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MULTIFUNCTIONS AND GRAPHS

JAaMES E. JOSEPH

In this paper we introduce the notions of multifunc-
tions with strongly-closed graphs and f-closed graphs. We
then extend these notions as well as the notion of
multifunctions with closed graphs and use these extensions
to generalize and extend various known results on multi-
functions. These generalizations and extensions include a
number of sufficient conditions for multifunctions to be
upper-semi-continuous, several generalizations and exten-
sions of the well-known Uniform Boundedness Principle
from analysis, and several ‘fixed set’’ theorems.

A multifunction @: X — Y is a correspondence from X to Y with
@(x) a nonempty subset of Y for each x€ X. We will denote the
graph of @, i.e., {(x, ¥): xe€ X and y € @(x)}, by G(®). As usual, if X
and Y are topological spaces (hereafter referred to as “spaces”) and
@: X — Y is a multifunction we will say that @ has a closed graph
if G(®@) is a closed subset of the product space X x Y. If X and
Y are spaces a multifunction @: X — Y is said to be upper-semi-
continuous (u.s.c.) at xeX if for each W open about @(x) in Y
there is a V open about = in X with &(V)c W; @ is said to be
upper-semi-continuous (u.s.c.) if @ is u.s.c. at each xe X. It is not
difficult to establish that @ is u.s.c. if and only if @7%K) is closed
in X whenever K is closed in Y. Smithson [20] has given a survey
of some of the principal results on multifunctions. See [20] and

[8] for definitions not given here.

2. Some preliminary definitions and theorems. We will denote
the closure of a subset K of a space by cl (K), the adherence of a
filterbase 2 on the space by ad 2, and the family of open subsets
which contain K by Y(K). A point z is in the 6-closure of a subset
K of a space (xecl,(K)) if each Ve 3(x) satisfies KNnel(V) = @;
K is 6-closed if cl,(K)C K; x is in the 6-adherence of a filterbase 2
on the space (x € ad, Q) if x € cly(F') for each F' € 2; a filterbase 2 on a
space f-converges to a point x in the space (2 —,x) if for each Ve
X(x) there is an FeQ with Fcel(V) [25]. In [23], a space is
called an H(t) space if each open filterbase on the space has a non-
empty adherence. Hausdorff H(i) spaces are called H-closed. . A
subset A of a space X is defined to be H(z) if and only if each
filterbase 2 on A satisfies ANad, 2 + @ [8].

We will say that a multifunction @: X — Y has closed (6-closed)
[compact] point images if @(x) is closed (f-closed) [compact] in Y for
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each x ¢ X. Some of the statements in our first theorem are ana-
logues for multifunctions to some of the known characterizations
of functions with closed graphs. Statements (e) and (g) are new for
multifunetions and functions.

THEOREM 2.1. The following statements are equivalent for
spaces X, Y, and multifunction @: X — Y:

(a) The multifunction @ has a closed graph.

(b) For each (x, y)e (X XY) — G(®), there are sets Ve 3(x) in
X and WeZX(y) in Y satisfying @(V)NW =g (VNO (M) = Q).

(e¢) If Q is a filterbase on X with 2—x in X, then ad®(2)C
D(x).

(d) If Q is a filterbase on X with 2 —x in X, then yecd(x)
whenever 2* —y and 2% is finer than O(Q).

(e) The multtfunction @ has closed point images and ad @(Q2)C
O(x) for each xe X and filterbase 2 on X — {x} with 2 — x.

(f) If {x,} and {y,} are nets in X and Y, respectively, with
z,—xim X, y,— Yy m Y, and y, P, for each n, then y e d(x).

(g) The multifunction @ has closed point images and for each
xeX and met {x,} in X — {x} with z,— x and net {y,} in Y with
Y, € O(x,) for each n and y, — y, we have y € O(x).

Proof. The proof that statements (a) and (b) are equivalent is
similar to the proof of the lemma in [15]. Statement (b) is easily
seen to be equivalent to cl(G(®)) C G(®). We establish that state-
ments (a), (¢), (d), (e), and (g) are equivalent. Assume (a), let 2 be
a filterbase on X with 2 —« in X and let ycad@(R). If Vel(x) in
Xand WeX(y)in Y thereis an FeQ with FCVand o(F)N W = O@.
This gives (V X W)N G(@) = @. Thus yed(x) and (c) holds. It is
immediate that (d) follows from (c). Now assume (d). If 2 is a
filterbase on X — {x} with 2 — « and y € ad &(R2), there is a filterbase
Q2* on Y finer than &(Q) with 2* — y. This gives y € &(x) and one
part of (e) is proved. If xe X and yeccl(d(x)), then 2 = {{x}} is a
filterbase on X with 2 -« and 2% = {§(x) N V: Ve I(y)} is a filter-
base on Y finer than @(Q) with 2* —y. Thus ¥ e ®(x) and (e) holds.
We can see readily that with the hypothesis of (g) the filterbase 2
induced by the net {x,}, and the point x satisfy the hypothesis of
(e), and yecad @(2). Thus ye®(x). To see that (a) follows from
(g), assume (g) and let (x, ¥) € cl (G(®)). There is a net (x,, ¥.) € G(D)
with (x,, ¥,) — (x, ¥). Then z, —« and y, —y. If {x,}is frequently
x, then yecl(@(x)) so yed(x). If not, then, without loss, we may
assume that {x,} is a net in X — {x} and by (g) we have y e @(x).

The proof is complete.

Proposition 3.2 of [21] shows that (b) of Theorem 2.1 is satisfied
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by subcontinuous multifunctions with closed graphs. Theorem 2.1
shows that subcontinuity is superfluous.

