f). (Choose r^M) — p if M has no summand of type (b), and
choose r2(M) — p — 1 if M has no summands of types (c)-(f).) The
main result of this article is as follows:

THEOREM 7.8. Let M be a direct sum of indecomposable ZG-
latticβs, which we may assume are of the types listed in (7.3). In
terms of the above notation, a full set of isomorphism invariants
of M consists of:

( i ) The Ap + 1 genus invariants of M,
(ii) The R- and S-ideal classes associated with M,
(iii) If M has no summand of types ΐ>, E(h), c, (Z, c; 1), and if

rx(M) ^ r2(M), the isomorphism invariant given by the image of
uo(M) in J/p-!-^, whereas if rτ(M) > r2(Λf), the invariant given by
the image of uQ(M) in U9-.ri, and

(iv) If p Ξ 1 (mod 4), and if M has no summand of types Z,
E(b), (JZΓ, C; 1), (E(b), c; Xru) or ( Z φ δ , c; 1 φ λ r u ) , the isomorphism
invariant given by the quadratic character of the image of uo(M)
in u{Z).

Proof. Step 1. We have already remarked that the isomorphism
class of M determines the invariants listed in (i) and (ii), and that
the only remaining invariants needed to determine M up to isomor-
phism are those which characterize the strong equivalence class of
M. In this step (the hardest of all), we suppose that M is as in
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(iii), and proceed to show that the proposed invariant is indeed an
isomorphism invariant of M Define Λf * = M/Lo as in the proof of
(7.3); then M* must be a direct sum of lattices in the genus of
(R, S; λr) for various r, because of the hypotheses on M. It follows
from § 6 that the image of uo(M) in Um is an isomorphism invari-
ant of Λf* (and hence also of M), where

m = p — 1 — Max {r} = p — 1 — Max {rlf τ2} .

Thus we see that if τλ <ί r2, then the image of uo(M) in i72,_1_r2 is
an isomorphism invariant of M, as claimed.

Now let rx > r2, and suppose M is as in (iii), so M is a direct
sum of lattices in the genera of

(7.9) Z, (Z 0 R, S; Xr), (R, S; Xr), (Z®E,S;l® λ'), (E, S; Xr)

for various r's. Viewing M as an extension of a free S-lattice by
a direct sum of copies of Z, R, and E, the extension class ξM of M
has the form

0

/

0

A
0

0

0

0

0

0

0

A

0

0

0

0

I

0

0

A
0

0

0

0

0

0

0

A

The top row corresponds to summands of type Z; each Dt is a
diagonal matrix with diagonal entries of the form Xru or Wun0; the
four columns correspond (respectively) to the last four types of
summands listed in (7.9). Changing notation slightly, we may then
write

H

0

As

0

0

0

I

0

A
0

0

0

0

0

A

,r Γθ °Ί "A
0

0

A

We must show that the image of uo(M) in
the strong equivalence class of ξM.

is an invariant of
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The endomorphism ring of Z{a) © R{b) 0 E{c) consists of all
matrices

~An

0

0

^4-22

L 3l '^J ^L 32

An"

^ - 2 3

A 3 3 _

where the rows have entries in Z, R, and Ey respectively. As in
the proof of (7.3), / is an automorphism if and only if

(7.10) 6 GL(Z) ,
•^•23

_Xφ2(A32)
e GL(R) ,

where the <pt are induced from those in (7.5).
Now suppose that ξM & ξM,, where ξM, has the same form as ξM,

but with diagonal entries Xrur or Xru'n0. Then we obtain

Bn

B2l

0

Φ(x)Bn

Φ{x)Bu

=

B22

0

Φ(x)BiZ

Φ(x)B-o2

Ή 0

0 /

D; 2 o
0 D's

0 0

0

0

0

0

J)

0
0

h

λ

λ

-

4

'33

B53

"Sit

s»
.s 8 1

Bu

B2i

Bu

Bu

BH

s a

s22
S32

B15

B2S

A5

Ba

" I /

0

A,
0

_0

s»-
S23

S33.

