FINITE GROUPS WITH A STANDARD SUBGROUP ISOMORPHIC TO $\operatorname{PSU}(4,2)$

Kensaku Gomi
The combined work of M. Aschbacher, G. Seitz, and I. Miyamoto classified finite groups G with a standard subgroup L isomorphic to $\operatorname{PSU}\left(4,2^{n}\right)$ such that either $n>1$ or $C_{G}(L)$ has noncyclic Sylow 2 -subgroups. In this paper, we study the case that $n=1$ and $C_{G}(L)$ has cyclic Sylow 2 -subgroups.

Introduction. A group L is quasisimple if L is its own commutator group and, modulo its center, L is simple. A quasisimple subgroup L of a finite group G is standard if its centralizer in G has even order, L is normal in the centralizer of every involution centralizing L, and L commutes with none of its conjugates. This definition of standard subgroups is equivalent to the original one given by M. Aschbacher in his fundamental paper [1].
I. Miyamoto has classified [23] finite groups G containing a standard subgroup L isomorphic to $\operatorname{PSU}\left(4,2^{n}\right)$ with $n>1$ such that $C_{G}(L)$ has cyclic Sylow 2-subgroups. Part of his argument, however, failed to apply to $\operatorname{PSU}(4,2)$. This exceptional nature of $\operatorname{PSU}(4,2)$ may be explained by the isomorphism

$$
P S U(4,2) \cong P S p(4,3) \cong P \Omega(5,3)
$$

Because of this, certain groups of characteristic 3 have standard subgroups isomorphic to $\operatorname{PSU}(4,2)$.

In this paper, we prove the following theorem.
Theorem. Let G be a finite group and suppose L is a standard subgroup of G with $L \cong \operatorname{PSU}(4,2)$. Furthermore, assume that $C_{G}(L)$ has cyclic Sylow 2-subgroups, and let X denote the normal closure of L in G. Then one of the following holds.
(1) $X / O(X)$ is a simple group of sectional 2 -rant 4.
(2) $X \cong \operatorname{PSL}(4,4)$ or $\operatorname{PSU}(4,2) \times \operatorname{PSU}(4,2)$.
(3) $N_{G}(L) / C_{G}(L) \cong \operatorname{Aut}(L)$, and for each central involution z of $L, C_{G}(z)$ has a quasisimple subgroup K that satisfies the following conditions:
(3.1) $z \in K$ and $W=O_{2}(K)$ is cyclic of order 4.
(3.2) $K /\langle z\rangle$ is a standard subgroup of $C_{G}(z) /\langle z\rangle$ and W is a Sylow 2-subgroup of $C_{G}(K /\langle z\rangle)$.
(3.3) Either $K / O(K) \cong S U(4,3)$ or $K / Z(K)$ has a Sylow 2-subgroup isomorphic to a Sylow 2-subgroup of $\operatorname{PSL}(6, q), q \equiv 3 \bmod 4$.

$$
\begin{equation*}
\left[K, O\left(C_{G}(z)\right)\right]=1 \tag{3.4}
\end{equation*}
$$

Remark. In Case (1), the structure of $X / O(X)$ can be determined by a theorem of D. Gorenstein and K. Harada [14]; we can show that $X / O(X)$ is isomorphic to $\operatorname{PSp}(4,3), \operatorname{PSp}(4,9), \operatorname{PSU}(4,3)$, $\operatorname{PSL}(4,3)$, or $\operatorname{PSL}(5,3)$. Case (3) occurs in the automorphism group of $\operatorname{PSU}(5,3)$ with $K \cong S U(4,3)$.

The proof of the theorem begins with a study of fusion of an involution t of $C_{G}(L)$. Let A be the unique elementary abelian subgroup of order 16 of a Sylow 2-subgroup of L. We show that the conjugacy class of t in $N_{G}(\langle t\rangle A)$ contains 1,6 , or 16 elements. If it contains 1 or 6 elements, then after determining the possible structure of a Sylow 2 -subgroup of G, we show $t \notin G^{\prime}$ by a transfer argument. It then follows that $N_{X}(A) / C_{X}(A) \cong A_{5}, \Sigma_{5}, A_{6}$ or Σ_{6}, and that $A \in \operatorname{Syl}_{2}\left(C_{X}(A)\right)$. If $N_{X}(A) / C_{X}(A) \cong A_{5}, \Sigma_{5}$ or A_{6}, a theorem of Harada [17] shows that $r(X)=4$. When $N_{X}(A) / C_{X}(A) \cong \Sigma_{6}$, we appeal to a theorem of G. Stroth [26]. Using an additional information, we show that this case does not occur. The analysis of the case where there are 16 conjugates of t follows the same line of arguments as in previous papers of Miyamoto and the author [11], [23] (we refer the reader to the introduction of [11]), although some additional argument is needed in the analysis of a subcase leading to Case (3) of the theorem.

Finally, we remark that the solvability of groups of odd order [6] is used implicitly throughout this paper.

Notation and Terminology. Our notation is standard and mainly taken from [12]. Possible exceptions are the use of the following:

$m(X)$	the 2-rank of X.
$r(X)$	the sectional 2-rank of X.
$I(X)$	the set of involutions of X. $\mathscr{E}^{*}(X)$
the set of maximal elementary abelian subgroups of X.	
X^{∞}	the final term of the derived series of X.
$J_{r}(X)$	the subgroup of X generated by the abelian 2-sub- groups of maximal rank.
X^{2}	elements of X.
$E(X)$	the product of the quasisimple subnormal subgroups of X.
$L(X)$	the 2-layer of X.
X wreath Y	the wreath product of X by Y.

$X * Y$	a central product of X and Y.
$f(X \bmod Y)$	the preimage in X of $f(X / Y)$, where f is a function
	from groups to groups.
$Z_{2^{n}}$	the cyclic group of order 2^{n}.
$E_{2^{n}}, n \geqq 2$	the elementary abelian group of order 2^{n}.
$D_{n}, n \geqq 6$	the dihedral group of order n.
Q_{8}	the quaternion group.
$A_{n}, \Sigma_{n}, n \geqq 3$	the alternating and symmetric group of degree n.
\boldsymbol{F}_{q}	the field of q elements.
$V(2, F)$	the vector space of 2-dimensional row vectors with
$M(4, F)$	coefficients in the field F.

An $A_{2^{n}}$-subgroup is an abelian subgroup of order 2^{n}, while an $E_{2^{n}}$-subgroup is an elementary abelian subgroup of order 2^{n}. Suppose $G \cong S L(2,4) \cong A_{5}$. Then G has two types of "natural" modules over \boldsymbol{F}_{2}. The one is $V\left(2, \boldsymbol{F}_{4}\right)$ viewed as an $S L(2,4)$-module in an obvious way. We call this the natural module for $G \cong S L(2,4)$. The other is the unique nontrivial irreducible constituent of the permutation module for A_{5}. We call this the natural module for $G \cong A_{5}$. We use the "bar" convention for homomorphic images. Thus if G is a group, N is a normal subgroup, and \bar{G} denotes the factor group G / N, then for any subset X of G, \bar{X} will denote the image of X under the natural projection $G \rightarrow \bar{G}$. A similar convention will be used when a group G has a permutation representation on a set Ω, where we write X^{Ω} instead of \bar{X}.

1. In this section, we collect a number of preliminary lemmas to be used in later sections.

Lemma (1A). Let R be a nonabelian 2-group with a cyclic maximal subgroup Q, and let $t \in I(Q)$ and $u \in I(R-Q)$. Then u is conjugate to tu in R.

Proof. This is a consequence of the classification of nonabelian 2-groups with a cyclic maximal subgroup. See Theorem 5.4.4. of [12].

Lemma (1B). Let G be a group which contains a direct product $H \times K$ of subgroups H and K. Assume that $|G: H K|=2$ and that an element of $G-H K$ interchanges H and K. Then $G-H K$ contains involutions and they are all conjugate in G.

