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GEOMETRICAL IMPLICATIONS OF UPPER
SEMI-CONTINUITY OF THE DUALITY

MAPPING ON A BANACH SPACE

J. R. GILES, D. A. GREGORY AND BRAILEY SIMS

For the duality mapping on a Banach space the relation
between lower semi-continuity and upper semi-continuity
properties is explored, upper semi-continuity is characterized
in terms of slices of the ball and upper semi-continuity
properties are related to geometrical properties which imply
that the space is an Asplund space.

The duality mapping is a natural set-valued mapping from the
unit sphere of a normed linear space into subsets of its dual sphere,
and which for an inner product space is the mapping associating an
element of the unit sphere with the corresponding continuous linear
functional given by the inner product. It is an example of a sub-
differential mapping of a continuous convex function (in this case,
the norm), which is in turn a special kind of maximal monotone
mapping. Cudia [4, p. 298] showed that the duality mapping is
always upper semi-continuous when the space has the norm and the
dual space has the weak* topology, and Kenderov [10, p. 67] extended
this to maximal monotone mappings. Bonsall, Cain, and Schneider
[3] used the property to prove the connectedness of the numerical
range of an operator on a normed linear space.

Along with the activity which culminated in StegalΓs theorem
[15] characterizing an Asplund space as one whose dual has the
Radon-Nikodym property, there has been some interest in finding geo-
metrical conditions sufficient for a space to be Asplund. A Banach
space X is an Asplund space if every continuous convex function
defined on an open convex subset of X is strongly differentiate on
a dense Gδ subset of its domain. Ekeland and Lebourg [6, p. 204]
have shown that a Banach space is Asplund if there exists a strongly
differentiate real function on the space with bounded nonempty
support, in particular, if the space can be equivalently renormed to
have norm strongly differentiable on the unit sphere. Using StegalΓs
theorem, a result of Diestel and Faires [5, p. 625] gives that a
Banach space is Asplund if the space can be equivalently renormed
to be very smooth, that is, to be smooth and to have the single
valued duality mapping continuous when the space has the norm
and the dual space has the weak topology. Recently Smith and
Sullivan [13, Theorem 15] have exhibited a more general condition
which is sufficient for a Banach space to be Asplund. We show that
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this condition can be characterized by an upper semi-continuity pro-
perty of the duality mapping and we derive other such sufficient
conditions related to the upper semi-continuity of the duality mapping.

Consider a real normed linear space X with unit sphere S(X) =
{xeX:\\x\\=l}, and closed unit ball B(X) = {x e l : \\x\\ ^ 1} and
dual space X*. The duality mapping for X is the set-valued map-
ping x-»D(x) of S(X) into S(X*) where D(x) == {f eS(X*): f(x) = l}.
For xeS(X), D(x) is convex and weak* compact. X is smooth at
x 6 S(X) if D{x) is a single point set. A selection fx e D(x) for each
x 6 S(X) is called a support mapping on X. If we extend D to X
by taking Z>(») = D(xl\\x\\) for x Φ 0, and D(0) = .B(X*), then D is
monotone, that is (fx — fy)(x — y)^0 for all x, y in X and /*,/„ in
£>(»), JD(2/) respectively.

We denote by τ the weak*, weak, or norm topology on X*. By
a τ-neighborhood of D(x), we mean a set of the form D(x) + N where
N is a τ-neighborhood of 0. The duality mapping D is said to be
upper semi-continuous (resp. lower semi-continuous) (n — τ) at x e
S(X) if for every τ-neighborhood U of D(x) (resp. τ-open set U with
17 Π #0*0 =£ 0) there is in S(X) a norm neighborhood N oΐ x such
that Z%)c Z7(resp. D(y)f]Uφ0) whenever τ/eiV. For upper semi-
continuity, some authors prefer to let U be any τ-open set containing
D(x). If D(x) is τ-compact, for example if D(x) is a singleton or τ
is the weak* topology, then the two notions of upper semi-continuity
agree.

