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MODULARITY OF THE CONGRUENCE LATTICE
OF A COMMUTATIVE CANCELLATIVE

SEMIGROUP

HOWARD HAMILTON

Modularity of the lattice of normal subgroups of a group
is well-known. Equivalently, the lattice of congruence rela-
tions on a group is a modular lattice. A natural question
to consider is how far can we push the last statement when
dealing with the larger class semigroups. It is easily shown
that the class of congruence lattices of semigroups satisfies
no nontrivial lattice identity. Thus we might try to find
those semigroups whose congruence lattice is a modular lattice.
This problem is of all the more interest due to the fact that
congruences on algebras whose congruence lattice is a modular
lattice satisfy variants of the Jordan-Holder-Schreier
theorem. In this paper we show that the commutative
cancellative semigroups whose congruence lattice is a modular
lattice are the abelian groups, the positive cones of rational
groups, and the nonnegative cones of rational groups. We
also show that the commutative cancellative semigroups with
a distributive lattice of congruences are locally cyclic or
locally cyclic with an identity adjoined. This last result
generalizes Ore's theorem that a group has a distributive
lattice of congruences if and only if it is locally cyclic.

1* Introduction* By an JV-semigroup we mean a commutative
cancellative archimedean semigroup without idempotent. An N-
semigroup will denote a commutative cancellative idempotent free
semigroup (CCIF-semigroup) which contains an ideal which is an N-
semigroup.

It was shown in 1957 by Tamura [14] (see also [1] and [13])
that every iV-semigroup S can be represented by an abelian group
G and a function I from G x G into the nonnegative integers N°
with the properties

(1.1) I(g, h) = I(h, g) f o r a l l g,heG ,

(1.2) I(g, h) + I(gh, k) = I(g, hk) + I(h, k) f o r a l l g,h,keG ,

(1.3) I(g, e) — 1 for all g e G, where e is the identity of G ,

(1.4) For each g e G there exists m > 0 such that I(g, gm) > 0 .

Where S - N° x G with the product

(1.5) (m, g)(nf h) = (m + n + I{g, h\ gh) for (m, g), (n, h)eN° x G .
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We write S = (G, /) if S is determined in this manner by G and I.
Condition (1.1) is the requirement on I that makes the product

(1.5) commutative, while (1.2) gives associativity of (1.5). Property
(1.3) is just a normalizing condition. Condition (1.4) is the require-
ment that makes (G, I) an archimedean semigroup. Cancellation in
(N°, + ) and G makes (G, I) cancellative, also. Thus we see that if
we were to drop condition (1.4) all we would lose, possibly, is the
archimedeanness of S. In [9] it is shown that dropping (1.4) yields
an JV-semigroup and that every iV-semigroup can be obtained in this
way. [9] also contains further information on the structure of N-
semigroups and CCIF-semigroups. We will need the following infor-
mation about ΛΓ-semigroups from [9].

LEMMA 1.1. [9] Let S be an N-semigroup. Let T be the N-
semigroup ideal of S. Then

( i ) T = {a e S \ for all beS there exist m > 0 and ceS such
that am = be}.

(ii) For each a e T pa is a group congruence on S where for
x, y eS we have (x, y) e pa if there exists m, n > 0 such that amx — any.

(in) If S=(G, I) then for all geG we have (1, g) e T and (0,eeT
if e is the identity of G.

Let S — \J«erSa, where Γ is a lower semilattice, be the greatest
semilattice decomposition of a semigroup S. For each aeΓ the a-
filter of S is Sa = \Jβ^a Sβ. Then S is the Γ direct limit of Sa.

Fact 1.2. If S is a GGIF-semigroup then the a-filters of S are
all Έ!-semigroups.

Next we will discuss a relationship between congruences on a
semigroup and congruences on the α-filters of the semigroup. Later
we will apply this to CCIF-semigroups.

For a semigroup X we will let L(X) denote the lattice of all
congruence relations on X. If σaeL(Sa) for some aeΓ then σa =
σa U (S\Sa) x (S\Sa) is a congruence on S9 and the map σa ι-> σa is an
isomorphism of L(Sa) onto a sublattice of L(S). Thus we have

LEMMA 1.3. For each aeΓ L(Sa) is isomorphic to a sublattice
of L(S).

Next, let £f = {Π«σa e ΓLL(Sa): for β,yeΓ with β^y σβQσr}.

LEMMA 1.4. J*f is a complete sublattice of ΐ[aL(Sa).

Proof. Let {pδ = Π* «̂,β- S e Λ} be a collection of members of .Sf.
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Then by the definition of join in the direct product ΐ[aL(Sa) we
have yδeΛ pδ = ΓL (Va^ σβfί), and V ^ σβtδ £ VaeΛ σr>δ if /5 ̂  7 because
ffju £ 0V,« for all δ if β *zy. Hence Vs ft e.Sf Similarly, one sees
that f]sp5 = Π « ( β β > ι O is in .2*.

Define a function f:£f-+ L(S) by / (IL O = U σa. Note that
\Ja σa e L(S) because of the definition of

THEOREM 1.5. The map f is a closed lattice homomorphism of
^ onto L(S).