Proof. Let $g \in G-H K$, and let $g^{2}=h k$ with $h \in H$ and $k \in K$.

Then $h k=(h k)^{g}=k^{g} h^{g}$, so $h^{g}=k$ and $k^{g}=h$. Hence

$$
\begin{aligned}
\left(g h^{-1}\right)^{2} & =g h^{-1} g h^{-1} \\
& =g^{2} g^{-1} h^{-1} g h^{-1} \\
& =(h k) k^{-1} h^{-1} \\
& =1 .
\end{aligned}
$$

Thus $G-H K$ contains an involution.
Now let $g \in G-H K$ and $g^{2}=1$. Let $h \in H$ and $k \in K$, and assume that $g h k$ is an involution. Then $(h k)^{g}=(h k)^{-1}$, so $h^{g}=k^{-1}$ and $k^{g}=h^{-1}$. Hence $h^{-1} g h=g g^{-1} h^{-1} g h=g h k$. That is, $g h k$ is conjugate to g. The proof is complete.

Lemma (1C). Let E be an elementary abelian 2-subgroup of a group G, and let t be an involution of $N_{G}(E)$. Then the following holds.
(1) $\left|E: C_{E}(t)\right| \leqq\left|C_{E}(t)\right|$, and equality holds if and only if $I(t E)=t^{E}$.
(2) If $\left|E: C_{E}(t)\right| \geqq 4$, then

$$
N_{G}(\langle E, t\rangle) \leqq N_{G}\left(\left\langle C_{E}(t), t\right\rangle\right) \cap N_{G}(E) .
$$

Proof. Commutation by t induces a homomorphism from E onto $[E, t]$, and so $|[E, t]|=\left|E: C_{E}(t)\right|$. Also, $[E, t] \leqq C_{E}(t)$. Hence $\left|E: C_{E}(t)\right| \leqq\left|C_{E}(t)\right|$. Since $|I(t E)|=\left|C_{E}(t)\right| \quad$ and $\quad\left|t^{E}\right|=\left|E: C_{E}(t)\right|$, equality holds if and only if $I(t E)=t^{E}$.

Under the hypothesis of (2), E and $\left\langle C_{E}(t), t\right\rangle$ are the only maximal elementary abelian subgroups of $\langle E, t\rangle$, and they have different orders. Hence (2) follows.

Lemma (1D). Let G be a finite group and let $g \in G$. Then $\left|C_{G}(g)\right| \geqq\left|G: G^{\prime}\right|$.

Proof. For any $x \in G, g^{-1} g^{x}=[g, x] \in G^{\prime}$. Hence $\left|G: C_{G}(g)\right|=\left|g^{G}\right| \leqq$ $\left|G^{\prime}\right|$.

Lemma (1E). Let R be an S_{2}-subgroup of a finite group G and S a normal subgroup of R with R / S abelian. Let x be an involution of $R-S$ and suppose that each extremal conjugate of x in R is contained in $x S$. Then $x \notin G^{\prime}$.

Proof. Let T be a subgroup of R with $S \leqq T \leqq R$ and $x \notin T$ subject to $|T|$ maximal. Then since R / S is abelian, R / T is cyclic. Also, each extremal conjugate of x in R is contained in $x T$. There-
fore, Lemma (1E) follows from [27], Corollary 5.3.2.
Lemma (1F). Let T be an S_{2}-subgroup of a finite group G, and let S be a normal subgroup of T such that $T / S \cong E_{4}$ and $S \leqq G^{\infty}$. Let $a \in I(T-S)$ and $b \in I(T-\langle a, S\rangle)$, and suppose $(a b)^{2}=1, a^{G} \cap$ $\langle b, S\rangle=\varnothing, b^{G} \cap S=\varnothing$, and $(a b)^{G} \cap S=\varnothing$. Then $S \in \operatorname{Syl}_{2}\left(G^{\infty}\right)$.

Proof. By Lemma (1E), $a \in G^{\prime}$ and so $T \cap G^{\prime}=S,\langle b, S\rangle$, or $\langle a b, S\rangle$. If $T \cap G^{\prime} \neq S$, then $T \cap G^{\prime \prime}=S$ again by Lemma (1E). Thus $S \in \operatorname{Syl}_{2}\left(G^{\infty}\right)$.

Lemma (1G). Let T be an S_{2}-subgroup of a finite group G, and let S be a normal subgroup of T such that $T / S \cong D_{8}$ and $S \leqq G^{\infty}$. Let $Z / S=Z(T / S)$, and let E / S and F / S be the fours subgroups of T / S. Let $a \in I(Z-S)$ and $b \in I(E-Z)$, and suppose $a^{G} \cap F \leqq a S$ and $b^{G} \cap F=\varnothing$. Then $S \in \operatorname{Syl}_{2}\left(G^{\infty}\right)$.

Proof. By Lemma (1E), $b \notin G^{\prime}$ and so $E \cap G^{\prime}=S$ or Z, since $b S \sim a b S$ in T. If $E \cap G^{\prime}=S$, then $T \cap G^{\prime}=S$ as $S \leqq T \cap G^{\prime} \triangleleft T$. Suppose that $E \cap G^{\prime}=Z$. Then either $T \cap G^{\prime}=F$ or $T \cap G^{\prime} / S$ is cyclic. Hence $a^{G} \cap T \cap G^{\prime} \leqq a S$ and so $a \notin G^{\prime \prime}$ by Lemma (1E). Thus $T \cap G^{\prime \prime}=S$. Therefore, $S \in \operatorname{Syl}_{2}\left(G^{\infty}\right)$.

Lemma (1H). Let A be a standard subgroup of a finite group G, and assume that $C_{G}(A)$ has a cyclic S_{2}-subgroup. Then the following holds.
(1) $A O(G) \triangleleft G$ if and only if an involution t of $C_{G}(A)$ is contained in $Z^{*}(G)$.
(2) $A O(G) / O(G)$ is a standard subgroup of $G / O(G)$ and $C_{G}(A O(G) /$ $O(G))$ has a cyclic S_{2}-subgroup.
(3) If $A O(G) \nrightarrow G$, then either $\left\langle A^{G}\right\rangle O(G) / O(G)$ is simple or $\left\langle A^{G}\right\rangle O(G) / O(G) \cong A / Z(A) \times A / Z(A)$. In either case, $C_{G}\left(\left\langle A^{G}\right\rangle O(G) / O(G)\right)=$ $O(G)$.
(4) If $A O(G) \nexists G$ and if there is a t-invariant 2 -subgroup P of $\left\langle A^{G}\right\rangle$ such that $1 \neq[P, t] \leqq C_{G}\left(C_{o(G)}(t)\right)$, then $\left[\left\langle A^{G}\right\rangle, O(G)\right]=1$.

Proof. Let $t \in I(C(A))$ and let $\bar{G}=G / O(G)$. Then $\bar{t} \in I(\bar{G})$ and \bar{A} is a quasisimple normal subgroup of $C(\bar{t})$. Let $\bar{x} \in C(\bar{A}) \cap C(\bar{t})$. We may choose $x \in C(t)$. Then $[x, A] \leqq A \cap O(G) \leqq Z(A)$, so $[x, A]=1$. Thus $C(\bar{A}) \cap C(\bar{t})=\overline{C(A) \cap C(t)}$. Therefore, $C(\bar{A})$ has cyclic S_{2}-subgroups and (2) follows.

Assume that $\bar{A} \triangleleft \bar{G}$. Then $C(\bar{A}) \triangleleft \bar{G}$ and so $C(\bar{A})$ is a cyclic 2 group and $\bar{t} \in Z(\bar{G})$. Conversely, if $\bar{t} \in Z(\bar{G})$, then $\bar{A} \triangleleft C(\bar{t})=\bar{G}$. This proves (1).