In [9], a function @: X — Y is said to have a strongly-closed
graph if for each (x, y)e (X X Y) — G(®@) there are sets Ve (x) in
X and Wel3(y) in Y with (V x el (W)) N G(®) = @. This notion is
used in [9], [10], [11], and [12] to obtain characterizations of H-
closed and minimal Hausdorff spaces. If K is a subset of the product
space X X Y, a point (x,¥)€X X Y is in the (2)f-closure of K
((x, y) e @) ely (K)) if (VXel(W)NK+@ whenever Ve X(x) in X and
WeX(y) in Y. K is (2)0-closed if (2)ecl,(K) = K. Evidently, a
function @: X — Y has a strongly-closed graph if and only if G(®)
is a (2)6-closed subset of X x Y. Using this equivalence as a model
we say here that a multifunction @: X — Y has a strongly-closed
graph if G(®) is a (2)f-closed subset of X X Y. A net {x,}in a space
X G-accumulates (-converges) to x in X (x is a f-accumulation point
of {x,})) (x,— s)) if x, is frequently (eventually) in cl (V) for every
Ve Z(x)[25]. Our final two theorems in this section are analogous
to Theorem 2.1 and are stated without proof.

THEOREM 2.2. The following statements are equivalent for spaces
X, Y, and multifunction @: X Y.

(a) The multifunction @ has a stromgly-closed graph.

(b) For each (x,y)e(X XY) — G(®) there are sets Ve Z(x) in
Xand We X(y) in Y with (VX (W)NGD)= (VNI (cI(W)) = D)
[o(V)ynel (W) = @]

(¢) If Q2isa filterbase on X with 2 — x in X then ad, &(Q) C
D(x).

(d) If 2 is a filterbase on X with 2 —x in X then yec @(x)
whenever 2% — o,y and 2F is finer than @(2).

(e) If {z,} and {y.} are nets on X and Y, respectively, with
2,—x m X, y,— oy tn Y and y, < d(x,) for each n, then yc @(x).

(f) The multifunction ® has O-closed point images and
ad, 0(2) C O(x) for each xeX and filterbase 2 on X — {x} with
2 — x.

(g) The multifunction @ has 6O-closed point tmages and for
each x€ X and net {x,} in X — {x} with x, — x and net {y,} in Y
with y, € O(x,) for all n and y, — i, we have y € O(x).

THEOREM 2.3. The following statements are equivalent for spaces
X, Y, and multifunction @: X —Y:

(a) The multifunction ® has a 6-closed graph.

(b) For each (x,y)e (X XY)— G(®) there are sets Ve I(x) in
X and WeZ(y) in Y with @l (V)Nel (W) = @l (V)NO (el (W)) =
D).
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(e¢) If Q is a filterbase on X with Q@ — sx wm X then ad, 2C
o(x).

(d) If 2 is a filterbase on X with 2 — 4z in X then ye O(z)
whenever 2% — zy and 2% is finer than O(Q).

(e) If {z,} and {y,} are nets on X and Y, respectively, with
x,— o M X, Y,— oy in Y and y, € D(x,) for each n, then y e d(x).

(f) The multifunction @ has 6-closed point images and ad, 2 C
O(x) for each xe X and filterbase 2 on X — {x} with Q2 — .

(g) The multifunction @ has 0-closed point images and for
each x€ X and net {x,} in X — {x} with x, — & and net {y,} in ¥y
with y,€ @(x,) for all n and y, — sy in Y, we have yc O(x).

3. Multifunctions with subclosed graphs. We will say that
a multifunction @: X —Y has a subclosed graph if for each xe X
and net {z,} in X — {x} with z, — 2« and net {y,} in ¥ with y, € @(x,)
for each 7 and 9y, —y in Y, we have y e @(x). Functions with sub-
closed graphs have been studied in [4] and [13]. Evidently, a
multifunction with a closed graph has a subclosed graph and a
multifunction with a subclosed graph and closed point images has a
closed graph (see Theorem 2.1(g)). In this section, we will use the
notion of subclosed graph to extend and generalize a number of
known results on multifunctions and/or functions including a well-
known uniform boundedness principle. Our first theorem in this
section states without proof several characterizations of multifunc-
tions with subclosed graphs.

THEOREM 3.1. The following statements are equivalent for
spaces X, Y, and multifunction @: X —Y.

(a) The multifunction ® has a subclosed graph.

(b) For each (x,y)e (X XY) — G(®) there are sets Ve 3(x) in
X and WeX(y) in ¥ with (V— {a}) xW)NG@) = g((V X (W —
2(2)) NGD) = DNV —{ah N W = KV N O YW — @(x)) = D).

(e) If 2 is a filterbase on X — {&} with 2 —>2x in X then
ad 9(Q) < O(x).

A multifunction @: X —»Y is subcontinuous if whenever {x,} is a
convergent net in X and {y,} is a net in Y with y, <€ ®@(x,) for each
n, then {y,} has a convergent subnet [21]. Theorem 3.2 below
offers an extension of Theorem 3.1 of [21] to multifunctions with

subclosed graphs.

THEOREM 3.2. Let @: X —>Y be a subcontinuous multifunction
with a subclosed graph. Then @ s u.s.c.
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Proof. Let KCY be closed and let » be a limit point of @7'(K).
There is a net {x,} in @ (K) — {v} with z, —>v. Let {y,} be a net
in K with y,e®(x,) for each n. Since @ is subcontinuous and K
is closed some subnet {y, } of {y,} converges to some y e K. Since
{x,, } is a net in X — {x} and x, — v and @ has a subclosed graph
we have y e ®(v) and v @ (K). The proof is complete.

COROLLARY 3.8 [21]. Let @: X —Y be a subcontinuous multi-
Sumnction with a closed graph. Then @ is u.s.c.

It is proved in [19] that a multifunction with a closed graph
on a locally compact space which maps compact subsets onto compact
subsets must be u.s.c. Theorem 3.4 below and Theorem 3.2 above
lead us to an improvement of this result in Corollary 3.5 below.

THEOREM 3.4. A multifunction on a locally compact space which
maps compact subsets onto compact subsets is subcontinuous.

Proof. Let X be locally compact, Y a space, and @: X — Y be
a multifunction which maps compact subsets onto compact subsets.
Let xe X and {z,}, {v.} be nets in X, Y, respectively, with z, —>
and vy, € ®(x,) for each n. Let K be a compact neighborhood of x.
Then {z,} is eventually in K, so {y,} is eventually in @®(K) which
is compact. Thus {y,} has a convergent subnet and the proof is
complete.