Proof. Let Y[aσa and ΐ[aτa be two members of j*f.

/(π ff.VΠ τa) = /(π (*« v rβ)) - U K v O ,
\ a a / \ a /a

and /(IL O V /(IL τβ) - (U« O V (U« τβ). Since JJ« °a and U. τβ

are both contained in \Ja (σa V τa), we have immediately that
\Ja(Ga V τα) 2 ( U α O V (Uα^«) To see containment the other
direction, let (α, 6) 6 U« (̂ « V τa) then there exists β e Γ such that
(α, b) eσβ V τβ. That is, there exists /3eΓ and α = α0, αx, α2, ,
an = be Sβ such that (αt, αi+1) e σp or (α{, α<+1) e r̂  for i = 0, 1, ,
w — 1. Thus (α, b) e(\Jaσa) V (U«O> and we have shown that
Uα (σα V τΛ) £ (U^ O V (U« Γ«) Therefore, / preserves joins.

Now we show that / preserves intersections. We have

f(U σa Π Π τa) = / ( Π (σa Π τa)) = U (^ Π τβ) ,
\α a / \ a /a

and /(Π« O Π /(IL r«) = (U« O - Since \Ja (σa Π τα) is contained in
each of \Jaσa and U«^« we have \Ja(σa Π τα) £ ( U « O Π (U«O
Now let (α, δ) e (U« «̂) Π (U« «̂) That is, (α, 6) 6 [Ja σa and (α, δ) 6
Uα τα. Hence there exist /9, 7 6 Γ such that (α, b) e σβ and (α, 6) 6 τr,
and since IL tf« and Π« ̂ α are in Sf we have (α, 6) 6 α^ and (α, 6) e τ r̂.
Thus (a,b)e(σβrnτβr) and so (α, 6) e LL (^Πτ α ) . Therefore / pre-
serves intersections.

From Lemmas 1.2 and 1.4 and Theorem 1.5 we immediately have

THEOREM 1.6. Let S be a semigroup. L(S) satisfies an identity
if and only if L(Sa) satisfies the same identity for each aeΓ.

If p is a binary relation on a set X and Γ £ l then p\Y =
p Π (Γ x Γ). Also, £x will denote the identity relation on X, and
α>x will denote the universal relation on X.

THEOREM 1.7. ([19] Proposition 3.1) If p is a group congruence
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on S and J is an ideal of S then σ = p\J is a group congruence
on J and S/p = J\o. Furthermore, p is the unique extension of σ
to a group congruence on S.

COROLLARY 1.8. The join semilattice of group congruences on
a semigroup S is isomorphic onto the join semilattice of group
congruences on any ideal J of S.

LEMMA 1.9. Let S be a semigroup and let J be an ideal of S.
Let σ be a group congruences on J and μ the unique extension of
σ to a group congruence on S. Let f] = σ U cs and let τ be any group
congruence on S. Then η e L(S) and η V τ = μ V τ.

Proof, σ = μ \ J implies that η is a congruence relation on S.
We have η Q μ therefore η V τ £ μ V r. We also have (μ V τ)\J =
(μ\J) V (τ| J) = σ V (τ| J) £ (η V τ)\ J where the first " = " follows
from Corollary 1.8. Now rj\J τ and μ V τ are group congruences on
S with (μ V τ) \ J Q (η V τ) \ J. Hence again by Corollary 1.8 η V τ 2
μ V τ. Thus η V τ = μ V τ, and we are done.

DEFINITION 1.1. A semigroup S is a proper subdirect product
of two semigroups T and Z7 if S is a subdirect product of T and £7
and S & T and S ^U. In which case it follows that there exist
nontrivial congruences μ and v on S such that μ Π v = cs.

COROLLARY 1.10. // a semigroup S is a proper subdirect product
of two groups and if S has a proper ideal J then L(S) is not
modular.

Proof. Let S be a proper subdirect product of two groups then
there exist nontrivial congruences μ and τ on S such that S/μ and
S/τ are groups and μ Π τ = cs. Let η = (μ \ J) U £<?. By Lemma 1.9
η e L(S) and η V r = μ V τ. And since η Q μ we have ^ Π r = ίs.
Hence L(S) contains
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as a sublattice; so L(S) is not a modular lattice.

2* CCIF^semigroups with L(S) modular*

DEFINITION 2.1. An iV-semigroup S is power-joined if for all
a,beS there exist m and n greater that zero such that am = bn.

From [8] we have the following theorem about power-joined
iV-semigroups.

THEOREM 2.2. Let S be an N-semigroup. Then the following are
equivalent'.

(a) S is power-joined.
(b) S is not a subdirect product of two groups.
(c) The group congruences on S form a sublattice of L(S).

COROLLARY 2.3. Let S be an Nsemigroup. If L(S) is modular
then S is power-joined.

This is immediate from Theorem 2.2 and Corollary 1.10 because
being a subdirect product of two groups is equivalent to being a
proper subdirect product of two groups for semigroups which are
not groups.