Assume that $\bar{A} \nexists \bar{G}$. Then by a result of Aschbacher, $F^{*}(\bar{G})=$ $\left\langle\bar{A}^{\bar{G}}\right\rangle$ and either $F^{*}(\bar{G})$ is simple or \bar{A} is simple, $F^{*}(\bar{G}) \cong \bar{A} \times \bar{A}$, and \bar{t} interchanges two components of $F^{*}(\bar{G})$. Let $L=\left\langle A^{G}\right\rangle O(G)$ and assume that there is a t-invariant 2 -subgroup P of L such that $1 \neq[P, t]$ and $\left[[P, t], C_{o(G)}(t)\right]=1$. Then $[[P, t], O(G)]=1$ by $[11,(1 \mathrm{~J})]$. Hence $C_{L}(O(L)) \not \equiv O(L)$. Since $\bar{L}=L / O(L)$ is simple or a direct product of simple groups interchanged by t, it follows that $L=$ $C_{L}(O(L)) O(L)$. Thus $\left\langle A^{G}\right\rangle \leqq C_{L}(O(L))$ and (4) follows.

Lemma (1I). Let $K=P S L(n, q), n \geqq 2$, or $\operatorname{PSU}(n, q), n \geqq 3$, q odd, and let α be an involutory automorphism of K that is not a product of an inner automorphism and a diagonal automorphism. Then $C_{K}(\alpha)$ is solvable only if $K=\operatorname{PSL}(2,9), \operatorname{PSL}(3,3), \operatorname{PSL}(4,3)$, $\operatorname{PSU}(3,3)$, or $\operatorname{PSU}(4,3)$. If $C_{K}(\alpha)$ is not solvable, then the structure of $C_{K}(\alpha)^{\infty}$ is given on the following table.

K	$C_{K}(\alpha)^{\infty}$
$P S L(n, q)$	$P \Omega^{ \pm}(n, q)$,
	$P S p(n, q), n$ even,
	$P S L(n, p), q=p^{2}$,
	$P S U(n, p), q=p^{2}$,
$P S U(n, q)$	$P \Omega^{ \pm}(n, q)$,
	$P S p(n, q), n$ even.

Proof. Consider the case $K=P S L(n, q)$ first. Set $G=G L(n, q)$ and $H=S L(n, q)$. Let τ be the transpose-inverse mapping of G, and if $q=p^{2}$, let σ be the automorphism of G induced by that of \boldsymbol{F}_{q} of order 2. Then α is induced on $K=H / Z(H)$ by an element x of $\tau G, \sigma G$ or $\tau \sigma G$ such that $x^{2} \in Z(G)$.

First, assume that $x \in \tau G$. Then $n \geqq 3$. Let $x=\tau a, a \in G$. Then as $x^{2} \in Z(G)$, it follows that ${ }^{t} a=a$ or $-a$, where ${ }^{t} a$ is the transposed matrix of a. We also have that

$$
C_{G}(x)=\left\{\left.y \in G\right|^{t} y a y=a\right\}
$$

That is, $C_{G}(x)$ is the orthogonal or symplectic group defined by the symmetric or alternating matrix a. Now Aut $(\langle x, Z(G)\rangle)$ is solvable, so $N_{G}(\langle x, Z(G)\rangle)^{\infty} \leqq C_{G}(x)$. Also, $C_{G}(x)^{\infty} \leqq H$. Thus $C_{K}(\alpha)^{\infty}=C_{G}(x)^{\infty} Z(H) /$ $Z(H)$, and so $C_{K}(\alpha)$ is solvable only if $(n, q)=(3,3)$ or $(4,3)$, and if $C_{K}(\alpha)$ is nonsolvable then $C_{K}(\alpha)^{\infty} \cong P \Omega^{ \pm}(n, q)$ or $P S p(n, q)$.

Next, consider the case $x \in \sigma G$. Let $x=\sigma a, a \in G$. Then as $x^{2} \in Z(G)$, we see that $c=a^{\sigma} \alpha$ is a scalar matrix such that $c^{p-1}=1$.

Hence there is a scalar matrix $d \in G$ such that $d^{p+1} c=1$, so that $(d a)^{a} d a=1$. Replacing x by $x d$, we may assume that $a^{a} a=1$. By [20, Proposition 3], there is an element $g \in G$ such that $a=g^{\sigma} g^{-1}$. Thus $x^{g}=\sigma$ and we may assume from the outset that $x=\sigma$. Therefore, $C_{G}(x) \cong G L(n, p)$, and so $C_{K}(\alpha)$ is solvable only if $(n, q)=$ $(2,9)$, and if $C_{K}(\alpha)$ is nonsolvable, then $C_{K}(\alpha)^{\infty} \cong \operatorname{PSL}(n, p)$.

Assume, therefore, $x \in \tau \sigma G$. Let $x=\tau \sigma a, a \in G$. As above, we may assume that $a^{=\sigma} a=1$. That is, a is a hermitian matrix. Thus $C_{G}(x)$ is the unitary group defined by a over F_{q}, and so $C_{K}(\alpha)$ is solvable only if $(n, q)=(2,9)$, and if $C_{K}(\alpha)$ is nonsolvable, then $C_{K}(\alpha)^{\infty} \cong \operatorname{PSU}(n, p)$.

Now consider the case $K=\operatorname{PSU}(n, q)$. In this case, we set $G^{*}=G L\left(n, q^{2}\right), G=U(n, q)$, and $H=S U(n, q)$. Let τ be the trans-pose-inverse mapping of G^{*} and let σ be the automorphism of G^{*} induced by that of $\boldsymbol{F}_{q^{2}}$ of order 2. Then we may regard $G=C_{G^{*}}(\sigma \tau)$, and assume that α is induced on $K=H / Z(H)$ by an element x of $\sigma Z\left(G^{*}\right) G$ such that $x^{2} \in Z\left(G^{*}\right)$. As before, we may assume that $x=\sigma a, a \in Z\left(G^{*}\right) G$, and $a^{\sigma} a=1$. Let $a=a_{1} a_{2}$ with $a_{1} \in Z\left(G^{*}\right)$ and $a_{2} \in G$. Then

$$
\begin{equation*}
a^{\sigma z}=a_{1}^{-q} a_{2}=a_{1}^{-q-1} a=e^{-1} a, \tag{1}
\end{equation*}
$$

where $e=a_{1}^{q+1}$. Now there is an element $g \in G^{*}$ such that $a=g^{\sigma} g^{-1}$ by [20, Proposition 3]. Hence by (1), $\left(g^{\sigma} g^{-1}\right)^{\sigma \tau}=e^{-1}\left(g^{\sigma} g^{-1}\right)$. That is,

$$
\begin{equation*}
e g^{\tau} g^{-\sigma \tau}=g^{\sigma} g^{-1} \tag{2}
\end{equation*}
$$

Now $(\sigma \tau)^{g}=\sigma \tau g^{-\sigma \tau} g$, so let $h=g^{-\sigma \tau} g$. Then $h^{\tau}=g^{-\sigma} g^{\tau}=e^{-1} g^{-1} g^{\sigma \tau}=$ $e^{-1} h^{-1}$ by (2), so

$$
{ }^{t} h=e h
$$

Hence

$$
e= \pm 1
$$

Also,

$$
h^{\sigma}=g^{-\tau} g^{\sigma}=e^{-1} g^{-\sigma \tau} g=e h
$$

by (2). Choose an element $d \in Z\left(G^{*}\right)$ such that $d^{q-1}=e^{-1}$ and set $h_{1}=d h$. Then ${ }^{t} h_{1}=e h_{1}$ and $h_{1}^{\sigma}=d^{q} e h=d^{q-1} e h_{1}=h_{1}$. Thus h_{1} is a symmetric or alternating matrix in $C_{G^{*}}(\sigma)=G L(n, q)$. Now $x^{g}=\sigma$ as $a^{\sigma} a=1$, so

$$
\begin{aligned}
C_{G}(x) & =C_{G^{*}}(x) \cap C_{G^{*}}(\sigma \tau) \\
& \cong C_{G^{*}}(\sigma) \cap C_{G^{*}}\left((\sigma \tau)^{g}\right) \\
& =C_{G^{*}}(\sigma) \cap C_{G^{*}}(\sigma \tau h) \\
& =C_{G^{*}}(\sigma) \cap C_{G^{*}}\left(\tau h_{1}\right) .
\end{aligned}
$$

Thus $C_{G}(x) \cong O^{ \pm}(n, q)$ or $S p(n, q)$ by a previous discussion. Hence $C_{K}(\alpha)$ is solvable only if $(n, q)=(3,3)$ or $(4,3)$, and if $C_{K}(\alpha)$ is nonsolvable, then $C_{K}(\alpha)^{\infty} \cong P \Omega^{ \pm}(n, q)$ or $\operatorname{PSp}(n, q)$.