COROLLARY 3.5. A multifunction with a subclosed graph on a
locally compact space which maps compact subsets onto compact
subsets s u.s.c.

It is a well-known and useful fact that if @, a: X —Y are con-
tinuous functions and Y is Hausdorff then {x ¢ X: @(x) = a(x)} is a
closed subset of X. Our next two theorems represent both improve-
ments of this result and extensions of this result to multifunctions.
If &, a: X — Y are multifunctions we denote {x € X: &(x) N a(x) # @}
by E(X, Y, 0, @).

THEOREM 3.6. Let @: X —Y be an u.s.c. multifunction with
compact point images and let a: X — Y be a multifunction with a
subclosed graph. Then E(X, Y, @, ) is closed in X.

Proof. Let v be a limit point of E(X, Y, @, ). There is a net
{x,} in (X, Y, 0, ) — {v} with 2, —>v. For each We 3(®(v)) there
isa VelXw) in X with &(V)cC W, so &(x,) C W eventually. Choose
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Y, € O(x,) N a(x,), then {y,} is eventually in each We 3(@(v)). Since
@(v) is compact, some subnet {y, } of {y,} converges to some y < @(v).
Since a has a subclosed graph we have y e @(v). Thus y € @(v)Na(v)
and ve E(X, Y, @, ). The proof is complete.

We state the following corollaries which may be readily esta-
blished.

COROLLARY 3.7. Let Y be any space. If @: X —Y is a continu-
ous fumnction and a: X —Y is a function with a subclosed graph
then {x € X: @(x) = a(x)} ts a closed subset of X.

COROLLARY 3.8. Let @: X —Y be an u.s.c. multifunction with
compact point images and let a: X —Y be a multifunction with a
subclosed graph. If E(X, Y, @, @) is dense in X, then E(X, Y, @, a) =
X.

COROLLARY 3.9. Let Y be any space. If @: X —Y 1is a continu-
ous function and a: X —Y is a function with a subclosed graph
then {x e X: O(x) = a(x)} = X of it is dense in X.

THEOREM 3.10. Let @: X — Y be a subcontinuous multifunction
with a subclosed graph and let a: X —Y be a multifunction with a
subclosed graph. Then E(X, Y, ®, a) is closed in X.

Proof. Let v be a limit point of E(X, Y, @, «). There is a net
{r,} In EX,7Y,0,a) — {v} with x,—v. For each n choose y,¢
O(x,) N a(x,). Thereis a subnet {y, } in Y and yeY with y, —y.
We must have y € @(v) N a(v) and the proof is complete.

COROLLARY 3.11. If X is a space and the multifunction @: X — X
has a subclosed graph then {xec X:xc ®(x)} ts closed in X.

We may also establish the following generalization of the result
that a continuous function into a Hausdorff space has a strongly-
closed graph [10].

THEOREM 3.12. Let @®: X —Y be an wu.s.c. multifunction with
compact point images. If Y is Hausdorfl then @ has a strongly-
closed graph.

Proof. Let (x,y)e(X XY)— G(@). Then y¢®x) and, by a
standard argument, since @(x) is compact and Y is Hausdorff there
are sets We X(@(x)) and Ve Z(y) in Y with el (V)N W = @. Since
2 is u.s.c. there is an A€ 3(x) in X with @(4)CcW. We now have
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(¢, ) e A X Vand (4 X cl(V))N G(@) = @. The proof is complete.

Our next result is a generalization of a theorem which was
proved in [1] for the case when @ is u.s.c., has compact point
images and X is compact Hausdorff rather than with our hypothesis
that @ maps closed sets onto closed sets.

THEOREM 3.13. If X 1s compact and @: X — Y 1is a multifunc-
tion which maps closed sets onto closed sets there is a K, X with
K, #* @, K, closed and ®(K,) = K,.

Proof. Let 4={KcX: K+ @, K closed and ®(K) < K}. Then
Xed, so 4+ @. Order 4 by inclusion and let 4* be a chain in 4.
Let @ = N+K. Then Q is clearly closed and @ # ¢ since 4* has
the finite intersection property and X is compact. We have &(Q) =
ONsK)cNs K =@Q. Thus Qe4 and @ C K for each Ke4*. By
Zorn’s lemma 4 has a minimal element K,. K,# @, K, is closed
and O(K,) c K,. Also, ®(K,) is closed in X and @(@(K,)) C ®(K,); so
O(K,)e 4. Thus O(K,) = K, and the proof is complete.

We now give two preliminary theorems to our next main results
of this section.

THEOREM 3.14. If a multifunction ®:X —Y has a subclosed
graph and K C X is nonempty then the restriction ®@x of @ to K has
a subclosed graph.

Proof. Let x€ K and let {x,} be a net in K — {x} with z, > 2
in K relative to K. Let {y,} be a net in Y with y, € ¢x(x,) for each
n and let ye Y with y, > y. Then x, > 2 in X and y,c®(x,) for
each n; since @ has a subclosed graph we have y € @(x) = @x(x). The
proof is complete.

THEOREM 3.15. If o multifunction @: X — Y has a subclosed
graph and KC Y ts compact then @ (K) s closed in X.

Proof. Let v be a limit point of @7'(K). There are nets {x,},
{y,} in X — {v} and K, respectively, with x, — « and ¥, e ®@(x,) for
each n. Some subnet {y, } of {y,} converges to some ye K. This
gives y € @(v); so ve€ @ (K) and the proof is complete.

Our next results in this section are extensions of well-known
uniform boundedness principle to multifunctions (see [26], p. 189).

THEOREM 3.16. Let Y be a countable union of the compact sub-
spaces {Y(n)}y-, and let X be a Baire space. Let F be a family of
multifunctions from X to Y with subclosed graphs and the property
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that for each x€X there ts a integer j(x) with @(x) N Y(j(x) # @
for any ®eF. Then there is an integer m and a monempty open
Vc X such that @(x) N Y(m) = @& for each x€V and @ ¢ F.

