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A CONVOLUTION RELATED TO GOLOMB'S
ROOT FUNCTION

E. E. GUERIN

The root function γ(n) is defined by Golomb for n>l as
the number of distinct representations n—ah with positive
integers a and b. In this paper we define a convolution ψ
such that γ is the F-analog of the (Dirichlet) divisor function
r. The structure of the ring of arithmetic functions under
addition and F is discussed. We compute and interpret F-
analogs of the Moebius function and Euler's Φ-function.
Formulas and an algorithm for computing the number of
distinct representations of an integer wΞ>2 in the form

. ak

n = ap' , with at a positive integer, i—l9 , k, are given.

I* Introduction* Let Z denote the set of positive integers,
let A denote the set of arithmetic functions (complex-valued func-
tions with domain Z), and let F denote the set of elements of Z
which are not &th powers of any positive integer for k > l(k e Z).
Note that 1 g F. The divisor function τ can be defined as τ — vQ*vQf

where v0 e A, vo(n) = 1 for all ne Z, and * is the Dirichlet convolu-
tion defined for a, β e A by (a*β)(n) = Σ<u« a(d)β(n/d).

Any integer n ^ 2 having canonical form w = pj1 •••#;> is
uniquely expressible as n — m9, where g = g.c.d. (elf , er) and
meF. Golomb [1] defines the root function Ί{n) for ne Z, n > 1,
as the number of distinct representations n = ab with a, be Z\ and
he notes that Ύ(n) = τ(g) for n = m9, meF, ge Z. We let 7(1) = 1.

For a, βe A, n = m9

9 with meF, ge Z, we define the G-con-
volution ("Golomb" convolution), F, by

(1.1) (aVβ)(n) = Σιθί(md)β(mg/d) .
d\g

We define (aPβ)(l) — 1. This G-convolution is not of the Narkiewicz

type [2, 4].

In § 2, we show that {A, +, V) (where (a + β)(n) = α(w) + /S(^),
ne Z) is a commutative ring with unity and we characterize the
units and the divisors of zero. We define a G-multiplicative func-
tion and note that the set of G-multiplicative units in {A, +,F}
forms an Abelian group under the operation P.

We choose to define V as in (1.1) because then (vJPvo)(n) equals
Ύ(n), the number of distinct representations of n as αδ, afbeZ;
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this is an analog of τ(n) = (vo*vo)(n) which is the number of distinct
representations of n as a-b, a,be Z. In §3, F-analogs of the
Moebius function μ, the sum of divisors function σ, and Euler's
^-function are computed and interpreted.

In § 4, we state formulas and an algorithm for computing the
number of distinct representations of an integer n ^ 2 in the form

(1.2) n = aay '

with at e Z, i — 1, , k.

2. The ring {A, +, F}* First we state some properties related
to the G-convolution.

THEOREM 2.1. ( i ) The system {A, +, V) is a commutative ring
with unity εψ (where εF(n) — 1 if n — 1 or neF, ε?(n) = Q otherwise).

(ii) a is a unit in {A, +, V) if and only if ail) Φ 0 and
aim) Φ 0 for all meF.

(iii) A nonzero arithmetic function a is a nonzerodivisor in
{A, +, V) if and only if a(l) Φ 0 and for each meF there is a
positive integer g such that a(m9) Φ 0.

Proof. ( i ) The associativity of V follows from (1.1) and the
associativity of the Dirichlet convolution *. The commutativity of
V and the distributivity of V over + follow directly from the
definition of the G-convolution. If n — m9, ge Z, meF, then (εpVa){n) =
Σjd\g eΓ(md)a(m9/d) = a{m9) = a(n); (eΓFα)(l) = α(l). Therefore, εF is
the unity element in {A, +, V).

(ii) An element β in A such that aVβ — εv is defined if and
only if α(l)/S(l) = l, a(m)β(m) = l for meF, and Σ*d\9a(md)β(m9/d) = 0
for meF,geZ,g>l. Thus, α(l) ^ 0, α(m) ^ O f o r m e ί 7 , if and
only if a is a unit in {A, +, F}.