1* The relation between lower and upper semi-continuity• It
is of interest to note that for the duality mapping there is a special
relation between lower and upper semi-continuity. It is this relation
which prompts us to consider upper semi-continuity in our formulation
of more general duality mapping properties.

The following relations can be deduced simply from the definitions
and actually hold for selections of set-valued mappings.

For a normed linear space X, given xeS(X), and the τ-topology
on X*, the following implications hold.

( i ) The duality mapping is upper semi-continuous (n — τ) at x
and D(x) is a single point set.

«=*(ii) Every support mapping is continuous (n — τ) at x.
=> (iii) There exists a support mapping which is continuous

(n — τ) at x.
=> (iv) The duality mapping is lower semi-continuous (n — τ) at x.
Using the monotonicity of D it can be shown that if D is lower

semi-continuous (n — w*) at x, then D(x) is a singleton [4, p. 300;
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10, p. 67], and so the conditions above are actually equivalent when
stated for all xeS(X). The monotonicity of D can also be used to
show that the conditions are equivalent at x e S(X) if τ is the norm
(or of course, the weak*) topology. This raises the following problem.

Problem 1. Does (iv) ==> (iii), or (iii) => (ii) when τ is the weak
topology?

The following hereditary properties hold.

LEMMA 1.1. For a normed linear space X given a suhspace Y and
x 6 S(X) Π Yf if the duality mapping D for X is lower or upper semi-
continuous (n — τ) at x then so is D\γ, the duality mapping for Y.

We extend the result [3, p. 92] to show that the duality mapping
for /[ is not upper semi-continuous (n — w) on

EXAMPLE 1.1. In ^ consider x = {\, λ2, •• }e£(/1) where λft Φ 0
for all n, and sequence {xn} where xn = {\, , λΛ, — λΛ+1, — X^2 •}.
Now x and xn are smooth points of S(<). Consider /, = {sgn \ ,
sgnλ2, -* }eD(x) and

fχn = {sgn \, , sgn λΛ, - sgn λΛ+1, - sgn Xn+2, - } 6 D{xn) .

Consider Fern* where F(fx) = 1 and F(cQ) = 0. Now xn is norm
convergent to x but F(fXn) = — 1 for all n, and so fXn is not weakly
convergent to fx. Therefore the duality mapping for /t is neither
lower nor upper semi-continuous {n — w) at smooth points of S (<).

Using Lemma 1.1 it can be seen that at all x e Sfa) where x has
an infinite number of nonzero terms, the duality mapping is not upper
semi-continuous (n — w). At all xeS(4) where x has only a finite
number of nonzero terms, for / = {μlt μ2, •} e m, D(x) — {/ 6 S(m):
μn = sgn λΛ for λΛ ^ 0} so then JD(2/) £ D(x) for all 2/ 6 S(<) where
|| ̂ / — x || < min | λ j and we have that there the duality mapping is
upper semi-continuous (n — n).

It follows from Lemma 1.1 that if a normed linear space Xhas
duality mapping upper semi-continuous (n — w) on S(X) then X does
not contain any subspace isometrically isomorphic to /γ. In particular,
the duality mappings for m and C[0,1] are not upper semi-continuous
(n — w) on their unit spheres.

2* The characterization of upper semi-continuity by slices*
A slice of the ball B{X) determined by / e S(X*) is a set S(B(X), f, δ) Ξ
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{x 6 B(X): f(x)>l - δ} for some 0 < δ < 1. Similarly, S(B(X*)f x, e) =
{/ e B(X*): f(x) > 1 - λ} for x e S(X) and 0 < λ < 1. The latter is
a special case of an approximate subdiίferential at x of a continuous
convex function, in this case the norm [1, p. 452]. We note the
following useful fact about slices.

LEMMA 2.1. For a normed linear space X} given f e S(X*) and
0 < δ < 1, S(B(X**),f, δ) is contained in the weak* closure of
S(B(X),f,δ).