Proof. For each integer n let Q(n) = N, @ (Y(n)). Then Q(n)
is closed as the intersection of subsets which are closed from Theorem
3.15. Furthermore, if xc X there is an integer j(x) with &(x) N
Y(4(x)) = @ for each @ e F. So, x€ Q(j(x)) and {Q(n)};_, is a covering
of X. Since X is Baire there is an integer m and a nonempty open
subset V of X such that Vc Q(m). Y(m) satisfies @(x) N Y(m) = @
for each @ c F and xe€ V. The proof is complete.

THEOREM 3.19. With the same hypothesis as in Theorem 3.16
along with the additional condition that @(@ (Y (n))) C Y(n) for each
n and @ the following additional statements hold:

(a) FKach @ e F is w.s.c. at each point of the open set V in the
conclusion of Theorem 3.16.

(b) There is an open set W of X such that each ® e F is u.s.c.
at each point of W and cl(W) = X.

Proof of (a). From the additional condition if @€ F we have
O(V)cY(m) and from Theorem 3.14 we have that the restriction
®,: V—Y(m) has a subclosed graph. Thus, @, is subcontinuous
and consequently u.s.c. from Theorem 3.2. Since V is open @ is
u.s.c. at each point of V.

Proof of (b). Let W be the union of all open subsets V of X
such that each @ € F' is u.s.c. at each xe€ V. Now let A be an open
and nonempty subset of X. Then A is Baire and {9, @cF} is a
family of multifunctions from A to Y satisfying the same condi-
tions relative to A as F' satisfies relative to X. So, there is a non-
empty open subset B of A with &#, u.s.c. at each point of B for
each ®cF. Since A is open each @ ¢ F is u.s.c. at each point of
B. Thus BC W and this gives ANW %= @&.

The proof is complete.

Employing arguments similar to those used in the proof of
Theorem 3.17 we prove the following theorem.

THEOREM 3.18. Let X and Y be spaces and let @: X —Y be a
multifunction with a subclosed graph and the property that O(x)
has a compact neighborhood for each xeX. Then the set of points
of X at which @ is mot u.s.c. 18 a closed subset of X.

Proof. Let D(®) be the set of points in X at which @ fails to
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be u.s.c. and let x€ X — D(®@). Let W be a compact neighborhood
of O(x). Since @ is u.s.c. at x, there is a V open about x with
O(V)cW. By arguments similar to those above @ is u.s.c. at each
point of V. Thus X — D(®) is open, D(®) is closed and the proof

is complete.
The following two corollaries offer extensions of the results of

Theorem 2 of [2] and Theorem 2 of [24] to multifunctions.

COROLLARY 38.19. Let X be a Baire space and let Y be the union
of a countable family {Y(n)ly., of compact subspaces. Then D(®)
18 nowhere dense in X for any multifunction @: X —Y satisfying

the following conditions:
(a) The multifunction ® has a subclosed graph.
(b) For each n, ®(@ (Y (n)) CY(n).

Proof. F = {®} satisfies the conditions of Theorem 3.17. Let
W be an open set satisfying the conditions of Theorem 3.17(b).
Then D(@)c X — W so D(®) is nowhere dense in X since X — W is
nowhere dense in X. The proof is complete.

COROLLARY 3.20. Let X, Y, and @ satisfy the conditions of
Corollary 3.19. Then D(®) is mowhere dense and closed in X if
for each xe X, ®(x) has a compact neighborhood.

Proof. Theorem 3.18 and Corollary 3.19.

Our final theorem in this section is one on common fixed points
of a family of multifunctions with subclosed graphs. A multifunec-
tion @: X — X has a fixed point if there is an x € X with x € () [20].

THEOREM 3.21. Let X be a compact space and let F' be a family
of multifunctions from X to X with subclosed graphs. If for each
finite F* C F, there is an xe X satisfying xe @(x) for all @ c F*,
then there is an xe X satisfying x € @(x) for all PeF.

Proof. If M X-—X is the identity function then £ =
{(E(@, N, X, X):0c F} is a family of closed subsets of X from
Corollary 3.11. If F*cC F is finite there is an xe X satisfying
x € @(x) for each @ ¢ F'*. Thus 2 has the finite intersection property.
Since X is compact then ad 2 = @. So there is an x e X satisfying
e EB(@, \ X, X) for all e F. The proof is complete.

4. Maultifunctions with strongly-subclosed graphs. We will
say that a multifunction @: X —Y has a strongly-subclosed graph
if for each 2¢ X and net {x,} in X — {x} with x, > 2 and net {y,}
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in Y with y, € @(x,) for each n and y, — ,y in Y, we have y € @(x).
From Theorem 2.2 (g) we see that a multifunction has a strongly-
closed graph if and only if it has 6-closed point images and a
strongly-subeclosed graph. It this section we will extend a number
of known results for functions with strongly-closed graphs to multi-
functions with strongly-subclosed graphs. Several of these results
will be stated without proof as the proofs parallel proofs in §3.
Our first theorem in this section gives several characterizations of
multifunctions with strongly-subclosed graphs.

THEOREM 4.1. The following statements are equivalent for
spaces X, Y, and multifunction @: X —>Y:

(a) The multifunction @ has a strongly-subclosed graph.

(b) For each (x,y)e (X X Y) — G(®) there are sets Ve I(x) in
x, Wel(y) in Y, with (V—{x}) xcl(WHNGD) = @ (VX (]l (W)—
2))NG@)= )NO(V —{2)Nel (W)= KVNO (el (W) —d(x)) = D).

(e) If Q2 is a filterbase on X — {x} with 2 —>2x in X then
ad, 2(2) C d(x).

Using the definition of r-subcontinuous function from [8] as a
model we obtain the following definition. A multifunction @: X - Y
is r-subcontinuous if whenever {x,} is a convergent net in X and
{y.} is a net in Y with y, € ®@(x,) for each n, then {y,} has a #-con-
vergent subset.. Utilizing the notion of weakly-continuous function
from [16], Smithson [22] has defined a multifunction #: X - Y to
be weakly upper-semi-continuous (w.u.s.c.) at x in X if for each
WeX(@(x) in Y there is a Ve X(x) in X satisfying @(V) Ccl(W).
A subset K of a space X is rigid provided whenever Q is a filter-
base on X such that KNad, 2 = @ there is an F e 2 and an Ne 3(K)
satisfying FFnecl(N)= @ [5]. Several characterizations of rigid
subsets are given in [5]. Theorem 4.2 gives a characterization in
terms of nets.