(iii) If α ( l ) = 0 , define /9eA by /3(1) = 1, β(n) = 0 if ^ > 1 .
Then {aVβ){n) = 0 for every % e Z and α is a divisor of zero. If
there exists an m e f such that α^m*) = 0 for every ge Z, define
β e A by /9(m) = 1, £(w) = 0 for neZ9n φ m. Then (aVβ)(n) = 0
for all ) i e 2 and α is a divisor of zero.

Assume that α is a zero divisor in {A, +,F}. Then there is
some βeA,βΦθ (where O(n)=0 for all neZ)f such that aPβ = O.
(1) If β(l) Φ 0 then aVβ = 0 implies that α(l)/3(l) - 0 and that
ail) = 0. (2) If /S(l) = 0, let n be the smallest positive integer such
that β(n) Φ 0; if n = mΌ, meF, ve Z, we show that α(mw) = 0 for
all weZ. First, (aVβ){mv) = Σ ϋ a(md)β{mv/d) = 0 implies that
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a{m)β(mv) = 0 and that a(m) = 0. And (aVβ)(m2v) == 0 implies that
a(m)β(m2v) + a(m2)β(mv) = 0 and so aim2) = 0. Assume that a(m*) =
0, 1 ^ ί < r. Then (aFβ)(mrv) = Σdir* ct(md)β(mrv/d) = 0 implies that
a(mr)β(mv) = 0 and α:(mr) = 0. Therefore, α(mw) = 0 for all w e Z
by induction. This completes the proof of the theorem.

We define ae A to be G-multiplicative if a(ΐ) — 1, and whenever
(α, 6) = 1 and meF, a(mab) = a(ma)a(mh).

THEOREM 2.2. The set of G-multiplicative functions which are
units in {A, + , V) form an abelian group under V.

Proof. If a and β are G-multiplicative, then aVβ is also; the
proof is similar to that of the multiplicativity of a*β given that a
and β are multiplicative [3, p. 93]. It is then easy to verify the
required group properties.

3* The functions σv, μv, φF. As noted earlier, 7 = v0Fv0 is the
F-analog of τ — vo*vo. For example, 7(64) = 7(26) = τ(6) = 4, and 64
can be represented in the form ab for α, b e Z in four ways: (21)6 =
26, (22)3 = 43, (23)2 = 82, and (26)1 = 641.

If we define σF by σv = v0Fv19 then for n = m9, meF, ge Z,
σ,(ri) = Σdiff w < i So σ,(^) is the sum of the α's such that ab = n,
whereas σ(n) = (v^v^n) is the sum of the α's such that α 6 =
w(α, b e Z).

An analog μv of the Moebius function μ (where μ satisfies
vo*μ = ε with ε(l) = 1, ε(n) = 0 otherwise) is defined by v0FμF — εF.
Then μf(n) = 1 if w = 1, JMΓ(W) = μ{g) it n = m\ meF, g e Z.

Euler's ^-function, which satisfies φ = μ*v^ (where vλ{n) — n for
all n e Z), has an analog φv with φF(ΐ) = 1, φv{ri) = (μpFv^n) =
Έjdig μ(d)m9/d for n = m9, meF, ge Z. Thus, φv(m) = m for m$F
and φ:(mp) = mp — m for meF, p prime. If w = mff, meF, ge Z,
then 0,-(%) is π minus the number of positive integers less than or
equal to n which are expressible as rd, r e Z, d\g, d> 1. Here, n
and rd have a common power d > 1 (since n = ad with α = m ^ ) ;
this corresponds, in the computation of φ{n), to nonrelativity-prime
n and m having a common divisor d > 1. To illustrate, ^F(64) =
26 - 23 - 22 + 21 = 64 - 10 = 54. The ten integers of the form rd,
reZ,d\Q,d>l,rd^ 64, are

I2, 22, 32, 42, 52, 62, 72, 82 = 43 = 26, 23, 33 .