Let S = (G, I) be an N-semigroup. If |G| = 1 then S = N, the
positive integers with addition. In [2], Exercise 6, p. 137, it is
shown that L(N°) is a distributive lattice. Let p e L(N) then p* —
p\J{(0,0)}eL(N°) and p\-*p* is an embedding of L(N) into L(N°).
Thus L(N) is distributive and hence modular.

For an iV-semigroup S we will introduce the following notation:
Ln(S) is the collection of nil congruences on S, Lr(S) is the collection
of Rees congruences on S, and Lg(S) is the collection of group con-
gruences on S. In general Ln(S) and Lr(S) are both sublattices
of L(S), and by Theorem 2.2 L9(S) is a sublattice of L(S) if and
only if S is power-joined.

LEMMA 2.4. Let S = (G, I) be an N-semigroup. If L(S) is
modular then Ln(S) — Lr(S).

Proof. We can assume that | G | > 1 because otherwise S = N
from the above remarks and it is clear for N that Ln(N) = Lr(N).
If IGI > 1, L(S) is modular and η e Ln(S)\Lr(S) then let I, be the
ideal of S which is the zero of S/η. Let pIη be the Rees congruence
associated with Iv, then |θz §= rj. Let τ be the group congruence on
S corresponding to the homomorphism π of S onto G given by π(m, g) = g
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for all (m, g) e S. Since the join of any group congruence with any
nil congruence is ωs, we have ΎJ V z = pIη V z = <£)#. Let a = τ \ I.
If (m, #) and O, #) are in S\IV and ((m, g), (n, g)) e η with m> n then
since (m, g) = (w, #)(0, e)m"% so [(w, flr)]9 divides [(%, g)]v in S/37, but in
a nil semigroup xy = x implies x = 0. Thus we have a contradiction,
and so ((m, 0), (w, Λ)) 6 η for (m, ̂ ) and (nf h) e S\I, implies g Φh.
Hence we have η f ir = pΣ Γ\z = σ\Jcs. Thus we have

contained in L(S), and so L(S) is not a modular lattice. Thus Ln(S) —
Lr(S).

Tamura has classified the commutative archimedean semigroups
in the following four classes:

Type ( i ) commutative nil semigroups.

Type (ii) commutative nil extensions of abelian groups.

Type (iii) i\Γ-semigroups.

Type (iv) commutative archimedean nonpotent noncancellative
semigroups.

Since a homomorphic image of an archimedean semigroup is also
archimedean, a homomorphic image of an JV-semigroup S has one of
the four types above. Let σ e L(S) then we call σ a, nil- (ng-9 N-9 Γ4-)
congruence on S if S/σ is of Type i (ii, iii, iv). Dickinson [5] has
noted that a Γ4-congruence is a refinement of an iV-congruence.

DEFINITION 2.5. An iV-semigroup S is said to be irreducible if
cs is the only iV-congruence on S.

Tamura [15] has shown that an irreducible iV-semigroup is iso-
morphic onto a positive real additive semigroup. It is also shown
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in [15] that every iV-semigroup S — (G, I) is a subdirect product of
an irreducible iSΓ-semigroup and the structure group G of S.

LEMMA 2.6. Let S be an N-semigroup. If Ln(S) = Lr(S) then
S is irreducible.

Proof. Suppose S is not irreducible then S is a proper subdirect
product of an irreducible (hence positive real) iV-semigroup T and
an abelian group G. Let πτ: S> —> T be the projection of S onto T (we
identify S with its isomorphic image in TxG). We have πτ is not
one-to-one because the subdirect decomposition is proper. Thus (m, g)
and (m, h) are in S for some meT and g, heG with gΦh. Let J =
{(n, k) e S: n > m and keG} then J is an ideal of S. Define a relation
Ύ] on S by η = ω, U {((m, #), (w, ft)), ((m, ft), (m, #))}. Then ^ is a nil-
congruence on S which is not a Rees congruence. Thus Ln(S)φLr(S).

DEFINITION 2.7. Let S be a semigroup with zero. Then an
element x e S such that xy = yx = 0 for all y £ S is called an
annihilator of S. The collection of annihilators of S is denoted by
A(S).

DEFINITION 2.8. Let S be a commutative semigroup. If x and
y are in S then we say x divides y in S (denoted x\y or x\sy) if
there exists zeS such that xz = ?/.

THEOREM 2.9. (Tamura [17]) Lei S &e an N-semigroup. Then
the cancellative congruences on S form a sublattice of L(S) isomorphic
onto the lattice of subgroups of the group of quotients of S. Hence
the cancellative congruences on an N-semigroup form a modular
lattice.

LEMMA 2.10. Let S be a power-joined N-semigroup such that
Ln(S) = Lr(S). Let σ eL(S). If σΦi then there exists τ eLg(S) and
η 6 Lr(S) such that σ = τ n rj and τ and rj are uniquely determined
by σ.