THEOREM 4.2. A subset K of a space is rigid ©f and only if
each net which s frequently in cl (W) for each We X(K) has a 6-
accumulation point in K.

Proof. Necessity. Let {x,} be a net which is frequently in ecl(W)
for each We XY(K). Then the filterbase 2 induced by {x,} satisfies
Fnel(W)=@ for each F'e 2 and We Y(K). Thus, KNnad,2+ @ since
K is rigid. Each xe€ KN ad, 2 is a f-accumulation point of {x,}.

Sufficiency. If K satisfies the net condition and £ is a filter-
base on X such that 2* = {FNecl(W): Fe, We 3(K)}is a filterbase
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on X then the net induced by £2* is frequently in ¢l (W) for each
WeX(K). So, this net has a 6-accumulation point in K. Thus,
Knady, 2 # @.

The proof is complete.

Theorems 4.3 and 4.4 extend results from [8] to multifunctions
with strongly-subclosed graphs.

THEOREM 4.3. Let @: X — Y be a multifunction with rigid point
images. If @ is w.u.s.c. then @ is r-subcontinuous.

Proof. Let xeX and let {x,} and {y.} be nets on X and Y,
respectively, with z, —« and ¥, e ®(x,) for each n. If We 3(@(x))
there isa Ve XY(x) in X with @(V)cCel (W) since @ is w.u.s.c. Since
{x,} is eventually in V we have {y,} eventually in cl(W). So, by
Lemma 4.2, some subnet of {y,} f-converges to a point in @(x). The
proof is complete.

THEOREM 4.4. An r-subcontinuous multifunction @: X — Y with
a strongly-subclosed graph is w.u.s.c.

Proof. Let x € X and suppose that @ is not w.u.s.c. at . Then,
there is a We X(@(x)) such that &N — {x}) N (Y — el (W)) = @ for
any Ne X(x). For each Ne X(x) choose %,€ ®(N — {2}) N (Y — cl (W))
and xz,e N — {x} with y,e®(z,). With the usual ordering on X(x),
{z,} and {y,} are nets in X — {x} and Y, respectively, with z, — x.
Some subnet of {y,} f-converges to some y € Y by the r-subcontinuity
of ®. However, y ¢ ®(x) since y,€Y — cl (W) for every n. This
is a contradiction of the fact that @ has a strongly-subclosed graph.
The proof is complete.

Theorem 4.5 below extends Theorem 2.2 of [8] to multifunctions.
The proof is similar to that of Theorem 2.2 of [21] and is omitted.

THEOREM 4.5. Let @: X — Y be a multifunction. Then @ maps
compact subsets K of X omto H(t) subsets ®(K)C Y if and only if
the restriction @x: K—Y 1is r-subcontinuous with respect to O(K)
for each compact K C X.

The following corollaries are analogous to Theorem 3.4 and
Corollary 3.5, respectively.

COROLLARY 4.6. A multifunction on a locally compact space
which maps compact subsets onto H(i) subsets is r-subcontinuous.

COROLLARY 4.7. A multifunction with a strongly-subclosed
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graph on a locally compact space which maps compact subsets onto
H(7) subsets is w.u.s.c.

Theorem 4.8 parallels Theorem 3.6 above and strengthens
Theorem 17 of [22] since a point compact w.u.s.c. multifunction into
a Urysohn space has a strongly-closed graph.

THEOREM 4.8. Let 0: X —Y be a w.u.s.c. multifunction with
rigid point images and let a: X —Y be a multifunction with a
strongly-subclosed graph. Then E(X, Y, @, a) is closed in X.

Proof. Similar to the proof of Theorem 3.6.

Corollaries 4.9, 4.10, and 4.11 are similar to Corollaries 3.7, 3.8,
and 3.9.

COROLLARY 4.9. Let Y be any space. If @: X —Y is a weakly-
continuous function and a: X —Y is a function with a strongly-
subclosed graph then {x e X: O(x) = a(x)} is a closed subset of X.

COROLLARY 4.10. Let &: X — Y be a w.u.s.c. multifunction with
rigid point images and let a: X —Y be a multifunction with a
strongly-subclosed graph. If E(X,Y,®, &) is dense in X then
EX,Y, 0 a = X.

COROLLARY 4.11. Let Y be any space. If @: X —Y is a weakly-
continuous function and a: X —Y s a function with a strongly-
subclosed graph then {xe X: d(x) = a(x)} = X if it is dense in X.

THEOREM 4.12. Let X and Y be any spaces, @: X —Y be an r-
subcontinuous multifunction with a strongly-subclosed graph, and
let a: X —Y be a multifunction with a strongly-subclosed graph.
Then E(X, Y, ®, o) s closed in X.

Proof. Similar to the proof of Theorem 38.10.

Theorem 4.12 is a generalization and extension of the well-known
result that if Y is Hausdorff and @ and a are continuous functions
into Y from a space X then E(X, Y, 9, a) is closed in X.

We omit the proof of Corollary 4.13.

COROLLARY 4.13. If X 1is a space and the wmultifunction
0: X — X has a strongly-subclosed graph then {xeX:xc®(x)} is
closed in X.
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The proofs of Theorems 4.14 and 4.15 parallel those of Theorem
3.14 and 3.15, respectively, and are not given here. In connection
with Theorem 4.15 we note that a subset K of a space is H(z) if
and only if each net in K has a #-accumulation point in K.

THEOREM 4.14. If a multifunction @: X —Y has a strongly-
subclosed graph and K X is nonempty then the restriction @, of
® to K has a strongly-subclosed graph.

THEOREM 4.15. If a multifunction @: X —Y has a strongly-
subclosed graph and KCY is an H(i) subset them @ K) is closed
n X.

Theorems 4.16 and 4.17 are generalizations of the Uniform
Boundedness Principle from analysis.