Proof. Consider Fe S(B(X**), /, δ) and N a weak* neighborhood
of F in X**. Now N f) S(B(X**), f, δ) is a weak* neighborhood of

F. But since i?(X) is weak* dense in B(X**)f this neighborhood con-

tains a member of B(X), necessarily a member of S(B(X), f, δ).

It is convenient to have a characterization of upper semi-continuity
in terms of slices. These theorems generalize the Smulian charac-
terizations for weak and strong differentiability of the norm [14,
p. 645].

THEOREM 2.1. For a Banach space X, the duality mapping is
upper semi-continuous (n — τ) at xe S(X) if and only if for each
τ-neighborhood N of 0 in X*9 D(x) + N contains a slice of B(X*)
determined by x.

Proof. Suppose that D(x) + N contains the slice S(B(X*), x, δ)
determined by x. Then for all y e B(x; δ) f] S(X) we have \fy(x) - 11 < δ
for all fyeD(y); that is, D(y) £ S(B(X*), xf δ). Then the result is
immediate.

Conversely, there exists a δr > 0 such that D(y)ζ=D(x) + JV/2 when
yeB(x; S') n S(X). Choose 0 < δ < δ' such that δB(X*) £ N/2.
Consider / e S(B(X*), x, δ2/4). Now | f{x) - 1 1 < δ2/4 so by the Bishop-
Phelps-Bollobas theorem [2, p. 181] there exists a y e S(X) and fy G
D(y) such that \\x - y\\ < δ and \\fy - / | | < δ. But then D(y) Q
D(x) + JV/2 and so / efy + δB(X*) Q D(x) + JY.

When X* has the norm topology, we have a dual result. We
denote by Dn the duality mapping on X{n).

THEOREM 2.2. For a Banach space X, the duality mapping Dι

on X* is upper semi-continuous (n — n) at f e S(X*) if and only
if for each norm neighborhood N of 0 in X**, AGO + N contains
a slice of B(X) determined by f.



GEOMETRICAL IMPLICATIONS OF UPPER SEMI-CONTINUITY 103

Proof. Given a weak * closed norm neighborhood N of 0 in X**,

suppose that s1β(X), f, δ) £ AGO + N. Since AGO is weak * compact,

AC0 + N is also weak * closed, [9, p. 35], and so contains the weak * clo-

sure of S(B(X), f, δ). From Lemma 2.1 we deduce that S(B(X**),f, δ)£

A(/) + N and so the result follows from Theorem 2.1. The converse

is immediate.

The following example with X* = /x renormed smoothly, shows
that such a result does not hold for upper semi-continuity (n — w)
even if X* is smooth at / .

EXAMPLE 2.1. Consider m equivalently renormed with norm

\\F\\ = l / 2 ( s u p | ^ | + ( Σ - ^ Γ ) 1 / 2 ) where F = {μlf μlf • } em .

Now 11 11 is an equivalent second conjugate norm for m and /γ with
norm

| | / | | = sup { Σ λ . ^ : | | F | | ^ i } , where / = {\, λ2, . •} G<

is smooth on S(<). Consider / = {1, 0, 0, •} 6 < and x = {1, 0, 0, •} e
c0 £ m. Now Il/H = sup {|^|: | | F | | ^ 1} ^ 1, but x(J) = 1 and | |$ | | = 1
so | | / | | = = 1 . Therefore xeD^f). Consider the sequence {Fn} in
m where Fn = {1, 0, ., 0, 1,, 1, . •}. Now Fn(f) = 1 and | | F J | -> 1
so (FJ\\Fn\\)(f) ->1. Consider JPOΞ{1, 1,. -.} em and / e m * where
^^(Fo) = 1 and ^{c,) = 0. Now J H F J = 1 so FJ\\F%\\ does not
converge weakly to x. However, since < is smooth at / we have
from Theorem 2.2 that for all xn e S(c0) where f(xn) -> 1, xn is weakly
convergent to x.

From the characterization given in Theorem 2.2 we make the
following immediate deduction.