Proof. By Lemma 2.6 S is an irreducible iV-semigroup. Therefore,
from Dickinson's result we know that S has no Γ4-congruences. Hence
if a Φ i then σ is either a Rees congruence of an w#-congruence. In
either case S/σ contains a group ideal (in the case σ is a nil-congruence
the group is the trivial group). Let Jσ denote the ideal of S which
maps onto this group ideal under the natural homomorphism of S
onto S/σ. Then σ\Jσ is a group congruence on Jσ. By Theorem 1.7
let τ be the group congruence on S which extends σ\Jσ. Let η be
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the Rees congruences mod Jσ. Clearly τ nη = σ\Jσ\J cs. Since JJσ
is an ideal of S/σ, (S/σ)/(Jσ/σ) is a nil semigroup. Let v be the con-
gruence on S such that S/v = (S/σ)/(JJσ). Then v e Ln(S) = Lr(S).
But v = ωJa{J σ\(S\Jσ) so σ\(S\Jσ) must be c{SVσ). Hence σ =
σ\Jσ{J cs = τ ny.

Uniqueness of τ and η: Suppose τlf τ2eLg(S) and ηlfη2eLr(S)
and that τx n ^ = r2 Π %• Let I9< be the ideal of S associated with
7]i(i = 1, 2). Suppose /3?1 =£ I v Assume a? 6 Iv\IVz then by the proof
of Theorem 1.7 there is a # e/ ? 1 Πί ? 1 such that (x, y) e r l t Therefore
(#, y)eτ1f)η1, but (a?, #) e η2 so (a?, ?/) ί τ2 Π ̂ 2 This contradicts the
assumption that τt Π Vι = τ2 Π %• Therefore I3?1 £ i^. Similarly
we get J^ £ J v Hence ^ = η2. And so τx | IVl = τ21 Jni and so again
using Theorem 1.7 we have τ1 = τ2. This proves the uniqueness of
τ and 77.

We are now ready to prove the theorem determining the N-
semigroups whose congruence lattice is modular.

THEOREM 2.11. Let S he a power-joined N-semigroup. Then the
following are equivalent:

(1) L(S) is a modular lattice.
(2) LΛ(S) = Lr(S).
(3) For each ideal J of S we have \A(S/J)\ ^ 2.
(4) Divisibility is a total order on S.
( 5) S is isomorphic to a positive cone of an additive subgroup

of the rationals.
In which case L(S) = (Lg(S) x Lr(S)Y (where L1 means a smallest
element 1 is adjoined to the lattice L).

Proof. We show (1) <=> (2), (2) => (3) => (4) => (2), and ( 4 ) « ( 5 ) .
(1) => (2) is shown in Lemma 2.4.

Proof of (2) => (1). Assume that S is a power-joined iV-semίgroup
for which Ln(S) — Lr(S). Define a map λ from L(S) into
(L,(S)xLr(S)Y by

fl if σ = i
X(σ) = \

((τ, ΎJ) if σ Φ i and σ = τ Π V f o r τ e Lg(S) and η e Lr(S) .

From Lemma 2.10 it follows that λ is well-defined and X-1(r, η) —
T Π 7), λ-1(l) = i is the inverse of λ.

λ is order preserving. Let σλ £ σ2 for σn σ2eL(S). If λ ^ ) = 1
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then λ((T1) <; λ(<72) since 1 is the smallest element of (Lg(S) x Lr(S))1.
Thus assume that Xfa) Φ 1. Then λ(<7,) — (τif rjt) for ί = 1, 2 with
tf< = Γi Π 5?<(i = 1, 2). Let Iηi denote the ideal of S associated with
7]i(i = 1, 2). If J7l jg J,2 choose a? 6 î YZ^ and # e Z9l Π /?2 such that
(x, y)eτί. Then (a?, » ) e r 1 n ί i = ̂ C ^ = r 2 n % which implies that
(a?, i/) e %, but this is a contradiction, since x g I92 and 7/ e I v Thus
I 9 l C Iv2 and so ̂  C %. Now ^ C σ2 implies σx \ IVί £ cr21 1^, than is
Ti\IVl

<^IVl (see the proof of Lemma 2.10). Hence by Theorem 1.7
and Corollary 1.8 τ1 Q τ2. Thus (τ19 rjt) £ (r2, %) and λ is order
preserving.

It is obvious that λ""1 is also order preserving. Hence λ is a
closed lattice isomorphism of L(S) onto (Lg(S) x Lr(S))\ In our
present case (i.e., S is power-joined) we have Lg(S) is a sublattice of
L(S) by Theorem 2.2 and so by Theorem 2.9 Lg(S) is a modular
lattice. Lr(S) is always a modular lattice, since it is isomorphic onto
a sublattice of the Boolean lattice of all subsets of S with inclusion
as the partial order. The isomorphism here is just the one taking
η e Lr(S) to its associated ideal of S. Thus Lg(S) x Lr(S) being the
direct product of modular lattices is a modular lattice. But adjoining
a smallest element to a modular lattice also gives a modular lattice.
Hence L(S) is a modular lattice. This completes the proof that
(2) - (1).

Proof of (2) => (3). Let Ln(S) = Lr(S) and choose J an ideal of S.
If u, v e S are two distinct nonzero annihilators of S/J, then p = ω3 U
{(u, v), {y9 u)} is in LW(S) but not in Lr(S). A contradiction. Hence
\A(S/J)\£2.