And, for example, 32 and n = 82 have common power 2, while 23 and
n = 43 have common power 3.

It can be verified that 7, εF, v0, and μΓ are G-multiplicative
functions whereas vίf σF, and φΓ are not.
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If n = m9, meF, ge Z, then σF(n) — 2n has no solutions. But
if we define a G-perfect number n = m9, meF, ge Z, as one such
that Y[d\gm

d = n2, then n is G-perf ect if and only if g is perfect if
and only if {v^v^g) = 2g.

4* Power representations of n. If n = m*7, me F, g e Z, define
peA by ρ(n) = g; define <o(l) = 1. Then y(ri) = τ(|θ(w)) = (i;0Fi;0)(w) =
((^o*^o)°i°)W (where (a<>β)(n) = a(β(ri))). We note that μΓ(w) = μ(p(ri))
and s,(w) = e(ρ(n)).

Let iZjb(w) denote the number of distinct representations of n =
m9, meF, ge Z, in the form given in (1.2). (Assume that Rk(l) =1
for all k e Z.) We have the following formulas.

R,{n) = 1.

R2(n) = Ί{n) - τ(p(n)) = (v0Fv0)(n) .

RM = Σ 7 ( d ) - Σ τ(/o(d)) = (v0*(τop))(p(n))
d\g d\ρ in)

= Σ Σ 7(r) = Σ Σ τ{p(r)) = (.vX(v0*(?op))oP))(p(n))
d\g r\ρ{d) d\ρ(n) r\p(d)

Similar formulas can be written for Rk{n) for any ke Z.
If n > 1, then Rh(n) can be computed as follows. List dL such

that dj\g, list p(d,), list d2 such that d21/0(4), list /θ(d2), - , list <Z*_2

such that ίί&—21 ί°(<̂ fe—3)? list p(dk^2); and Rk(n) is the sum of the
number of divisors of the entries in the final list.

For example, if n = 20400, g = p{ri) = 24 52. For d^g, d2\p{d,),
we have these lists.

d1 = 1, 2, 4, 8, 16, 1-5, 2-5, 4-5, 8-5, 16-5, 1 55, 2 52, 4 52, 8 52, 16-52

p(dd = 1,1, 2, 3, 4, 1,1,1,1,1,2, 1, 2, 1,2

d2 = 1, 1, 1, 2, 1, 3,1, 2, 4, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2

p(d2) = 1, 1,1,1,1,1, 1,1, 2, 1,1,1,1,1, 1,1, 1, 1, 1,1, 1,1

da = 1,1,1,1,1,1,1,1, 1, 2, 1,1,1, 1,1, 1,1, 1, 1, 1,1, 1, 1

p(ds) = 1, 1,1,1,1,1, 1, 1, 1,1, 1,1, 1, 1,1, 1,1, 1, 1, 1, 1, 1,1

Then #3(20400) = 2r(l) + τ(2) + τ(3) + r(4) + 5τ(l) + r(2) + r(l) + r(2) +
r(l) + r(2) = 22. And i?4(20400) = 23, i25(20400) = 23; in fact, Rk(20im) =
23 for k Ξ> 4. There are four representations of » = 20400 in the
form given in (1.2) for k = 4 which correspond to 4 = 16 (since
τ(l) + r(l) + r(2) = 4). They are
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1 1 1 2
1 2 4 2

Y 1 6 ~4 Λ 2 Λ 2

where α = 335, 544, 320, 000, 000, 000, 000, 000, 000, 000, 000 (which is
2025 in expanded form). In only one of these representations is
at Φ 1, ί = 1, ., 4. In general, the number of distinct representa-
tions of n = mg, rneF, ge Z, in the form given in (1.2) with the
additional requirement that α* Φ 1, i = 1, , k, is the sum of the
number of divisors less one of the entries in the final list (for
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