COROLLARY 2.1. For a Banach space X given xeS(X), if the
duality mapping D is upper semi-continuous (n — n) at x then the
duality mapping D2 is upper semi-continuous (n — n) at x eS(X**).

3* Geometrical implications of upper semi-continuity* We
pursue the geometrical implications of upper semi-continuity of the
duality mapping through the following significant characterization
of upper semi-continuity (n — w).

THEOREM 3.1. For a Banach space X given x e S(X)f the duality
mapping is upper semi-continuous (n — w) at x if and only if D(x)
is weak * dense in Dz(x).
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Proof. Suppose that the duality mapping is upper semi-continuous
(n — w) at x. Consider AT* a weak * closed neighborhood of 0 in
X*** and N the corresponding weak neighborhood of 0 in X*. Since

D(x) is weak * compact, D(x) + iSΓ* is weak * closed and so contains
D(x) + N. From Theorem 2.1 we have that x determines a slice
S(B(X*), x, δ) Q D(x) + N and so by_Lemma 2.1, S(£(X***), ί, 3) £
D(x) + AΓ*._In particular, J52(#) £ #(α) + N* for all such ΛΓ* and
so A(^) = D(x). Conversely, suppose that D(x) is weak * dense in
D2(x). Consider N a weak neighborhood of 0 in X*. Now N is the
restriction to X* of a weak * neighborhood iV* of 0 in X***. Since
the duality mapping is upper semi-continuous (n — w*) on X**, there
exists a d > 0 such that

A(0) £ A(ί) + N*f2 for all » 6 B(x; δ) n S(X)

so A(#) £ !>(«) + -^* and D(y) £ Z?(α;) + N for all » 6 B(x; δ) Π S(X).

Upper semi-continuity (n — w) is a strong condition. For example,
it can be shown that if X is the continuous functions on a compact
Hausdorff space T, then the duality map arising from the supremum
norm is upper semi-continuous (n — w) on all of S(X) only if T is
finite.

COROLLARY 3.1. A Banach space X with duality mapping upper
semi-continuous (n — w) at xeS(X), has diamZ>2($) = diami)(#).

Proof. For ̂ 7 2^ eD2(x) consider a sequence {Fn} in S(X**) such
that ( J ^ - Sf)CFJ ^ | | ^ - ^ | | - 1/w. Since J5(̂ ) is weak^* dense
in D2(x) there exists fn e D(x) and gn e Z)(cc) such that Λ
1/n and | S^(FJ - gn{Fn)\ < 1/w. But then

and therefore \\^-^ | |^||/n-flr»||+3/n for all n, and so diam D2(x)<>
diam D(x).

We note that upper semi-continuity of the duality mapping at
a point and compactness of the image set of the point is a property
with important implications.

THEOREM 3.2. For a Banach space X given x e S(X)f the following
statements are equivalent.

( i ) the duality mapping is upper semi-continuous (n — τ) at
x and D(x) is τ-compact.

(ii) for every net {fa} in S(X*) such that fa{x) —> 1, there exists
a subnet τ-convergent to some fxeD(x).
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(iii) The weak * and τ topologies agree on S(X*) at points of
D(x).

Proof, (i) => (ii) Suppose that there exists a net {fa} in S(X*)
such that fa(x) —• 1 but no subnet is τ-convergent to any member of
D(x). Then since D{x) is τ-compact there exists a τ-open set G such
that D(x) £ G and eventually, fa e C(G), the complement of G. Again
since D(x) is τ-compact there exists a τ-neighborhood N of 0 such
that £>(&) + NQG, SO faeC(D(x) + JV) eventually, [9, p. 35]. But
/β is eventually in any given slice of B(X*) determined by x. So
we see from Theorem 2.1 that the duality mapping is not upper
semi-continuous in — τ) at x.

(ii)=>(iii) Given fxeD(x) suppose that the net {fa} in S(X*) is
weak * convergent to fx but is not τ-convergent to fx. Then there
exists a τ-neighborhood G of fx and a subnet {faβ} such that faβ e C(G)
for all β. But faβ(x) —> 1 and {/α J has no subnet τ-convergent to /,..