Lemma (1J). Let E be an elementary abelian group of order. 16 on which $M \cong S L(2,4) \cong A_{5}$ acts. Let $R \in \operatorname{Syl}_{2}(M)$.
(1) If $\left|C_{E}(R)\right|=4$, then E is a natural module for $M \cong$ $S L(2,4)$.
(2) If $\left|C_{E}(R)\right|=2$, then E is a natural module for $M \cong A_{5}$.

Proof. (1) follows from [11, (1K)]. Assume that $\left|C_{E}(R)\right|=2$. Let $a_{1}, a_{2}, \cdots, a_{5}$ be the nontrivial fixed points on E of S_{2}-subgroups of M, so that $\left\{a_{1}, a_{2}, \cdots, a_{5}\right\}$ is M-invariant. Since M acts irreducibly on E, we have $a_{1} a_{2} \cdots a_{5}=1$ and $E=\left\langle a_{1}, a_{2}, \cdots, a_{5}\right\rangle$. Now let V be the direct product of E and a group $\langle a\rangle$ of order 2 , and let M act on V in an obvious fashion. Then, by the above remark, $\left\{a a_{1}, a a_{2}, \cdots, a a_{5}\right\}$ is an M-invariant set which generates V. Thus V is a permutation module for $M \cong A_{5}$ and E is a nontrivial irreducible constituent of V. This proves (2).

Lemma (1K). Let E be an elementary abelian group of order 2^{8}, and let K and L be subgroups of $\operatorname{Aut}(E)$ such that $S L(2,4) \cong$ $K \leqq L \cong S L(2,16)$. Let $R \in \operatorname{Syl}_{2}(K)$, and let $R \leqq S \in \operatorname{Syl}_{2}(L)$. Assume that $\left|C_{E}(S)\right|=4$. Then there is no nontrivial K-invariant subgroup A of E such that $C_{A}(R)<C_{E}(S)$.

Proof. Let $W=C_{E}(S)$ and assume, by way of contradiction, that A is a K-invariant subgroup of E such that $1 \neq C_{A}(R)<W$. Clearly, $N_{L}(S)$ normalizes W. As $N_{K}(R) \leqq N_{L}(S)$ and $N_{K}(R)$ centralizes $C_{A}(R)$ which is a subgroup of W of order 2, we have that $\left[N_{K}(R), W\right]=1$. As $\left|N_{L}(S) / S\right|=15$ and $N_{K}(R) S / S$ is an S_{3}-subgroup of $N_{L}(S) / S$, it follows that $\left[N_{L}(S), W\right]=1$.

Let $s \in I\left(L-N_{L}(S)\right)$ and set $H=N_{L}(S) \cap N_{L}\left(S^{s}\right)$. Notice that H is a complement for S in $N_{L}(S)$. Furthermore, $W \cap W^{s}=C_{E}(L)=1$, as $L=\left\langle S, S^{s}\right\rangle$ and L acts irreducibly on E by [8, (4B)].

Now $\left[H, W W^{s}\right]=1$, as $[H, W]=1$ by the first paragraph and $H^{s}=H$. For any $w \in W^{*}$, let $\hat{w}=w w^{s}$. Then as $\langle H, s\rangle \leqq C_{L}(\hat{w})$ and $\langle H, s\rangle$ is a maximal subgroup of L, we have that $C_{L}(\hat{w})=\langle H, s\rangle$. Consequently, $\left|\hat{w}^{L}\right|=|L:\langle H, s\rangle|=136$. As $136 \times 2=272>255=$ $\left|E^{\#}\right|$, it follows that $\hat{w}_{1} \sim \hat{w}_{2}$ for any $w_{1}, w_{2} \in W^{\ddagger}$. Choose $x \in L$ so that $\hat{w}_{1}^{x}=\hat{w}_{2}$. Then $\langle H, s\rangle^{x}=C_{L}\left(\hat{w}_{1}\right)^{x}=C_{L}\left(\hat{w}_{2}\right)=\langle H, s\rangle$, and so $x \in$ $N_{L}(\langle H, s\rangle)=\langle H, s\rangle$. This is a contradiction as we may choose $\widehat{w}_{1} \neq \hat{w}_{2}$.

Now we define some subgroups of $S L(4,4)$. Let M^{*}, R^{*}, D^{*}, and E^{*} be the groups consisting of the following matrices, respectively.

$$
\begin{aligned}
& \left(\begin{array}{llll}
A & \\
& I
\end{array}\right), A \in S L(2,4), \text { and } I \text { is the } 2 \times 2 \text { unit matrix, } \\
& \left(\begin{array}{llll}
1 & & & \\
a & 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right), a \in \boldsymbol{F}_{4}, \\
& \left(\begin{array}{llll}
a^{-1} & & & \\
& & a^{-1} & \\
& & & a \\
& & & \\
\left.\begin{array}{llll}
1 & & & \\
& & & \\
a & & 1 & \\
c & d & & 1
\end{array}\right), a \in \boldsymbol{F}_{4}-\{0\}, a, b, c, d \in \boldsymbol{F}_{4} .
\end{array}\right.
\end{aligned}
$$

Thus $R^{*} \in \operatorname{Syl}_{2}\left(M^{*}\right)$, and M^{*} and D^{*} normalize E^{*}. Let f^{*} be the field automorphism of $S L(4,4)$ and let t^{*} be the graph-field automorphism of $S L(4,4)$. That is, f^{*} is induced by the involution of Aut $\left(\boldsymbol{F}_{4}\right)$ and t^{*} is the transpose-inverse mapping followed by f^{*} and conjugation by $\left.\left(1_{1}^{1}\right)^{1}\right)$. Let $L^{*}=M^{*} M^{* t^{*}}$.

We shall consider the following situation.
Hypothesis (1.1). E is an elementary abelian group of order 2^{8}, and N is a subgroup of $\operatorname{Aut}(E)$ which has a normal subgroup L satisfying the following conditions.
(1) $L=M \times M^{t}, t \in I(N), M \cong S L(2,4)$.
(2) $C_{N}(L)=O(N)$.
(3) For $R \in \operatorname{Syl}_{2}(M), W=C_{E}\left(R R^{t}\right)$ is a fours group.

Lemma (1L). Assume Hypothesis (1.1). Furthemore, assume the following.
(4) $\quad C_{E}(M)=1$.
(5) For a complement H for R in $N_{M}(R)$, $[W, h t h t]=1$ for all $h \in H$.

Then there is a monomorphism σ from the semidirect product
of N and E into $\left\langle M^{*}, E^{*}, D^{*}, t^{*}, f^{*}\right\rangle$ such that $M^{\sigma}=M^{*}, R^{\sigma}=R^{*}$, $O(N)^{\sigma} \leqq D^{*}, E^{\sigma}=E^{*}, t^{\sigma}=t^{*}$, and $f^{\sigma}=f^{*}$ if f is an element of $C(t) \cap N_{N}(M)$ acting as a field automorphism on $C_{L}(t) \cong S L(2,4)$.