THEOREM 4.16. Let Y be a countable union of the H(i) subsets
{Y(n)}y_, and let X be a Baire space. Let F be a family of multi-
Sunctions from X to Y with strongly-subclosed graphs and with
the property that for each x € X there s an integer j(x) satisfying
D(x) NY(§(x)) = @ for any @ F. Then there is an integer m and
a nonempty open V C X such that @(x) N Y(m) = @ for each x€V
and ®eF.

Proof. Parallels that of Theorem 3.16 since @7*(Y(n)) is closed
for each @ and n from Theorem 4.15.

THEOREM 4.17. With the same hypothesis as in Theorem 4.16
along with the condition that @@ (Y(n))) CcY(n) for each n and @
the following additional statements hold:

(a) FEach ®cF is w.u.s.c. at each point of the open set V in
the conclusion of Theorem 4.16.

(b) There is an open set W of X such that each @ ¢ F' 18 w.u.s.c.
at each point of W and cl (W) = X.

Proof. With the use of Theorems 4.14, 4.16, and 4.4 the proof
parallels that of Theorem 3.17.

Next in this section we list a theorem and corollaries for multi-
functions with strongly-subclosed graphs and corollaries which are
similar to Theorems 3.18, 3.19, and 3.20 above.

THEOREM 4.18. Let X and Y be spaces and let @: X —Y be a
multifunction with a strongly-subclosed graph and the property
that @(x) has an H(t) subset as a neighborhood for each xe X. Then
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the set of points at which @ is not w.u.s.c. s a closed subset of X.

COROLLARY 4.19. Let X be a Batire space and let Y be the union
of a countable family {Y(n)}y., of H(i) subsets. Then the set of
points at which o multifunction @: X —Y satisfying the following
properties fails to be w.u.s.c. 1s nowhere dense in X.

(a) The multifunction @ has a strongly-subclosed graph.

(b) For each n, @@ (Y(n))) < Yn).

COROLLARY 4.20. Let X, Y, and @ satisfy the conditions of
Corollary 4.19 and the condition that for each xe X, ®(x) has an
H(1) subsets as a meighborhood. Then the set of points at which @
fails to be w.u.s.c. 1s a closed and nowhere dense subset of X.

It is known that a space is Hausdorff if and only if each point
in the space is #-closed [5]. It is well-known that compact subsets
of a Hausdorff space are closed and that there are non-Hausdorff
spaces with this property [17]. Also known is that rigid subsets of
a Hausdorff space are f-closed and that compact subsets are rigid
[5]- These results may be utilized to yield several interesting
characterizations of Hausdorff spaces.

THEOREM 4.21. The following statements are equivalent:

(a) The space X ts Hausdorf.

(b) FEach rigid subset of X is 6-closed.

(e¢) FEach compact subset of X is 6-closed.

(d) FEach continuous function into X maps compact subsets
onto G-closed subsets.

(e) FKach continuous bijection onto X maps compact subsets
onto O-closed subsets.

Proof. We prove only that (a) is implied by (e). Let xe€ X and
let X* be X with the topology which is the simple extension of the
topology of X through the set {x} [18]. The identity function
2: X* — X is continuous and {x} is compact in X* so {i(x)} = {«x} is
0-closed in X. The proof is complete.

Finally in this section we extend Theorem 10 of [22] to multi-
functions.

THEOREM 4.23. A w.u.s.c. multifunction with rigid point
images into a Hausdorff space has a closed graph.

Proof. Let Y be Hausdorff and let @: X —Y be w.u.s.c. with
rigid point images. If (z, ¥)e(X X Y) — G(®) then y ¢ @(x) and since
Y is Hausdorff, from Theorem 4.22, we have Ve 3J(y) and We J(@(x))
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in Y such that VNel(W)= @. -There is an Ae3(x) in X with
O(A)cecl(W);so (x,y)edAd X Vand (A X V)NG@) = @. The proof
is complete.

We point out in closing this section that the hypothesis “compact
point images” may be replaced by “rigid point images” in Theorem
3.12 above.

5. Multifunctions with #-subclosed graphs. We will say that
a multifunction @: X — Y has a #-subclosed graph if for each xe X
and net {x,} in X — {«} with x, — ,# and net {y,} in Y with y, € @(z,)
for each » and ¥, — ,4 in Y, we have y € @®(x). Functions with 6-
subclosed graphs have been studied in [14]. From Theorem 2.6 (i)
we note that a multifunction has a 6-closed graph if and only if it
has 6-closed point images and a 6f-subclosed graph. In this section
we will extend a number of known results on functions with 6-
subelosed graphs to multifunctions with #-subeclosed graphs. Several
of these results are stated without proof.

THEOREM 5.1. The following statements are equivalent for
spaces X, Y, and multifunction @: X —Y:

(a) The multifunction @ has a 6-closed graph.

(b) For each (x,y)e (X X Y) — G(®) there are sets Ve X(x) in
X, WelX(y) in Y, with ((cl (V) — {x}) X cl (W) N G(®) = @((cl (V) x
(el (W) — @(x))) N G(@) = 2)[@(cl (V) — {ah) N el (W) = @Kel (V) N
O el (W) — @(x)) = @).

(¢) If 2 is a filterbase on X — {x} with 2 — 2 in X then
ad, @(2) C O(x).

A function @: X — Y is 6#-continuous at x€ X if for each We
2(@(x)) in Y there is a Ve X(x) in X with @(cl(V))cel(W). If @
is f-continuous at each x e X we say simply that @ is #-continuous
[7]. This notion has been studied and utilized extensively (see [25],
[5]D- A number of equivalent statements to the statement that a
function is f-continuous are given in [5] and it is proved there that
a function @: X — Y which is #-continuous must satisfy the condition
d(ely (K)) Cely (0(K)) for each K< X. We show in Theorem 5.2 that
this condition is also a sufficient condition for @ to be #-continuous.

THEOREM 5.2. A function @: X — Y is G-continuous if and only
if @(ely (K)) Cely (0(K)) for each K X.

Proof. Only the sufficiency requires proof. Let ze X and let
WeX@x) in Y. Then @)¢cl, (X — @ el (W))) so O(x)¢
O(cly (X — @7l (W)))). Thus, z¢cly (X — @7(cl (W))) and there is a
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VeX(x) in X with el (V)NX — 07l (W))) = @. This gives
@(cl(V))cel (W) and the proof is complete.