(iii) => ( i ) It follows that the weak * and τ-topologies agree
on D(x) and so D(x) is τ-compact. Suppose that the duality mapping
is not upper semi-continuous (n — τ) at x. Then there exists a sequence
{xn} in S(X) such that xn —> x and a τ-neighborhood N oΐ 0 and a
sequence {/n} where fneD(xn) such that fneC(D(x) + i\Γ) for all τι.
But since B(X*) is weak * compact there exists a subnet {/%J which
is weak * convergent to some / e J3(X*) and / e D(x) since \f{x) — 11 ^
!(/ -Λβ)(»)l + l/ α(» - »»β)|. However, fna is not τ-convergent to /.

We note that from the Bishop-Phelps theorem it follows that
(iii) is equivalent to the weak * and τ-topologies agreeing on D(S(X))
at points of D(x).

In their paper [13] Smith and Sullivan examined an interesting
geometrical property which is a generalization of the notion of
very smoothness. They said that a normed linear space X is "weakly
Hahn-Banach smooth" at x e S(X) if D2(x) = D(x). From Theorems
3.1 and 3.2 we have the following characterizations of this property.

COROLLARY 3.2. For a Banach space X given xeS(X), the
following statements are equivalent.

( i ) D2(x)=D(x).
(ii) The duality mapping is upper semi-continuous (n — w) at

x and D(x) is weakly compact.
(iii) The weak * and weak topologies agree on S(X*) at points

of D{x).

Since /λ{Γ) has norm and weak * topologies agreeing on S(/J we
deduce from Theorem 3.2 that cQ(Γ) has duality mapping upper semi-
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continuous (n — n) on S(c0) and D(x) norm compact for all xeS(co)t

(see [3, p. 91]), and also D2(x) — D(x) for all xeS(c0) by Corollary
3.2.

We note that Corollary 3.2 (i) <=* (ii) generalizes the result [8,
p. 72] that for a Banach space X, X** is smooth at x eS(X**) if and
only if every support mapping on X is continuous (n — w) at x.

The following theorem improves the argument of Smith and
Sullivan [13, Theorem 15] along lines suggested by Sullivan, to give
a more general result.

THEOREM 3.3. For a Banach space X if X can be equivalently
renormed so that there exists a 0 < k < 1 such that, for each x e S(X)
and fxeD(x) and fx + xLeD2(x) where xLeXL, we have \\xL\\ ̂  fc,
then X is an Asplund space.

Proof. Using StegalΓs theorem and his characterization of spaces
with the Radon-Nikodym property [15], it is sufficient to prove that
the property in question is hereditary and gives dens X* = dens X.

Consider xeS(Y) where Y is a closed subspace of X. It is clear
that every fxeD(x) in Y* is the restriction of some fxeD(x) in X*.
We recall that F** is isometrically isomorphic to a subspace of X**.
So fx + yλe D2(x) in F*** is the restriction to F** of some fx + x1 e
D2(x) in X***. Because of the uniqueness of such representations
in a third conjugate we have that y1 is the restriction of some xL

to Y. Since then Hi/1!! ^ ll^1!! we deduce that the property is here-
ditary. Suppose that X* has a proper 1-norming subspace H. Then
by Riesz' lemma and the Bishop-Phelps theorem there exists an
x e S(X) and fx e D(x) such that d(fx, H) > k. By the Hahn-Banach
theorem there exists an Fe HL n S(X**) such that F{fx) > k. Define
^ on X 0 I F by &~{Q + h1) = fx(y). Then \^(y) + h1)] =
\fx(y)\ ^ \\y\\ ^ \\y + hL\\, since H is a 1-norming subspace of X*.
So ά?" is a norm one extension of fx to XφJEf1 and can be given a
further extension fx + x1 e D2{x). But (Λ + xλ)(F) = J^iF) = 0, so
Ha;11| ^ l ^ 1 ^ ) ! = I ^ / J I > k which contradicts our hypothesis about
Ija11|. We conclude that dens X* = densX.