Proof of (3) => (4). Note that for an iV-semigroup divisibility is
always a partial order. Assume | A(S/J) | ^ 2 for every ideal J of
S. If there exists u, v eS such that u | v and v\u, then let J =
(uS) U (ViS). Then A(S/J) 2 {w, v, 0}. This contradicts our assumption,
thus either u\v or v\u and S is totally ordered by divisibility.

Proof of (4) => (2). Let S be an N-semigroup in which divisibility
is a total order. Tamura [15] has shown that such semigroups are
irreducible and are therefore isomorphic into the positive reals. The
assumption that S be power-joined puts us into the positive rationals
(see Tamura and Sasaki [20]) with addition understood to be the
operation in all of our real semigroups. Thus we will assume that
S is contained in the positive rationals. Let J be an ideal of S. If
xeJand y eS with y>x then x|y hence y eJ. Thus J is a segment
of S (i.e., J = (c, co)s — {xeS: x > c} or J — [c, co)s = {xeS: x ̂  c}
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for some rational c^O). Let Ύ] e LJβ) and let Jv denote the associated
ideal of S. Let c = inf (J,) and suppose a,beS with a<b and (α, b) eη
then (α, δ), (6, 6 + (6 - α)), , (6 + (m - 1)(6 — α), 6 + m(b - a)) are
all in Ύ). And for m large enough b + m(b — a) > c hence
b + m(b — a)eJv and so a,beJv. Thus ηeLr(S). This completes
the proof of (4) => (2).

The equivalence of (4) and (5) is easily seen when we realize
that (4) puts us into the positive rationals as mentioned in the proof
of (4) implies (2).

We are now ready to answer the question of modularity of the
congruence lattice of a CCIF-semigroup.

THEOREM 2.12. Let S be a CCIF-semigroup. Then L(S) is a
modular lattice if and only if S is a positive cone of a subgroup
of the additive rationals.

Proof. Let S = \JaerSa be the greatest semilattice decomposition
of S. All we need to do to is show that each α-filter Sa is an
iV-semigroup if L(S) is a modular lattice. Assume that L(S) is
a modular lattice. Then by Theorem 1.6 L(Sa) is modular for
each aeΓ. Choose aeΓ. By Fact 1.2 Sa is an ΛΓ-semigroup.
Let Sa = (6r, I) for some abelian group G. We will be done when
we show that G must be a torsion abelian group because then I
must satisfy condition (1.4) and so Sa is an iV-semigroup. Suppose
G contains an element gQ of infinite order. From Lemma 1.1 we see
that (1, gQ) and (0, β), where e is the identity of G, are in the JV-
semigroup ideal of S and so by part (ii) of Lemma 1.1 the relations
p(l, g0) and ^(0, e) are group congruences on S. Suppose (m, g) and
(n, h) are in S then ((m, g), (n, h)) e p(Ot9) if and only if g — h, and
((w, g), (n, g)) e ρil>gQ) implies that m — n since g0 has infinite order.
Thus P(ltff0) Π P{0,e) = i and so Sa is a subdirect product of the two
nontrivial groups Sa/pil>go) and Sa/p(0, e). Therefore by Corollary 1.10
we have a contradiction to the assumption that L(Sa) is a modular
lattice. Hence G is a torsion abelian group and we are done.

3* Commutative cancellative semigroups with idempotents
with L(S) modular. In this section we will determine those com-
mutative cancellative semigroups with an idempotent (which is neces-
sarily an identity element of the semigroup), which are not groups,
whose congruence lattice is a modular lattice.

Let S= \JaerSa be the greatest semilattice decomposition of a
commutative cancellative semigroup with an identity element. Then
Γ has a maximal element a0 and Sao is an abelian group. Assume
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that L(S) is a modular lattice and assume S Φ Sao (i.e., S is not an
abelian group). By Theorem 1.6 L(Sa) is modular for all aeΓ. Also,
if a Φ aQ then Sa contains Sa, which is an AΓ-semigroup, as an ideal;
hence, we have

LEMMA 3.1. For each a Φ a09 Sa is a power-joined N-semigroup.

Proof. Assume that a Φ a0 and Sa is not power-joined then by
Theorem 2.2 Sa is a subdirect product of two groups. Equivalently,
there are two group congruences σ and τ on Sa such that σ Π τ — cSa.
Let σ and τ be the unique extensions of σ and τ, respectively, to
group congruences on Sa. Suppose (x, y) e σ Π τ, and choose z e Sa.
T h e n (xzf y z ) e σ f ] τ w i t h x z , y z e S a . T h e r e f o r e (xz, y z ) e σ f ] τ = c,
and so xz = yz. Thus x = y, since S is cancellative, and we have
a n x — tsa Hence by Corollary 1.10 we have L(Sa) is not modular.
This is a contradiction and therefore Sa must be power-joined.