Proof. Let $r \in I\left(N_{M}(H)\right)$ and set $s=r$ trt. We use the additive notation for E. As $M=\left\langle R, R^{r}\right\rangle$, the condition (4) implies that $C_{E}(R) \cap C_{E}\left(R^{r}\right)=\{0\}$. In particular, $W \cap W^{r}=\{0\}$, and as $W+W^{r} \leqq$ $C_{E}\left(R^{t}\right),\left|C_{E}\left(R^{t}\right)\right|=\left|C_{E}\left(R^{r t}\right)\right| \geqq 2^{4}$. As $C_{E}\left(R^{t}\right) \cap C_{E}\left(R^{r t}\right)=\{0\}$, we conclude that

$$
E=C_{E}\left(R^{t}\right) \oplus C_{E}\left(R^{r t}\right)
$$

Also,

$$
C_{E}\left(R^{t}\right)=W \oplus W^{r} \text { and } C_{E}\left(R^{r t}\right)=C_{E}\left(R^{t}\right)^{t r t}=W^{t r t} \oplus W^{s}
$$

Furthermore, as $C_{E}(R) \cap C_{E}\left(R^{t}\right)=W$ has order 4, Lemma (1J) shows that $C_{E}\left(R^{t}\right)$ and $C_{E}\left(R^{r t}\right)$ are natural modules for $M \cong S L(2,4)$. This proves that we can identify M with M^{*} so that $E \cong E^{*}$ as modules for M. More precisely, if $w \in C_{W}(t)^{\#}, H=\langle h\rangle$, and $\boldsymbol{F}_{4}=\left\{0,1, x, x^{2}\right\}$, then E and E^{*} can be identified by the mapping which associates with $w^{h^{a}}+w^{h^{b_{r}}}+w^{k^{c_{t r t}}}+w^{h^{d_{s}}}$, where $a, b, c, d \in\{0,1,2\}$, the matrix

$$
\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
x^{c} & x^{d} & 1 & \\
x^{a} & x^{b} & & 1
\end{array}\right)
$$

and the action of an element of M on E identified with E^{*} is the conjugation by the corresponding element of M^{*}. In this identification, R^{*} corresponds to R.

Using the condition (5), we have that for each $i \in\{0,1,2\}$,

$$
\begin{aligned}
& \left(w^{h^{i}}\right)^{t}=w^{h^{-i}} \\
& \left(w^{i^{i} r}\right)^{t}=w^{h^{-i} t_{t r t}} \\
& \left(w^{i_{t r t}}\right)^{t}=w^{h^{-i_{r}}} \\
& \left(w^{\left.h^{i}\right)^{t}}=w^{h^{-i_{s}}}\right.
\end{aligned}
$$

This shows that we can identify t with t^{*}. Thus $\langle M, t\rangle E \cong$ $\left\langle M^{*}, t^{*}\right\rangle E^{*}$.

Suppose $O(N) \neq 1$. The $A \times B$-lemma [12, Theorem 5.3.4] shows that $O(N)$ acts regularly on W^{\ddagger}. Hence $|O(N)|=3$ and there is an element $z \in O(N)$ such that $w^{z}=w^{h}$. Then a computation similar to the above shows that $O(N)$ can be identified with D^{*}.

If $L O(N)=N(M)$, then $N=\langle M, O(N), t\rangle$ so the above paragraphs prove the lemma. Suppose, therefore, that $L O(N)<N(M)$.

Now let f be an element of $N(M)$ satisfying the following conditions:
(*) $\quad f$ inverts $H, f \in C(s)$, and $f \in C(w)$.
The second condition implies that f centralizes r and trt. Therefore, by a computation similar to that in previous paragraphs, we can show that f can be identified with f^{*}.

Suppose that $C\left(M^{t}\right) \neq M O(N)$. Then there is an involution $f \in C\left(M^{t}\right) \cap N(R)$ that satisfies the first two conditions in (*). The f normalizes $R R^{t}$ and so acts on W. Hence if $O(N) \neq 1$, there is an element $z \in O(N)$ such that $w^{f}=w^{2}$, and so $f z^{-1}$ satisfies (*). Assume that $O(N)=1$. Then $[f, t f t] \in C(M) \cap C\left(M^{t}\right) \leqq C(L)=O(N)=1$, so that $(f t)^{4}=1$. Thus $\langle f, t\rangle$ is a 2 -group acting on W, and so it centralizes some nontrivial element of W. As $C_{w}(t)=\langle w\rangle$, it follows that $w^{f}=w$. Therefore, we can always choose an element $f \in C\left(M^{t}\right)$ that satisfies (*). By the above paragraph, f acts as the field automorphism on E. It follows that $[f, t]$ centralizes E, and therefore $[f, t]=1$. But then $f=t f t \in C\left(M^{t}\right) \cap C(M)=O(N)$, which is a contradiction. Therefore, $C\left(M^{t}\right)=M O(N)$. This implies that $L O(N)$ has index 2 in $N(M)$.

Let K / L be an S_{2}-subgroup of N / L with $t \in K$. Notice that $K / L \cong E_{4}$. As $I(L t)=t^{L}$ by Lemma (1B), $K=L C_{K}(t)$ and so $\mid C_{K}(t) \cap$ $N(M): C_{L}(t) \mid=2$. As $C_{L}(t)=\{x t x t \mid x \in M\} \cong M \cong S L(2,4), \quad N(M) \cap$ $C\left(C_{L}(t)\right)=C(L)=O(N)$ and it follows that $C_{K}(t) \cap N(M) \cap C\left(C_{L}(t)\right)=1$. Thus we may choose an involution $f \in C(t) \cap N(M)$ which acts on $C_{L}(t)$ as the field automorphism. Then f acts as the field automorphism both on M and on M^{t}. In particular, f inverts H and centralizes s. Moreover, $f \in N\left(R R^{t}\right)$, so f centralizes $\langle w\rangle=C_{w}(t)$. Thus f satisfies $\left(^{*}\right)$ and therefore f can be identified with f^{*}. As $N=\langle M, O(N), t, f\rangle$, we have proved the lemma.

Lemma (1M). Assume Hypothesis (1.1). Furthermore, assume the following conditions.
(4) $C_{E}(M) \neq 1$.
(5) $W \cap W^{\text {rtrt }}=1$ for $r \in I(M-R)$.

Then $E=C_{E}(M) \times C_{E}\left(M^{t}\right)$, and $C_{E}\left(M^{t}\right)$ is a natural module for $M \cong A_{5}$.