From this theorem and Corollaries 3.1 and 3.2 we make the
following deduction. The theorem of Smith and Sullivan is equiva-
lent to (i).

COROLLARY 3.3. For a Banach space X, if X can be equivalently
renormed so that the duality mapping is upper semi-continuous
(n — w) on S(X) and

( i ) D(x) is weakly compact for all x e S(X), or
(ii) There exists a 0 < k < 1 such that diam D(x) ^ k for all
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X 6 S(X),

then X is an Asplund space.

From Theorem 3.2 (i) =̂> (iii) we see that Corollary 3.3(i) can be
given the following equivalent form.

COROLLARY 3.4. For a Banach space X, if X can be equivalently
renormed so that the weak * and weak topologies agree on D(S(X))
then X is an Asplund space.

Professor Robert Phelps has pointed out that this result can be
proved directly without using the higher dual technique of Theorem
3.3. It is easy to prove that the given topological condition is here-
ditary. For separable X, B(X*) is separable and metrisable in the
weak * topology so D(S(X)) is weak * separable and by the topological
condition is weakly separable. By the Bishop-Phelps theorem its
linear span is norm dense and so X* is norm separable.

Corollary 3.4 improves Corollary 8 of [12, p. 741] in which the
agreement of the weak* and norm topologies on S(X*) is seen to imply
that X is an Asplund space.

We notice, however, that the duality mapping being upper semi-
continuous (n — τ) on S(X) does not necessarily imply that the weak *
and τ-topologies agree on D(S(X)).

EXAMPLE 3.1. Given two normed linear spaces (Xt, || IJJ, i — 1, 2
and a solid norm || || on R2, we can define a norm on X by |||ίc||| =
IKIIffilli, ll^lϋll where x = (xx,x2)eX. It follows that for xeS(X),
D(x) - {(λj;, λ2/2): (\lf λ2) e D f c l k , | |^ | | 2 )), /< e ΰ ( 4 i - 1, 2}, if each
of the duality mappings is extended as in the introduction. It can
be readily verified that the duality mapping for X is upper semi-
continuous (n — n) at x e S(X) if the duality mappings for Xi are
upper semi-continuous (n — n) at xj\\xt\\tf xt ^ 0. In particular, if
we take Xί — R and X2 — c0 and give R2 the /[ norm we obtain
R 0 i Co The duality mapping is then upper semi-continuous (n — n)
on S(Λ ©!<%). But D((l,0)) = {(l,/):/6J?(/1)} and D((l, 0)) is not
norm compact (or even weakly compact) since it is affinely homeo-
morphic to B{/^).

Since I is a 1-norming subspace of X**, from the proof of
Theorem 3.3 it is clear that a Banach space X whose dual satisfies
the condition given in Theorem 3.3, or those of Corollary 3.3(i), (ii)
or Corollary 3.4, is reflexive.

Problem 2. If a Banach space X admits an equivalent norm for
which the duality mapping is upper semi-continuous {n — w), must
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X be an Asplund space?
Although a Banach space which admits a strongly differentiate

equivalent norm must be Asplund [6], the converse is an open problem.
A weaker form of this would be the converse of Problem 2.

Problem 3. If X is an Asplund space, must X admit an equivalent
norm for which the duality mapping is upper semi-continuous (n — w)l

Kenderov has recently shown [11] that every monotone mapping
from an Asplund space to subsets of its dual is single valued and
upper semi-continuous (n — n) on a dense Gδ subset of the interior
of its domain.

J. Borwein has shown us that Theorems 2.1 and 3.2 can be
extended to subdifferential mappings of proper lower semi-continuous
convex functions.

S. Gjinushi, has announced a slightly weaker form of Corollary
3.4 (C. R. Paris 286 (1978), Theorem 4.6). We thank the referee
for this reference and for his suggestions.
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