0
/

0

A
0

0 -

0

0

0

A-

where [S< y] 8 x s e GL(S). The (4, 1) block in the left hand product
equals Φ{x)B^H + XB^D12. However, Φ(x) is a multiple of Xp~ι in
JS, and each diagonal entry of D12 is of the form Xru for some
r ^ r2. We may therefore write this (4, 1) block as

( λ * - 1 - " ^ + XB43)D12

for some C41. The same procedure can be carried out for the blocks
in positions (5, 1), (4, 2), and (4, 3). Setting k — p — 1 — r 2 for brevity,
we obtain

(7.11) X G4

X C5

Bu diag(A», A, A)
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Now 7\ > r2 ί> 0 gives τx ̂  1; thus for each p e R, the product Xrψ
is unambiguously defined inside E. The method of proof of (5.10)
then shows that

Xrφu0(M) = Xrίσu0(M') in i? ,

where β is the determinant of the first matrix appearing in (7.11),
and σ = det [S ί3 ] e w(S) However, τx + k = rt + p — 1 — r2 7t p so

λr1+ib ^ o in J?. Therefore λ r i β = λri/S*, where

φz(Bu)/3* = det

This shows that β*uQ(M) = σu0(M') in Z[X]/(Xp'rήy so therefore
and uo(M') have the same image in U9-rίf as desired. Thus when
Yi > ̂ 2? the image of i60(M) in Up-ri is an isomorphism invariant
of M.

Step 2. Suppose next that the hypotheses of (iv) are satisfied.
Then M is a direct sum of lattices in the genera of

(7.12) R, S, (R, S; λr), (Z 0 E, S; 1 φ λr) ,

and we may write the extension class ξM of M in the form

"0 Γ

ξM = H 0

β D_

with D a diagonal matrix with entries Xru. The first column corres-
ponds to summands of the first three types in (7.12), and the
second column to the last type. If ξM, has the same form as ξMf

then the strong equivalence ξM *** ξM, yields an equation

An 0

0 A22

_Φ{x)Azι XAn

But A1ZD = 0 over Z, since every diagonal entry of D is a multiple
of λ, and XZ = 0. Thus we obtain

ΓO

H

LO

I"
0

Ό

=

0

H'

0

i -

0
11 12

An - S22 over Z, Φ(x)A31 + A3,D -

Consequently \An\ = |S 2 2 | in if, and
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On the other hand, | An | | φ^A^) | = ± 1 (mod p) by (7.10), so we
have

uo(M) = ± \An\*u0(M') (modλ) .

This proves that in case (iv), the quadratic character of the image
of uQ(M) in u(Z) is an isomorphism invariant of M. (This argument
is an obvious extension of that given in the proof of (7.3).)

Step 3. To complete the proof, we must show that the set of
invariants (i)-(iv) do indeed determine M up to isomorphism. We
shall accomplish this by repeated use of the Absorption and Ex-
change Formulas of § 2, and for this purpose we need a collection
of short exact sequences. For brevity of notation we omit the
0's at either end of such sequences, agreeing that the first arrow
is assumed monic, the second arrow epic.

We have already pointed out that every element in a factor
group Uk can be represented by an element u in E or R, such that
u Ξ= l(modλ). For such u, we have uZ = Z, and thus

(7.13) R/uR ~ (E/Z)/u(E/Z) - (E/Z)/(uE/Z) = E/uE .

Likewise, b/ub = E(b')/uE(bf) always. Further, for u = 1 (mod λ)
there are exact sequences

R > R > R/uR, OR, S; λr) > (R, S; Xru) > R/uR ,

, S; 1 0 λr) > (Z®E,S;l<® ^ru

and so on. If M is a direct sum of indecomposable lattices of the
types listed in (7.3), it thus follows from the existence of such
exact sequences that we may concentrate all of the u's in any
preassigned summand of M, without affecting the isomorphism class
of M. This means that we can set all but one of the ^'s equal to
1, and replace the remaining u by the product of all of the original
%'s. (Caution: this does not enable us to move the no'& occuring in
type (d) summands!) Furthermore, if either b or E(b) occurs as
summand, then the Absorption Formula permits us to make every
u equal to 1, without affecting the isomorphism class of M.

Next, there is a surjection S —> E, so for each u e u(E) we can
find an element v e S such that v = u~γ in E; then v acts on E as
multiplication by u~\ From the commutative diagram

R > (R, S; Xru) > S

4
R > (JR, o j λ>r)
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we obtain an J^-exact sequence

(R, S; Xr) > {R, S; Xru) > S/vS .