Proof. Set $s=r t r t$. Then

$$
\begin{aligned}
W^{s} & =\left(C_{E}(R) \cap C_{E}\left(R^{t}\right)\right)^{r t r t} \\
& =C_{E}(R)^{r} \cap C_{E}\left(R^{t}\right)^{t r t} \\
& =C_{E}(R)^{r} \cap C_{E}(R)^{r t} .
\end{aligned}
$$

As $M=\left\langle R, R^{r}\right\rangle$, we may deduce as follows:

$$
\begin{aligned}
C_{E}(M) & \cap C_{E}\left(M^{t}\right) \\
& =C_{E}(R) \cap C_{E}\left(R^{r}\right) \cap C_{E}\left(R^{t}\right) \cap C_{E}\left(R^{r t}\right) \\
& =\left(C_{E}(R) \cap C_{E}\left(R^{t}\right)\right) \cap\left(C_{E}\left(R^{r}\right) \cap C_{E}\left(R^{r t}\right)\right) \\
& =W \cap W^{s} \\
& =1
\end{aligned}
$$

In particular, M acts on $C_{E}\left(M^{t}\right)$ nontrivially, and so $\left|C_{E}\left(M^{t}\right)\right| \geqq 2^{4}$. As $|E|=2^{8}$, we must have that $E=C_{E}(M) \times C_{E}\left(M^{t}\right)$. Moreover, as R normalizes $C_{E}(M)$ and $C_{E}\left(M^{t}\right)$, it follows that

$$
\begin{aligned}
C_{E}(R) & =\left(C_{E}(M) \cap C_{E}(R)\right) \times\left(C_{E}\left(M^{t}\right) \cap C_{E}(R)\right) \\
& =C_{E}(M) \times\left(C_{E}\left(M^{t}\right) \cap C_{E}(R)\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
W & =C_{E}(R) \cap C_{E}\left(R^{t}\right) \\
& =\left(C_{E}(M) \cap C_{E}\left(R^{t}\right)\right) \times\left(C_{E}\left(M^{t}\right) \cap C_{E}(R)\right) .
\end{aligned}
$$

Since $|W|=4$, we conclude that $\left|C_{E}\left(M^{t}\right) \cap C_{E}(R)\right|=2$. Thus, $C_{E}\left(M^{t}\right)$ is a natural module for $M \cong A_{5}$ by Lemma (1J).

Lemma (1N). Let t be an involution of a finite group G, and assume that $C(t)$ has a normal subgroup L isomorphic to $S L(2,4)$ such that $\langle t\rangle \in \operatorname{Syl}_{2}(C(L) \cap C(t))$. Furthermore, assume that an $S_{2}-$ subgroup R of L is contained in an $N(R) \cap C(t)$-invariant E_{16}-subgroup S of G. Then $X=\left\langle L^{G}\right\rangle$ is isomorphic to $S L(2,16)$ or $S L(2,4) \times S L(2,4), C(X)=O(G)$, and $S \in \operatorname{Syl}_{2}(X)$.

Proof. Let bars denote images in $G / O(G)$. Then by Lemma $(1 \mathrm{H}), \bar{L}$ is a standard subgroup of \bar{G} and $C(\bar{L})$ has a cyclic S_{2}-subgroup. Let H be an S_{3}-subgroup of $N_{L}(R)$. Then commutation by t induces an H-isomorphism $S / R \rightarrow R$, and since $R=[R, H]$, it follows that $S=[S, H]$. Thus $S \leqq X$, and in particular, $m(X) \geqq 4$. Appealing to [16], we now get that $\bar{X} \cong S L(2,16), S L(2,4) \times$ $S L(2,4)$ or $\operatorname{PSL}(3,4)$. If $\bar{X} \cong P S L(3,4)$, then we must have that \bar{t} acts on \bar{X} as a graph automorphism. But then \bar{t} does not normalize any E_{16}-subgroup of \bar{X}. Therefore, $\bar{X} \cong S L(2,16)$ or $S L(2,4) \times S L(2,4)$ and so $S \in \operatorname{Syl}_{2}(X)$. Since $R=[S, t] \leqq L$, (3) and (4) of Lemma (1H) show that $C(X)=O(G)$ and $X \cong S L(2,16)$ or $S L(2,4) \times S L(2,4)$.

Lemma (1P). Let G be a finite group and t an involution of G. Assume that $C(t)=K \times\langle t\rangle \times O(C(t))$ with $K \cong S p(4,2)$. Assume
furthermore that G has a t-invariant subgroup M isomorphic to the commutator subgroup of a maximal parabolic subgroup of $S p(4,4)$ and that conjugation by t induces the same automorphism of M as the involutory field automorphism of $S p(4,4)$. Then $E(G) \cong S p(4,4)$ and $C(E(G))=O(G)$.

Proof. Let S be a t-invariant S_{2}-subgroup of M and let $T=$ $\langle S, t\rangle$. We show that $I(S t)=t^{T}=t^{G} \cap T$. Our assumption on the action of t on M in particular implies that $I(S t)=t^{T}$, so $I(S t) \leqq$ $t^{G} \cap T$. By assumption, $m\left(C_{s}(x)\right)=6$ for any $x \in I(S)$ and so, as $m(C(t))=4, t^{G} \cap S=\varnothing$. Thus $t^{G} \cap T=I(S t)$.

Let $T \leqq U \in \operatorname{Syl}_{2}(N(T))$. Then as $t^{G} \cap T=t^{T}, \quad U=T C_{U}(t) . \quad$ By hypothesis, $C_{S}(t)$ is isomorphic to an S_{2}-subgroup of $S p(4,2)$, so $C_{T}(t) \in \operatorname{Syl}_{2}(C(t))$. Therefore, $C_{U}(t)=C_{T}(t)$ and $U=T$. This shows that $T \in \operatorname{Syl}_{2}(G)$.

Since $t^{G} \cap S=\varnothing$, Lemma (1E) shows that $t \notin G^{\prime}$, and since $M=M^{\prime} \leqq G^{\prime}$, it follows that $S \in \operatorname{Syl}_{2}\left(G^{\prime}\right)$. Thus, $X=\left\langle K^{\prime \sigma}\right\rangle$ has S_{2}-subgroups of class at most 2 . Now, $K^{\prime} \cong A_{6}$ is standard in G and $C\left(K^{\prime}\right)$ has cyclic S_{2}-subgroups. Moreover, $K^{\prime} O(G) \nexists G$ by Lemma (1 H) as $t \notin Z^{*}(G)$. Hence if bars denote images in $G / O(G)$, the same lemma shows that $C(\bar{X})=1$ and either \bar{X} is simple or $\bar{X} \cong A_{6} \times A_{6}$. In the first case, \bar{X} is of known type by [9], and in either case $\bar{G}^{\infty}=\bar{X}$. Thus $\bar{M}=\bar{M}^{\infty} \leqq \bar{X}$ and $\bar{S} \in \operatorname{Syl}_{2}(\bar{X})$. Therefore, $\bar{X} \cong S p(4,4)$. Let E be an E_{64} subgroup of S. By hypothesis, $[E, t]=C_{E}(t) \cong E_{8}$, and hence $[[E, t], O(C(t))]=1$ by the structure of $C(t)$. Therefore, $E(G) \cong S p(4,4)$ and $C(E(G))=O(G)$ by (3) and (4) of Lemma (1 H).

Lemma (1Q). Let G be a finite simple group containing an E_{16}-subgroup A such that $N(A) / C(A) \cong A_{6}$ and $A \in \operatorname{Syl}_{2}(C(A))$. Then $G \cong M_{22}, \operatorname{PSL}(4, q)(q \equiv 5 \bmod 8)$, or $\operatorname{PSU}(4, q)(q \equiv 3 \bmod 8)$.

Proof. The proof of Lemma 12 of [17] shows that G has S_{2} subgroups of type \hat{A}_{8} or \hat{A}_{10}. Then by [13] and [21], G is isomorphic to one of the following groups: $M c, M_{22}, M_{23}, P S L(4, q)(q \equiv 5$ $\bmod 8), P S U(4, q)(q \equiv 3 \bmod 8)$, and $L y$. The groups $M c, M_{23}$, and $L y$ have no E_{16}-subgroup whose automizer is isomorphic to A_{6} (see a table on p. 543 of [7] and Proposition 9.1 of [13]). Thus we have the result.

Lemma (1R). Let \hat{G} be a finite group and \hat{Z} a subgroup of $Z(\widehat{G})$ isomorphic to Z_{4}. Set $G=\widehat{G} / \hat{Z}$ and let A be an E_{16}-subgroup of G satisfying the following conditions.
(1) $\quad N_{G}(A) / C_{G}(A) \cong \Sigma_{6}$.
(2) $A \in \operatorname{Syl}_{2}\left(C_{G}(A)\right)$.
(3) $\left|G: N_{G}(A)\right|$ is even.
(4) The preimage of A in \hat{G} is not abelian.