In [7] Theorem 2.5 Hall showed that for a power-joined N-
semigroup A the translation semigroup T(A) of A is a commutative
cancellative semigroup having two archimedean components. One
component is an ideal containing the inner translations of A (and
hence a copy of A) and the other component is the group of permu-
tation translations of A and is isomorphic to a subgroup of any
structure group of A. By [20] every structure group of a power-
joined iV-semigroup is a torsion abelian group. Hall also showed
that a commutative cancellative ideal extension of A is isomorphic
to a subsemigroup of T(A).

LEMMA 3.2. \Γ\ =2.

Proof. Suppose |Γ\ > 2. Then there exist a, β eΓ such that
β < a < a0. By Lemma 3.1 Sβ is a power-joined iNΓ-semigroup. Thus
from HalΓs work we have Sβ is isomorphic to a subsemigroup of
T(Sβ) containing the copy of Sβ. We will identify Sβ and Sβ with
their images in T(Sβ). Let T(Sβ) = A U B be the greatest semilattice
decomposition of T(Sβ). Let A denote the archimedean component
containing Sβ and let B denote the archimedean component consisting
of the group of permutation translations of Sβ. Let xeSa. If x e B
then, since B is torsion group, there exists m > 0 such that xm = 1
so 1 6 Sa. But 1 e Sao, a contradiction. If x 6 A then xm e Sβ for some
m > 0, as A is archimedean and Ŝ  is an ideal of T(Sβ). Therefore,
we would have xmeSa Π Ŝ , another contradiction. Thus \Γ\ —2.

Hence we will let S — So U St where So is a power-joined ΛΓ-
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semigroup and Sλ is isomorphic to a subgroup of the group of
permutation translations of So

By Ln(S0, SJ we mean the collection of nil-congruences on SQ which
extend to congruences on S (i.e., σeLn(SQ, St) if σ is a nil-congruence
on So and (a, b) eσ and x e S1 implies (ax, bx) e σ). Similarly Lr(S0, St)
is the collection of Rees congruences on So which extend to con-
gruences on S. The next lemma is a generalization of Lemma 2.4.

LEMMA 3.3. Let S = So U Sx be a commutative semigroup with
So an ideal which is an N-semigroup. If L(S) is a modular lattice
then Ln(S0, SJ = Lr(S0, SJ.

o

Proof. Let σ eLn(S0, S^L^So, St). Let J be the σ-class of S
corresponding to the zero of S0/σ. J is an ideal of So which is an
ideal of S. Hence the Rees congruence mod J, pj9 is in Lr(SQ, SJ.
Let τ be the group congruence on So determined by the natural
homomorphism of So onto one of its structure groups G. Then σ —
σ\JcSl, p = Pj\JeSi are in L(S). Let τ be the unique group congruence
on S extending τ. Then by an argument similar to that used in
Lemma 2.4 we see that L(S) contains

Hence L(S) is not modular.

Hall [7] and Dickinson [4] gave the following characterization
of T(S) where S = (G, I) is an iV-semigroup.

T(S) = {[m, g] e N° x G: m + I(g, h) - 1 ^ 0 for all heG} .

The action of an element [m, g] e T(S) on an element (n, h) e S is

[m, ]̂(w, h) = (m + ^ + 1(0, Λ) — 1, ί/A) .

The group of units TU(S) of T(S) is shown by Dickinson to be

TU(S) - {[0, g] eN° x G: /(», Λ) = 1 for all ΛeG}.

THEOREM 3.4. Let S be a commutative cancellative semigroup
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with an identity element. Then L(S) is a modular lattice if and
only if S is an abelian group or a nonnegative cone of an additive
subgroup of the rationals.

Proof. Assume L(S) is a modular lattice, and assume that S is
not an abelian group. Then, as we noted above, S = So U Sλ where
So is a power-joined iV-semigroup ideal of S and Sλ is an abelian
group. Suppose that So = (G, I). From previous remarks we can
consider Sι to be a subgroup of TU(SO). Define a relation σ on SQ by

im > 0 and n > 0, or

((m, g), (n, h)) eσ if and only if jm = n = 0 and [0, &](m, g) — (n, h)

(for some [0, k] e S1 .

Then σ e Ln(S0, Sx) and if St is not the trivial group then σ g Lr(SQ, SJ.
Hence by Lemma 3.3 Sλ must be the trivial group. Since S± is trivi-
al, every congruence on So extends to a congruence on S. Therefore
L(SQ) is a modular lattice, also; so by Theorem 2.11 So is a positive
cone of a rational group. Therefore S is a nonnegative cone of a
rational group.

To see the converse, consider the following. Let S = So U {1} be
a power-joined ΛΓ-semigroup So with an identity 1 adjoined. Define
a map F of L(S) into the direct product of L(SQ) and the two element
lattice 2 = {0, 1}, with 0 > 1, by

Uσ\SOfΐ) if h = {1}
[0) W 0 , 0 ) if l σ ^{l}

where lσ denotes the σ-class containing 1.

F preserves joins. Let σ, τeL(S).

Case(l). 1, = {l} = l r . Then F(σ) V F(τ) = (σ | So, 1) V (r 15f0, 1) =
(σ|S 0 V τ | S 0 , 1) and F(σ V τ) = ((σ V r) |S 0 , 1). And ( σ V τ ) | S 0 -
σ\S0V τ\S0 is clear. Thus F{σ) V F(r) = F{σ V r) .