We will define a multifunction @: X —Y to be f-upper-semicon-
tinuous (A-u.s.c.) at x€ X if for each We X(@(x)) in Y there is a
Ve Y(x) in X satisfying @(cl (V)) el (W). We say that @ is 0-upper-
semicontinuous (0-u.s.c.) if @ is #-u.s.c. at each point of X.

Our next result parallels Theorem 9 of [22] which was given
for w.u.s.c. multifunctions. If @: X —Y is a maultifunction we
define the graph map of ® to be the multifunction Go: X - X X Y
defined by Gu(x) = {(z, ¥): ¥y € @(x)}.

THEOREM 5.3. A multifunction @: X —Y with compact point
images 18 0-u.s.c. if and only if G, is 0-u.s.c.

Proof. Necessity. Let A X Be X(Gy(x)) in X X Y. Then Be
2(@(x)) in Y and since @ is f-u.s.c. there is a Q¢ X(x) in X with
QCA and @(cl (Q))cel(B). So, Gylel (@) el (@) xcl(B)=cl(@ x B)C
cl (4 x B).

Sufficiency. Let xeX and WeX(@(x)) in Y. Then =,;*(W)N
G(®) is open in G(@), where 7,: X X Y — Y is the projection. So,
there isa Ve X(x) in X with Gu(cl (V) Cel (m,"(W)). If ye@(cl(V))
there is an xecl(V) with ye®(x). So (x, ¥)eGylcl(V)) and con-
sequently, (x, y) ecl(z;"(W)). This gives yex,(cl(m,"(W))) Ccl(W).

The proof is complete.

Using the definition of f-subcontinuous function from [14] as a
model we obtain the following definition. A multifunction ¢: X - Y
is f-subcontinuous if whenever {x,} is a #-convergent net in X and
{y.} is 2 net in Y with y,e®(x,) for each n then {y,} has a f-con-
vergent subnet.

Theorems 5.4 and 5.5 extend the results of Theorem 2.6 of [14]
to multifunctions. The proofs are similar to the proofs of Theorems
4.8 and 4.4, respectively, and are omitted.

THEOREM 5.4. Let @: X — Y be a multifunction with rigid point
images. If @ is 0-u.s.c. then @ 1is G-subcontinuous.

THEOREM 5.5. A 6O-subcontinuwous multifunction with a 6-sub-
closed graph is 6-u.s.c.

Theorem 5.6 below extends Theorem 2.7 of [14] to multifunctions.
The proof is similar to that of Theorem 2.2 of [21].

THEOREM 5.6. Let @: X — Y be a multifunction. Then @ maps
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H(z) subspaces K onto H(%) subsets ®(K)CY if and only if the re-
striction @x: K — Y 1s 0-subcontinuous with respect to ®(K) for each
H(7) subset K C X.

We will say that a space is locally H(i) if each point in the
space has a neighborhood which is an H(z) subset.

The following corollaries are analogous to Corollaries 4.6 and 4.7,
respectively.

COROLLARY 5.7. A multifunction on a locally H(i) space which
maps H(t) subsets onto H(i) subsets is G-subcontinuous.

COROLLARY 5.8. A multifunction with a 0-subclosed graph on a
locally H(1) space which maps H(1) subsets onto H(v) subsets s 6-u.s.c.

THEOREM 5.9. Let @: X —Y be a 0-u.s.c. multifunction with
rigid point images and let a: X —Y be a multifunction with a 6-
subclosed graph. Then E(X, Y, ®, @) is 0-closed in X.

Proof. Letwecl,(BH(X, Y, ?, a) — EX,Y,® «. Thereis a net
{z,} in BE(X,Y, 0, a)— {v} with z,— . For each n choose y,¢
O(x,) Na(x,). If WeX(@®)) in Y there is a VeX(») in X with
O(cl (V) el (W) because @ is 6-u.s.c; {y,} is eventually in cl (W)
since {x,} is eventually in cl(V). Since @(v) is rigid some subnet
{¥,,} of {y.} O-converges to some y € ®@(v). Since a has a f-subclosed
graph we have y e a(v). Thus, ve E(X, Y, @, «). This is a contradiec-
tion and the proof is complete.

Corollaries 5.10, 5.11, and 5.12 are similar to Corollaries 3.7, 3.8,
and 3.9, respectively. A subset K of a space X is f#-dense in the
space if cly(K) = X.

COROLLARY 5.10. Let Y be any space. If &:X—Y 18 a 6-
continuous function and a: X —Y is a function with a 0-subclosed
graph, then {xe X: @(x) = a(x)} s a O-closed subset of X.

COROLLARY 5.11. Let @: X — Y be a 6-u.s.c. multifunction with
rigid point images and let a: X —Y be a multifunction with o
graph which s O-closed in X xY. Then EX,Y,0, o) =X if
EX,Y, 0, a) is 6-dense in X.

COROLLARY 5.12. Let Y be any space. If @: X —>Y 1is a 0-
continuous function and a: X —Y 1s a function with a graph
which 1s O-closed in X X Y, then {xcX:0() = a(x)} = X 4f it is
O-dense tn X.



526 JAMES E. JOSEPH

Theorem 5.13 parallels Theorem 17 of [22]. This theorem along
with Corollary 5.14 is listed without proof.

THEOREM 5.13. Let X and Y be any spaces, ®: X —-Y be a 06-
subcontinuwous multifunction with a 6-subclosed graph, and a: X —Y
be a multifunction with a closed graph. Then E(X, Y, ®, @) is 6-
closed in X.

COROLLARY 5.14. If X 4s a space and the wmultifunction
@: X — X has a 6-subclosed graph then {xec X:xec®@(x)} is 6-closed
n X.

We have the following parallel to Theorem 3.13. We recall that
a f-closed subset of an H(:) space is an H(t) subset.

THEOREM 5.15. If X is H(1) and @: X — X is a multifunction
which maps 0-closed subsets onto O-closed subsets, there is a K,C X
with K, = @, K, 6-closed and ®(K,) = K,.