Furthermore, let t be an involution acting on \hat{G} and G in the following fashion.
(5) $A \leqq C_{G}(t) \leqq N_{G}(A)$.
(6) $C_{G}(t) C_{G}(A) / C_{G}(A) \cong \Sigma_{3}$ wreath Z_{2}.
(7) $N_{G}(A) / A=C_{N_{G}(A) / A}(t) \cdot C_{G}(A) / A$.
(8) $[\hat{Z}, t] \neq 1$.

Then there is a quasisimple characteristic subgroup \hat{H} of \hat{G} containing \hat{Z} such that $C_{\hat{G}}(\hat{H})=\hat{Z} O(\widehat{G})$. Either $\hat{H} / O(\hat{H}) \cong S U(4,3)$ or $\hat{H} / Z(\hat{H})$ has S_{2}-subgroups isomorphic to those of $\operatorname{PSL}(6, q), q \equiv 3$ $\bmod 4$.

Proof. Let bars denote images in $G / O(G)$. Assume that $\bar{Q}=$ $O_{2}(\bar{G}) \neq 1$. Then $\bar{Q} \cap C(\bar{A}) \neq 1$ and so, as $C(\bar{A})=\bar{A} O(C(\bar{A}))$ by (2), it follows that $1 \neq \bar{Q} \cap \bar{A} \triangleleft N(\bar{A})$. The condition (1) implies that $N(\bar{A})$ acts irreducibly on \bar{A}. Therefore, $\bar{A} \leqq \bar{Q}$, but $\bar{A} \neq \bar{Q}$ as $|\bar{G}: N(\bar{A})|$ is even. But now $\bar{A}<N_{\bar{Q}}(\bar{A}) \triangleleft N(\bar{A})$, which is a contradiction because $O_{2}(N(\bar{A}))=\bar{A}$ by (1). Thus, $O_{2}(\bar{G})=1$.

By the above, $F^{*}(\bar{G})$ is a product of nonabelian simple groups. Let $\bar{K}=F^{*}(\bar{G}), \bar{A} \leqq \bar{T} \in \operatorname{Syl}_{2}(\bar{G})$, and $\bar{U}=\bar{T} \cap \bar{K}$. Then $1 \neq \bar{U} \triangleleft \bar{T}$ by [6]. Hence we have that $\bar{U} \cap \bar{A} \neq 1$ and then, as $\bar{U} \cap \bar{A}=\bar{K} \cap$ $\bar{A} \triangleleft N(\bar{A})$, we have that $\bar{A} \leqq \bar{U} \leqq \bar{K}$ just as above. However, $\bar{A} \neq \bar{U}$ by (3), so $\bar{A}<N_{\bar{U}}(\bar{A}) \leqq N_{\bar{K}}(\bar{A}) \triangleleft N(\bar{A})$. It now follows from (1) that $N_{\bar{K}}(\bar{A}) / C_{\bar{K}}(\bar{A}) \cong A_{6}$ or Σ_{6}. Let \bar{L} be a component of \bar{K} and let $\bar{V}=$ $\bar{U} \cap \bar{L}$. Then $1 \neq \bar{V} \cap \bar{A}=\bar{L} \cap \bar{A} \triangleleft N_{\bar{k}}(\bar{A})$ and then $\bar{A} \leqq \bar{V} \leqq \bar{L}$ as before. As $C(\bar{A})$ is solvable, we conclude that \bar{K} is simple.

Now the conditions (5), (6), and (7) imply that there is an $S_{2}-$ subgroup S of $N(A)$ such that $1 \neq[S, t] \leqq A$. Also, $\left[C_{O(G)}(t), A\right] \leqq$ $\left[O\left(C_{G}(t)\right), O_{2}\left(C_{G}(t)\right)\right]=1$. Therefore, $[O(G),[S, t]]=1$ by $[11,(1 \mathrm{~J})]$. Thus, $C_{A}(O(G)) \neq 1$ and, since $N(A)$ is irreducible on A, we have $[O(G), A]=1$.

Let K be the full inverse image of $F^{*}(\bar{G})$ in G. Then $A \leqq$ $C_{K}(O(K))$. In particular, $C_{K}(O(K)) \not \equiv O(K)$ and so, since $K / O(K)$ is simple, we have that $K=C_{K}(O(K)) O(K)$. Thus K is a central product of K^{∞} and $O(K)$. Now we set $H=K^{\infty}$. Then H is quasisimple and $Z(H)=O(H)$. Furthermore, $A \leqq O^{2}(K)=H$ and consequently, $N_{H}(A) / C_{H}(A) \cong A_{6}$ or Σ_{6}.

Now define \hat{H} and \hat{A} to be the subgroups of \hat{G} such that $\hat{H} / \hat{Z}=$ H and $\hat{A} / \hat{Z}=A$, respectively. Then, clearly $\hat{H} \triangleleft \hat{G}$. We show that \hat{H} is perfect. Suppose false. Then there is a subgroup \hat{J} of \hat{H} of index 2 such that $\hat{H}=\hat{J} \hat{\text { E }}$. Let $\hat{B}=\hat{A} \cap \hat{J}$. Then $|\hat{B}|=32, \hat{B} / \hat{Z} \cap$ $\hat{B} \cong E_{16}$, and A_{6} acts on $\hat{B} / \hat{Z} \cap \hat{B}$ nontrivially. This forces \hat{B} to be
elementary. But then $\hat{A}=\hat{B} \hat{Z}$ is abelian, contrary to (4). Therefore, \hat{H} is perfect. Furthermore, since H is quasisimple, so also is \hat{H}.

We check that \hat{H} is the desired subgroup of \hat{G}. By definition, $\hat{Z} \leqq \hat{H}$ and $C_{\hat{G}}(\hat{H})=\hat{Z} O(\widehat{G})$ since $\bar{H}=F^{*}(\bar{G})$ is simple. To prove the second assertion, assume first that $N_{H}(A) / C_{H}(A) \cong A_{6}$. Then $H / Z(H) \cong M_{22}, P S L(4, q)(q \equiv 5 \bmod 8)$ or $\operatorname{PSU}(4, q)(q \equiv 3 \bmod 8)$ by Lemma (1Q). The Schur multipliers of these simple groups are known [5], and so we can determine the structure of \hat{H}. We see that $\hat{H} / O(\hat{H}) \cong S L(4, q)$ or $S U(4, q)$. As (5) and (6) imply that $C_{G}(t)$ is solvable, Lemma (1I) and (8) show that $\hat{H} / O(\hat{H}) \cong S U(4,3)$. Therefore, assume that $N_{H}(A) / C_{H}(A) \cong \Sigma_{6}$. In this case, a similar argument and the theorem of [26] yield that $\hat{H} / Z(\hat{H})$ has S_{2}-subgroups of type $\operatorname{PSL}(6, q), q \equiv 3 \bmod 4$. The proof is complete.
2. In this section, we fix notation for $L=P S U(4,2) \cong S U(4,2)$ and set down some facts about L and its automorphisms.

By choosing a suitable basis of the underlying hermitian space, we identify the elements of L with the 4×4 matrices x with entries in \boldsymbol{F}_{4} satisfying
${ }^{t} x\left(\begin{array}{llll} & & & 1 \\ & & 1 & \\ & 1 & & \\ 1 & & & \end{array}\right)\left(\begin{array}{lll} & & \\ & & 1\end{array}\right)$ and $\operatorname{det} x=1$,
where ${ }^{t} x$ denotes the transposed matrix of x and \bar{x} is the matrix obtained by squaring each entries of x.