Case (2). lσ - {1} and l r Φ {1}. Then F(σ) V F(τ) - (σ|S0, 1) V
(τ|S 0, 0) = (σ|S 0 V r | S 0 , 0). Since 1Γ Φ {1} and r S 0" V τ we have
lσ V r^{l} so ί\σVr) = ((<7Vr)|S0, 0). Thus to show F(σ)VF(τ) = F(σVτ)
we need only show that (σVτ)\SQ = σ\S0Vτ\SQ. Inclusion of σ\SQVτ\S0

in (σ V r) | SO is clear. We therefore choose (α, 6) e (σ V r) | So. Then
there exist a = α0, α1? , αTO = & in S such that (α<, α1+1) e σ U r for
all i = 0, 1, , n — 1. Since lσ = {1}, if αΐo = 1 for some % then we
can delete a{ from the sequence and still have a chain of crUr-related
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elements between a and δ all of which will now lie in So. Hence
(α, b)eσ\SoVτ|So and so (σyτ)\S0^σ\S0Vτ\SQ and we have equality
of F(σ V τ) and F(σ) < F(τ) in this case.

Case (3). lσ Φ {1} and 1Γ ^ {1}. Hence lσVr ^ {1}. Therefore to
show that F(σ V τ) = ^(σ) V JF(Γ) we need only show that (σ V τ) \ So C
tf|SoVr |So a s i n t ί i e l a s t c a s e L e t (α, 6) e (σ Vτ) I So. Then as
before there exists a = α0, αL, , an = b in S such that (α*, αi+1) e
σ U r for each i = 0, 1, , n — 1. As in case (2) we wish to lift
this to a chain of σ U τ-related elements in So from a to b. To
accomplish this note that σ and τ are group congruences on S and
hence on So. And by Theorem 2.2 σ |S o nr |So is also a group con-
gruence on JS0. Choose ueS0 such that uiσ\SoMSo) is the identity
element of S0/(σ\S0 Π τ\SQ). Then i6σ is the identity of S/σ and ^Γ

is the identity of S/τ. So we have (α, αo%), {atn, at+ιu) for i = 0, 1,
• , n — 1, and (αnt6, b) are all in σ (J τ. Thus (α, 6) e σ\S0 V τ |S 0,
and we are done. Thus F preserves joins.

F preserves intersections. F o r a n y t w o c o n g r u e n c e s σ,τ e L(S)
we always have (σ Π τ) \ So = σ \ So Π τ \ SQ. Also, if lσ = {1} or 1Γ = {1}
then l σ n r = {1}. It also follows from the remarks about finding the
element u in case (3) above that if lσ Φ {1} and 1Γ Φ {1} then l σ n r Φ
{1}. Hence F preserves intersections.

F is one-to-one. Let σ, τ e L(S). If F{σ) = F(τ) and F(σ) =
(<τ|S0, 1) and i^τ) = (τ|S0, 1) then σ\S0 = τ\S0, but in this case
σ=:σ\Sol){(1, 1)} and r = τ\SoU{(1, 1)}. Therefore σ = τ. If F(σ) =
F(τ) and F(σ) = (σ | So, 0) and i^(τ) = (τ \ So, 0) then σ and τ are group
congruences on S which are the unique extensions of σ\S0 and τ\S0

to group congruences on S. Thus σ\S0 = τ\S0 implies that σ = r.
And we therefore see that jp7 is one-to-one.

The above shows that F is a closed lattice isomorphism of L(S)
into L(S0) x 2.

To complete the proof of the converse of Theorem 3.4 let S be
a nonnegative cone of a subgroup of the additive rationale. Then
S = SQ U {0} where So is the positive part of S. So is a power-joined
iSΓ-semigroup and by Theorem 2.11 L(SQ) is a modular lattice. Thus
applying the map F to this S shows that L(S) is also a modular
lattice. This completes the proof of the theorem.

4. Summary and further observations. So far we have shown

THEOREM 4.1. The commutative cancellative semigroups whose
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congruence lattice is a modular lattice are
(1) The abelian groups.
(2 ) The positive cones of subgroups of the additive rationals,

and
(3) The nonnegative cones of subgroups of the additive ra-

tionals.

Consider the following example. Let X be an index set and let
D1 be the direct product of \X\ copies of N°, and let D = {n =
ΪL nx G Ό{. there exists Mn > 0 such that nx < Mn for all x e X}.
Then D is a commutative cancellative semigroup and the greatest
semilattice homomorphic image of D is the semilattice (actually
lattice) 2X of all subsets of X. Since every semilattice can be
embedded into 2X for some set X, we see that every semilattice is
a homomorphic image of some commutative cancellative semigroup.
In [6] R. Freese and J. B. Nation showed that the collection of
congruence lattices of semilattices satisfies no nontrivial lattice
identity. From this and the remarks above we see the following
theorem.

THEOREM 4.2. The collection of congruence lattices of commutative
cancellative semigroups satisfies no nontrivial lattice identity.