Proof. The proof goes as the proof for Theorem 3.13. Q # @&
since X is H(1); @ is 6-closed as the intersection of 6-closed subsets.

We state Theorem 5.16 without proof.

THEOREM 5.16. If a multifunction ®: X —Y has a 6G-subclosed
graph and KC X in monempty, then the restriction @y of @ to K
has a 6-subclosed graph.

It has been proved in [6] that an H-closed space is not the
countable union of 6-closed nowhere dense subspaces. The author
has improved upon this result in [14], showing that the closure of
a nonempty open subset of an H(:) space is not contained in the
union of a countable family of subsets each of which has a #-closure
with empty interior. We may use this property of H(i) spaces to
prove a result which implies the realization of Bourbaki [3] that the
set of isolated points of a countable H-closed space must be dense
in the space.

THEOREM 5.17. Let X be a countable H(i) space and let I =
{xe X:cl, ({x}) has nonempty interior}. Then I is O-demse in X.

Proof. Let V be a nonempty open subset of X. Then el (V)
is not the union of a countable collection of subsets all of whose 6-
closures in X have empty interiors in X. Thus since cl(V) is



MULTIFUNCTIONS AND GRAPHS 527

countable there is an xzeccl(V) such that cl, ({x}) has nonempty
interior. The proof is complete.

We abstract this property of H(:i) spaces and say that a space
X is #-Baire if no nonempty open subset of X has a closure which
is contained in the union of a countable family of subsets all of
which have #-closures with empty interior. We use this latter no-
tion to give another parallel of the Uniform Boundedness Principle
stated in [26], this time for multifunctions with #-subclosed graphs.
First, we state the following analogue to Theorem 3.15 above.

THEOREM 5.18. If @: X —Y s a multifunction with a G-sub-
closed graph and K ts an H(t) subset of Y, then @ (K) is O-closed
wm X.

THEOREM 5.19. Let Y be a countable union of the H(i) subsets
{Y(m)}z_, and let X be a 6-Baire space. Let F be a family of multi-
Sfunctions from X to Y with 6-subclosed graphs and with the property
that for each xe€X there ts an integer j(x) satisfying O(x) N
Y(j(x)) = @ for each ®cF. Then there is an integer m and a
nonempty open V C X such that @(x) N Y(m) + @ for each x € V and
oecF.

Proof. Parallels that of Theorem 3.16 since @ (Y (n)) is #-closed
for each @ and n from Theorem 5.18, and X is #-Baire.

THEOREM 5.20. With the same hypothesis as in Theorem 5.19
along with the condition that @@ (Y(n))) CY(n) for each n and @
the following additional statements hold:

(a) Fach ©®cF is 0-u.s.c. at each point of the open set V in
the conclusion of Theorem 5.19.

(b) There is an open set W of X such that each ®cF is 0-
u.s.c. at each point of W and cl (W) = X.

Proof of (a). With the use of Theorems 5.5, 5.16, and 5.17 the
proof parallels that of Theorem 3.17 (b).

Proof of (b). Let W be the union of all open subsets V of X
such that each @ ¢ F is #-u.s.c. at each x€ V and let A be an open
and nonempty subset of X. Then X is #-Baire and {@.: @€ F'}
is a family of multifunctions from cl (4) to Y satisfying the same
conditions relative to cl (A) as F' satisfies relative to X. So there
is a nonempty open subset B of cl(A4) with @, f-u.s.c. at each point
of AN B for each ®c¢F. Each ®¢F is f-u.s.c. at each x€ AN B;
this gives AN BCW.
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The proof is complete.

We will denote the set of points at which a multifunction @
fails to be 6-u.s.c. by 6D(®). The next theorem extends Theorem
5.4 in [14] to multifunctions.

THEOREM 5.21. Let X be a space and let @: X —Y be a multi-
function such that for each xc X, @(x) has a neighborhood which is
an H(i) subset. Then 6D(®) is closed in X if @ has a 6-subclosed
graph.

Proof. Let xe€ X such that @ is 6-u.s.c. at = and let W be a
neighborhood of @(x) with ¢l (W) an H(¢) subset. There is a V open
about x with @(cl(V))cecl(W). By arguments similar to those above
@ is f-u.s.c. at each point of V. Thus X — 6D(®) is open and the
proof is complete.

The following two corollaries offer extensions of the results of
Theorem 2 of [2] and Theorem 2 of [24] to multifunctions.

COROLLARY 5.22. Let X be a 6-Baire space and let Y be the
unton of a countadble family {Y(n)}oo, of H(t) subsets. Then 0D(0)
18 nowhere dense tn X for any multifunction @: X —Y satisfying
the following conditions:

(a) The multifunction @ has a subclosed graph.

(b) For each n, (@ (Y(n))) C Y(n).

Proof. F = {@} satisfies the conditions of Theorem 5.20. Let
W Dbe an open set satisfying the conditions of Theorem 5.20(b).
Then 6D(@) X — W so 6D(®) is nowhere dense in X since X — W
is nowhere dense in X. The proof is complete.

COROLLARY 5.23. Let X, Y, and @ satisfy the conditions of
Corollary 5.22. Then 6D(®) is nowhere dense and closed in X if
for each xe X, O(x) has a meighborhood which is an H(i) subset.

Proof. Theorem 5.21 and Corollary 5.22.

Our final theorem in this section is one on common fixed points
of a family of multifunctions with #-closed graphs.

THEOREM 5.24. Let X be an H(i) space and let F be a family
of multifunctions from X to X with 6-subclosed graphs. If for
each finite F*CF there is an xe€X satisfying xe @) for each
@ c F*, then there 1s an xc X satisfying x < d(x) for all PeF.

Proof. If A X—X is the identity function then R =
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{E@,\, X, X):@c F} is a family of 6-closed subsets of X from
Corollary 5.14. If F*C F is finite there is an xe X satisfying
xed(z) for all @eF*. So £ has the finite intersection property.
If ©* is the filterbase generated by £ then ad, 2* + ¢ sinece X is
H(i) and so N»J # @. This means that there is an x € X satisfying
xe E(®,\, X, X) for all ® e F. The proof is complete.
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