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SUBMANIFOLDS WITH L-FLAT NORMAL CONNECTION
OF THE COMPLEX PROJECTIVE SPACE

MASAFUMI OKUMURA

Real submanifolds with L-flat normal connection of the
complex projective space are studied. As a special case "a
complex submanifold with L-flat normal connection of the
complex projective space is necessarily totally geodesic" is
proved.

Introduction* As is well known an odd-dimensional sphere
S2n+ι is a principal circle bundle over a complex projective space
Pn(C). The Riemannian structure on Pn{C) is given by the sub-
mersion π: S2n+1 -> Pn(C) which is defined by the Hopf-fibration. If we
construct a circle bundle over a real submanifold of Pn(C) in such a
way that it is compatible with the Hopf-fibration, the circle bundle
is a submanifold of the odd-dimensional sphere. Thus when we
want to study submanifolds of the complex projective space it is
useful to study the circle bundle over the submanifold. From this
point of view, H. B. Lawson, Jr. [2] and the present author [3,
4, 5] have studied real submanifolds of the complex projective
space. In the previous paper [5], the author studied relatious
between the normal connection of a submanifold of Pn(C) and that
of the circle bundle over the submanifold and established the notion
of L-flatness for the normal connection of a real submanifold of
Pn(C).

The purpose of the present paper is to study submanifolds
with L-flat normal connection of Pn(C). The main result is the
following.

THEOREM 1. The totally geodesic complex projective linear
subspaces Pn(C) are the only complex submanifolds with L-flat
normal connection of Pn+p(C).

In § 1 we state some formulas for real submanifolds of a
Kaehlerian manifold and in § 2 we discuss the case when the ambi-
ent manifold is the complex projective space. There we explain
L-flatness of the normal connection. In § 3, we calculate the Lapla-
cian for a function which is defined on the submanifold and prove
some theorems including Theorem 1.

1* Real submanifolds of a Kaehlerian manifold* Let Mr be
a real (n + p)-dimensional Kaehlerian manifold with Kaehlerian
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structure (J, G), that is, / is the endomorphism of the tangent
bundle T(M') satisfying J2 = — identity and G the Riemannian
metric of Mf satisfying the Hermitian condition G(JX', JYr) =
G(X', Y') for any X', Y' e T{Mr).

Let M be an immersed submanifold of Mf and i be the immer-
sion. Then the tangent bundle T(M) is identified with a subbundle
of T(M') and a Riemannian metric g of ikf is induced from the
Riemannian metric G of ikί' in such a way that #(X, Y) = G(iX, iY),
where X, Γ e Γ(Λf). The normal bundle N(M) is the subbundle
of T{Mf) consisting of all X' e T(M') which are orthogonal to
T(M) with respect to G. At each point of M, we choose or-
thonormal normal vectors nlf n2, , np to M and extend them
respectively to N19 N2, , Np in such a way that they belong to
N(M).

For any Xe T(ikf) and for NΛf A = 1, 2, , p, the transforms
and JiV^ are respectively written in the following forms:

(1.1) MX = %FX +

(1.2) JNA= -iUA + Σ F'/NB ,

where F, F', UA, and uA define respectively an endomorphism of
T(M), that of N(M), local tangent vector fields and local 1-forms
on M. They satisfy the relations uA(X) = g(UΛ, X), F'f = -F'B

A.
Applying J to both side members of (1.1) and (1.2), we find

(1.3) F*X= - Z + Σ « W ^ .

(1.4) i

B = l
(1.5)

(1.6)

If at any point of M, FUA = 0 are valid for A = 1, 2, , p, we
know that .F7 satisfies F3 + F = 0 and that the rank of F ^ n — p.
In this case the submanifold M is called an F-submanifold of
rank ^ n — p [7]. We denote by F and D the Riemannian connec-
tion of M and M' respectively and by DN the induced normal con-
nection from D to N{M). Then they are related by the following
Gauss and Weingarten equations.
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(1.7) DiXiY = iVxY + h(X, Y), h(X, Y) = JuhA(X, Y)NA ,

(1.8) DiXNA = - iHAX + DXNA, DXNA = ± L/(X)NB ,

where h(X, Y) is the second fundamental form and H/s are sym-
metric linear transformations of T(M) which are called the Wein-
garten maps for the normal JV̂ . The last two equations show that
hA(X, Y) = g(HAX, Y). The mean curvature vector field μ of M is
defined by

(1.9) μ = ( Σ (trace HA)1

and it is well known that μ is independent of the choice of NAs.
If the mean curvature vector field vanishes identically on M, M is
called a minimal submanifold of M'. By definition M is minimal if
and only if trace HA = 0, A = 1, 2, •••, p at each point of M.
Differentiating (1.1) and (1.2) covariantly and making use of the
fact that the Riemannian connection D of M' leaves the almost
complex structure J invariant, we have

(1.10) {VYF)X - ± {u\X)HAY - g(HAX, Y)UA} ,
A=l

(1.11) Vx UA = FHAX + Σ {LAX) Us - F'/HBX) ,
J 5 = l

(1.12) D%F'/ = g(HBUA - HAUB, X) .