In [3] R. A. Dean and R. H. Oehmke and in [18] T. Tamura and
W. Etterbeek showed that the lattice of congruences on a locally
cyclic semigroup is a distributive lattice. Also, a theorem (see [12])
due to Ore gives the groups whose subgroup lattice is a distributive
lattice to be precisely the locally cyclic groups. From these results
and the fact that a distributive lattice is a modular lattice we have
immediately from Theorem 4.1 the following

THEOREM 4.3. The commutative cancellative semigroups whose
congruence lattice is distributive are

(1) The locally cyclic abelian groups.
(2) The positive cones of subgroups of the additive rationals.
( 3 ) The nonnegative cones of subgroups of the additive rationals.

Noticing the result of the theorem we can easily obtain that
Ore's theorem almost holds for commutative cancellative semigroups.
That is, we have

COROLLARY 4.4. Let S be a commutative cancellative semigroup.
Then L(S) is distributive if and only if S is locally cyclic or S1

is locally cyclic with an identity adjoined. (S1 equals S if S already
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has an identity element and S1 is S with an identity adjoined if
S has no identity.)

Proof. Let S be a locally cyclic commutative cancellative semi-
group. Then for all x, y eS there exist zeS and m, neNsuch that
x — zm and y = zn. Thus xn = ym, and xy"1 or yx~ι is in S. Hence
if S is not a group then S is a power-joined iV-semigroup in which
divides is a total order. That is, S is a positive cone of a rational
group. The proof is now easily finished by looking at the theorem,
since positive cones of rational groups are locally cyclic semigroups.

REFERENCES

1. A. H. Clifford and G. B, Preston, The Algebraic Theory of Semigroups, Vol. 1,
Amer. Math. Soc, Providence, Rhode Island, 1961.
2. A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vol. 2,
Amer. Math. Soc, Providence, Rhode Island, 1967.
3. R. A. Dean and R. H. Oehmke, Idempotent semigroups with distributive right
congruence lattices, Pacific J. Math., 14 (1964), 1187-1209.
4. R. P. Dickinson, Right zero unions of semigroups, Dissertation, University of Calif.,
Davis, 1970.
5. , Noncancellative congruences on N-semigroups, Proc. Amer. Math. Soc,
36: 2 (1972), 317-325.
6. R. Freese, and J. B. Nation, Congruence lattices of semilattices, Pacific J. Math., 49
(1973), 51-58.
7. R. Hall, The structure of certain commutative separative and commutative cancel-
lative semigroups, Dissertation, Pennsylvania State University, 1969.
8. H. B. Hamilton, Congruences on N-semigroups, Pacific J. Math., 75 (1978), 423-448.
9. H. B. Hamilton, T. E. Nordahl and T. Tamura, Commutative cancellative semigroups
without idempotents, Pacific J. Math., 6 1 (1975), 441-456.
10. E. Hewitt and H. S. Zuckermann, The h algebra of a commutative semigroup,
Trans. Amer. Math. Soc, 83 (1956), 70-97.
11. Y. Kobayashi, Homomorphisms on N-semigroups into R+ and the structure of N-
semigroups, J. Math., Tokushima Univ., 7 (1973), 1-20.
12. O. Ore, Structures and group theory I-II, Duke Math. J., 3 (1937), 149-174; 4 (1938),
247-269.
13. M. Petrich, Introduction to Semigroups, C. E. Merril Publ. Co., Columbus, Ohio,
1973.
14. T. Tamura, Commutative nonpotent archimedean semigroups with cancellation law
I, J. Gakugei, Tokushima Univ., VIII (1957), 5-11.
15. f Irreducible N-semigroups, Math. Nachr., 6 3 (1974), 71-88.
16. , Basic study of N-semigroups and their homomorphisms, Semigroup Forum,
8 (1974), 21-50.
17. , Commutative archimedean cancellative semigroups withoup idempotent,
Seminaire Duheil-Pisot (Algebre et Theorie des nombres) 23e annee 1969/70, Demigroupes,
n° 5, 19 p.
18. T. Tamura and W. Etterbeek, The lattice of congruences of locally cyclic semigroups,
Proc. Japan Acad., 42, No. 7 (1966), 682-684.
19. T. Tamura and H. B. Hamilton, The study of commutative semigroups with greatest
group-homomorphisms, Trans. Amer. Math. Soc, 173 (1972), 401-419.
20. T. Tamura and M. Sasaki, Positive rational semigroups and commutative power-



MODULARITY OF THE CONGRUENCE LATTICE 485

joined cancellative semigroups without idempotent, Czech. Math. J., 21 (96), (1971),
567-576.

Received April 29, 1976 and in revised form September 21, 1977. Some of these
results were presented at the San Francisco meeting of the AMS in January 1974 and
were announced in [Notices AMS 21 (1974), A-92]. Theorem 4.3 was obtained by M. P.
Dorofeeva in 1975 [Summaries of Talks, All-Union Alg. Sympos., Gomel, 1975, Part I,
208 (Russian)].

CALIFORNIA STATE UNIVERSITY

SACRAMENTO, CA 95819