Likewise, there are exact sequences

S >S >S/vS, (Z,S;Ϊ) >(Z,S;ϊ) > S/vS ,

(20£,S;lφ λ') > (Z@E,S;u® Xru) > S/vS ,

and so on. Note also that

(Z 0 E, S; v 0 Xrv) ~(^0£,S;10 Xrv)

whenever v = 1 (mod λ). It thus follows (by the Absorption For-
mula) that if either c or (Z, c; 1) is a summand of ikf, then we can
replace u by 1 in every summand of M in which u's occur, without
affecting the isomorphism class of M. This completes the proof
that if M has any summand of the types in (iii), then we can elimi-
nate all of the u's. On the other hand, if M has no such summand,
then by Step 1 the image of uQ(M) in either Z73,_1_r2 or Up-ri is an
isomorphism invariant of M.

Step 4. Suppose finally that p = 1 (mod 4). There are exact
sequences

Z > Z > Z/n0Z, (Z, S; 1) > (Z, S; 1) • > Z/n0Z ,

(7.14) {Z 0 R, S; 1 0 Xru) > (Z 0 R, S; nQ 0 Xru) > Z/n0Z .

Choose v0 6 u(S) with v0 = n0 in u(Z); then u and uv^1 have the
same image in Up^^,. for each r, and therefore

(Z®R,S;1® Xru) ~(Z®R,S;1® X'uVo1) = (Z 0 R, S; vQ 0 Xru)

Thus (7.14) yields an exact sequence

(Z 0 R, S; 1 0 Xru) > (Z 0 R, S; 1 0 Xru) > Z/nQZ .

Now let u = 1 (mod λ), and let us denote by [un0] an element
t&i 6 u(E) such that uι = 1 (mod λ) and uλ = unQ in Όv-x-r (for some
given r). Then we have

(Z 0 E, S; no1 0 λ r^) ~ (Z 0 E, S; 1 0 Xru{ΰ,)

, S; 1 0 Xrun0)

the second isomorphism is valid because ^ 0 and un0 have the same
image in u(Z), as well as the same image in Up-^r. Thus the
exact sequence
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(Z © E, S; no1 0 Xrut) > (Z 0 E, S; 1 © Xruλ) • Z/nQZ

may be rewritten as

(7.15) (Z 0 E, S; 1 φ λ'wι0) > {Z 0 #, S; 1 0 λ'[ύn0]) > Zjn0Z .

Finally, there are exact sequences

(E, S; Xru) • (E, S; XrunQ) > E/n0E ,

, S; 1 0 Xru) > (Z®E,S;l® Xrun0) > E/nQE .

It now follows from (7.15), and the other sequences listed above,
that if M contains any summand of the types listed in (iv), then
the isomorphism class of M is unchanged if we replace un0 by [un0]
in every type (d) summand of M. In any case, if both u and u'
are congruent to l(modλ), then (7.15) gives

S l φ Xrun0)

= (Z 0 E9 S; 1 0 Xr[un0]) 0 (Z 0 E, S; 1 0 \ [u'n0]) .

Hence, we can always eliminate any even number of type (d) sum-
mands of M. Further, if M contains no summands of the types
listed in (iv), then we have shown in Step 2 that the quadratic
character of the image of uo(M) in u(Z) is an isomorphism invari-
ant of M.

In view of the various changes which we have described in
Steps 3 and 4, it is now clear that the invariants listed in (i)-(iv)
completely determine the isomorphism class of M. This completes
the proof of the theorem.

To conclude, we remark that many of the above results can be
generalized to extensions of By-lattices by a direct sum of locally free
lattices over several orders which are factor rings of Z[#]/(#3>5~1—1).
In particular, we can classify all Λ^-lattices M for which QM is
a direct sum of copies of Z, Ri9 and Rj9 where 1 <£ i < j ^ /c. It
is known (see [1]) that there are only finitely many isomorphism
classes of indecomposable lattices of this type. However, this gives
only a partial classification of the integral representations of a
cyclic group of order p5, since for G cyclic of order p2, there exist
^ΓG-lattices which are not direct sums of locally free lattices of the
types just mentioned.

Even for G cyclic of order p2, a further question remains: given
a ZGr-lattice M, how can one calculate the isomorphism invariants
of M intrinsically, without first expressing M as a direct sum of
indecomposable lattices? Such a calculation would undoubtedly help
to clarify the structure of M.
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