Differentiating (1.9) covariantly, we have

nDxμ = Σ \X (trace HA)NA + Σ (trace HA)L/(X)NB\ ,

from which we know that the mean curvature vector field is paral-
lel with respect to the normal connection if and only if

(1.13) X (trace HA) = Σ L/{X) trace HB ,
5=1

because of the fact that LA\X) = -Lf{X) for any Xe T(M).

2. Real submanifolds of the complex protective space* Let
the ambient manifold Mf be the complex protective space pt»+*>/*(C)
with the Fubini-Study metric of constant holomorphic sectional
curvature 4. Since the curvature tensor R\X\ Y')Zr of the ambi-
ent manifold satisfies
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(2.1) R\X', Y')Z' = G(Y', Z')X' - G(X', Z')Y'

+ G(JY', Z')JX' - G{JX', Z')JY' - 2G(JX', Y')JZ'

the Codazzi, Ricci equations become respectively

Σ(2.2) (FXHA) Y - {VyHA)X = Σ {L/(X)HB Y - L/( Y)HBX)
5=1

- uΛ(Y)FX + u\X)FY - 2g(FX, Y)UA ,

(2.3) W{X, Y)NA = Σ {9{{HAHB - HBHA)X, Y)

+ uA(Y)uB(X) ~ uA(X)uB(Y) - 2g(FX, Y)F'A
B)NB ,

where RN(X, Y) denotes the normal curvature of Mf. If we choose
an orthonormal basis {Eίf , En} of TX{M) at a point xeM, it
follows from (1.4) and (2.3) that

(2.4) Σ RN(FEif EZ)NA = Σ (trace (HAHB - HBHA)F + 2g(FUA, UB)
i-l B-l

- 2 (trace F2)FA

B}NB .

Now recall the fact that an n + p + 1-dimensional sphere of radius
1 is a principal circle bundle over the complex protective space and
let π be the Hopf-fibration. We construct the circle bundle over
the submanifold M in such a way that the following diagram com-
mutes:

π~\M) > Sn+P+1

I I
M >P

In the previous paper [5] the author proved that the normal con-
nection of π'\M) in Sn+p+ί is flat if and only if the following two
conditions are satisfied on M:

(2.5) RN(X, Y)NA = -2g(FX, Y)±F?NB ,

(2.6) DN

XFA

B = 0 .

Moreover the author proved that if n > p + 2, (2.5) implies (2.6).
Thus we call the normal connection of M in pι»+»'\C) lift-flat
normal connection or briefly L-flat normal connection if it satisfies
(2.5) and (2.6). It is easily checked that the totally geodesic com-
plex submanifold Pn/\C) of P< +»)/2(C) is a submanifold with L-flat
normal connection. We can also check the fact that if the submani-
fold M is a complex submanifold, the normal connection is L-flat if
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and only if the Weingarten maps HA and HB commute for any pair
of A and B = 1, 2, , p.

3* Submanif olds with L-flat normal connection* We put

(3.1) f=±u'(UΛ).
A=l

Then from (1.3) we have

(3.2) / = trace F2 + n ,

which shows that / is a globally defined function on the submanif old
M. Using the formulas which are stated in § 1, we now calculate
the Laplacian Δf.

By means of (1.10) and (3.2), it follows that

(3.3) λ.γf^λγ(traceF>) = trace {VYF)F = 2 Σ 9(FHAY, UA) ,

from which

= Σ {g{{VxF)HAY, UΛ) + g(F{VxHA)Y, UA)

+g(FHAY,FxUΛ)}

= Σ {g(HAUB, Y)g{HBUA, X) - g(HAHBX, Y)g{UA, UB)
A,B=1

- g{{VxHA)FUA, Y) - g(F*HAY, HAX)

- LAX)g(HAFUB, Y) - F'/g{X, HBFHAY)} ,

because of (1.10) and (1.11).
On the other hand, from (2.2), it follows that

(FXHA)FUA = (FFUAHA)X + Σ {L/{X)HBFUA - L/(FUA)HBX)
.5=1

+ u\X)F>UA - 2g{FX, FUA)UA .

Substituting this into (3.4), we find

j(FxF¥f - FVχrf) = jt^ {g(HAUB, Y)g(HBUA, X)

- g{HAHBX, Y)g{UA, UB) - g((FFUAHΛ)X, Y)

+ L/(FUA)g(HBX, Y) - g(UA, X)g(F*UA, Y)

- 2g(F>UΛ, X)g(UA, Y) + g(HAY, X)

- g(HAUB, Y)g(HAUB, X) - F'/g{X, HBFHAY)} ,
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from which

\Δf = Σ {g(HA UB, HB UA - HA UB) - trace (HAHB)g( UA9 UB)
4 A,B = 1

( 8 ' 5 ) - {VFUA (trace HA) - L/(FUA) trace HB)

+ Zg{FUA, FUA) + trace HA - F? trace HAHBF) .

Now we rewrite (3.5), using the normal curvature RN. By means
of (2.4) and the fact that F is a skew-symmetric linear transfor-
mation, we have

\Δf = Σ \g(HΛUB, HBUA-HAUB)-trace(HAHB)g(UA, UB)
4 A,B = 1 I

- ΨFUA (trace JΪJ - L/{FUA) trace fl,)

(3.6) + 3ff(F^ t FUA) + trace fί^

- F'/l± Σ G{R»{FEt, Et)NA, NB) - g(FUA, Us)
\ £ ί — 1

+ (trace F2)F

Before we prove Theorem 1, we prove the following more
general result.

THEOREM 2. Let M be a real submanifold with L-flat normal
connection of a complex projective space. If the mean curvature
vector field is parallel with respect to the normal connection, then
the submanifold M is an F-submanifold of rank ^ n — p. Parti-
cularly, if F is of almost everywhere rank n, M is a totally
geodesic complex submanifold and consequently a complex projective
linear subspace.

We begin with the following

LEMMA. When the normal connection of M in p<n+*>/2(C) i§

L-flat, the function f is constant.

Proof. It follows from (1.5) and (3.3) that

λ -
A = \ A,B=1

4 * 7 = - Σ 9(HAY, FUA) = Σ F'/g{HAUB, Y)

= 4- Σ F'/g{HAUB - HBUA, Y) .
2 A,B=l

Thus, (1.12) and (2.6) imply that / is constant.



SUBMANIFOLDS WITH L-FLAT NORMAL CONNECTION 453

Proof of Theorem 3. Since the p x p matrix (trace HAHB) is
symmetric and can be assumed to be diagonal for a suitable choice
of NlfNt, ••.,#„

Σ trace (HAHB)g(UA, UB) = ± (trace HA)g{UA, UA) .
A,B = l A = l

Moreover the conditions of the theorem, (1.13), (2.5), (2.6), and (3.6)
imply that

VFUA (trace HA) = Σ LA

B(FUA) trace HB ,

Σ G(RN(FEif Et)NA, NB) = -2 (trace F 2 ) i ^ ,

and

±F'A
Bg{FUA9 UB) = -g(FUA, FUA) .

Thus we have

(3.7) \ήf = Σ {trace H\-(trace Hl)g{UA, UA) + 2g(FUA, FUA)} = 0 ,

from which FUA = 0, A = 1, 2, , p, because of g{UAf UA) <̂  1.
Thus M is an F-submanifold of rank ^ n — p. To prove the last
part of the theorem we assume that the rank of F is almost every-
where n. Then we have UA — 0 for A = 1, 2, , p. This means that
the submanifold is a complex submanifold. Again we use (3.7) and
get that M is totally geodesic. This completes the proof.

Proof of Theorem 1. It is well known [6] that a complex sub-
manifold is a minimal submanifold and the induced complex struc-
ture F is of rank n. Hence a complex submanifold with L-flat
normal connection satisfies the conditions of Theorem 3. This
completes the proof of Theorem 1.

Finally we point out that, as an application of our discussions
the formula (3.6) gives another proof of the following known [1].

THEOREM 3. There does not exist a complex submanifold with
flat normal connection of a complex protective space.

Proof. Since a complex submanifold is invariant under J it
follows that UA — 0, uA — 0 for A = 1, 2, , p. Hence (3.6) becomes

—Δf = Σ trace HA - Σ (trace F2)FA

BFA

B

4 A=l A,B=1

= Σ trace HA + np > 0 ,
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because of (1.6). On the other hand, (3.3) implies that the function
/ is constant and consequently Δf — 0. This is contradiction. This
completes the proof.
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