Denote by P the group of matrices

$$
\left(\begin{array}{cccc}
1 & & & \tag{2.2}\\
a & 1 & & \\
c & b & 1 & \\
d & a^{2} b+c^{2} & a^{2} & 1
\end{array}\right)
$$

where $b^{2}=b$ and $d^{2}=a c^{2}+a^{2} c+d$. Define A_{1} to be the group of matrices (2.2) with $b=0$, and define A_{2} to be the group of matrices (2.2) with $a=0$. Let Z be the group of matrices (2.2) with $a=b=$ $c=0$.

Let e be a primitive cube root of unity in F_{4} and set

$$
a_{1}=\left(\begin{array}{llll}
1 & & & \\
1 & 1 & & \\
& & 1 & \\
& & 1 & 1
\end{array}\right), \quad a_{2}=\left(\begin{array}{llll}
1 & & & \\
e^{2} & 1 & & \\
& & 1 & \\
& & e & 1
\end{array}\right)
$$

$$
\begin{aligned}
& b_{0}=\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
1 & & & 1
\end{array}\right), \quad b_{1}=\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
1 & & 1 & \\
& 1 & & 1
\end{array}\right), \\
& b_{2}=\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
e^{2} & & 1 & \\
& e & & 1
\end{array}\right), \quad b_{3}=\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
& 1 & 1 & \\
& & & 1
\end{array}\right), \\
& c_{1}=b_{0}, \\
& c_{2}=b_{3}, \quad c_{3}=b_{0} b_{1} b_{3}, \\
& c_{4}=b_{0} b_{2} b_{3}, \\
& c_{5}=b_{0} b_{1} b_{2} b_{3}, \\
& s_{1}=\left(\begin{array}{llll}
1 & & \\
& 1 & & \\
& & & 1
\end{array}\right), \quad s_{2}=\left(\begin{array}{llll}
1 & & & \\
& & & 1
\end{array}\right)
\end{aligned}
$$

Denote by H the group generated by the matrix

$$
\left.j=\left\lvert\, \begin{array}{llll}
e & & & \\
& e^{2} & & \\
& & e^{2} & \\
& & & e
\end{array}\right.\right)
$$

Denote by K_{1} the group of matrices

$$
\left(\begin{array}{llll}
1 & & & \\
& a & b & \\
& c & d & \\
& & & 1
\end{array}\right), \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2,2)
$$

and denote by K_{2} the group of matrices

$$
\left(\begin{array}{ccc}
a & b & \\
c & d & \\
& & a^{2}
\end{array} b^{2}, \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2,4)\right.
$$

Now we list some facts about L and its automorphisms. Proofs will be mostly omitted because the assertions are consequences of straightforward calculations involving matrices.

Lemma (2A).
(1) $|P|=64$ and $P \in \operatorname{Syl}_{2}(L)$.
(2) P is generated by the involutions $a_{1}, a_{2}, b_{0}, b_{1}, b_{2}, b_{3}$, and the following commutator relations hold:

$$
\begin{aligned}
& {\left[a_{1}, b_{2}\right]=b_{0},\left[a_{1}, b_{3}\right]=b_{0} b_{1},} \\
& {\left[a_{2}, b_{1}\right]=b_{0},\left[a_{2}, b_{3}\right]=b_{0} b_{2} .}
\end{aligned}
$$

All other commutators are trivial.
(3) A_{1} is generated by $a_{1}, a_{2}, b_{1}, b_{2}$.
(4) A_{2} is generated by $b_{0}, b_{1}, b_{2}, b_{3}$.
(5) $Z(P)=Z=\left\langle b_{0}\right\rangle, Z_{2}(P)=\left\langle b_{0}, b_{1}, b_{2}\right\rangle$.
(6) $\mathscr{C}_{18}(P)=\left\{A_{2}\right\}$.
(7) $\mathscr{E}^{*}(P / Z)=\left\{A_{1} / Z, A_{2} / Z\right\}$.
(8) $P=A_{1} A_{2}$.

In the above lemma, (1) follows from the fact that $|L|=2^{6} \cdot 3^{4} \cdot 5$.
Lemma (2B).
(1) $N_{L}(P)=H P$.
(2) The following relations hold:

$$
a_{1}^{j}=a_{2}, a_{2}^{j}=a_{1} a_{2}, b_{1}^{j}=b_{2}, b_{2}^{j}=b_{1} b_{2} .
$$

j centralizes other generators of P listed in Lemma (2A)(2).
(3) H acts regularly on $\left(P / A_{2}\right)^{*},\left(A_{1} / A_{1} \cap A_{2}\right)^{*}$, and $\left(A_{1} \cap A_{2} / Z\right)^{*}$.

Lemma (2C).
(1) $N_{L}\left(A_{1}\right)=\left(K_{1} \times H\right) A_{1}$.
(2) $A_{1} \cong D_{8} * D_{8} \cong Q_{8} * Q_{8}$ and $Z\left(A_{1}\right)=Z=\left\langle b_{0}\right\rangle$.
(3) Under the action of $N_{L}\left(A_{1}\right),\left(A_{1} / Z\right)^{7}$ decomposes into two orbits of lengths 9 and 6, the former corresponding to involutions of $A_{1}-Z$ and the latter corresponding to elements of order 4 of $A_{1} . O_{3}\left(K_{1}\right) \times H=\left\langle s_{1} b_{3}\right\rangle \times\langle j\rangle$ acts regularly on the orbit of length 9.
(4) $C_{L}\left(A_{1} / Z\right)=A_{1}$.
(5) $O^{2,2^{\prime}}\left(K_{1} A_{1}\right)=A_{1}$.
(4) and (5) above are consequences of (1), (2), and (3).

Lemma (2D).
(1) $N_{L}\left(A_{2}\right)=K_{2} A_{2}$.
(2) A_{2} is a natural module for $K_{2} \cong A_{5}$.
(3) $C_{L}\left(A_{2}\right)=A_{2}$.
(4) Under the action of K_{2}, A_{2}^{*} decomposes into two orbits of lengths 5 and 10, the former consisting of $c_{1}, c_{2}, c_{3}, c_{4}$, and c_{5}.

Lemma (2E).
(1) L has two conjugacy classes of involutions, and we may choose b_{0} and b_{1} as the representatives of these classes.
(2) $C_{P}\left(b_{0}\right)=P$ and $C_{L}\left(b_{0}\right)=N_{L}\left(A_{1}\right)$.
(3) $C_{P}\left(b_{1}\right)=\left\langle a_{1}, A_{2}\right\rangle$ and $C_{L}\left(b_{1}\right)=\left\langle a_{1}, s_{2}\right\rangle A_{2}$.
(4) Involutions of $A_{1}-Z$ are conjugate to b_{1} in $N_{L}\left(A_{1}\right)$.
(5) Central involutions of L contained in A_{2} are $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}$, and so they are all conjugate in $N_{L}\left(A_{2}\right)$.

Let $A=\operatorname{Aut}(L)$ and identify L with $\operatorname{Inn}(L)$. Then $A=\langle f\rangle L$, where f is the automorphism of L induced by the automorphism of \boldsymbol{F}_{4} of order 2. Let $R=\langle f\rangle P$.

Lemma (2F).
(1) $R \in \operatorname{Syl}_{2}(A)$.
(2) The following relations hold:

$$
\begin{gathered}
a_{1}^{f}=a_{1}, a_{2}^{f}=a_{1} a_{2}, \\
b_{0}^{f}=b_{0}, b_{1}^{f}=b_{1}, b_{2}^{f}=b_{1} b_{2}, b_{3}^{f}=b_{3} .
\end{gathered}
$$

(3) $r(R)=4$.
(4) $Z(R)=Z(P)=Z, R^{\prime}=\left\langle a_{1}, b_{0}, b_{1}, b_{2}\right\rangle$.
(5) R has exactly four E_{10}-subgroups: $A_{2},\left\langle C_{A_{1}}(f), f\right\rangle=\left\langle a_{1}, b_{0}\right.$, $\left.b_{1}, f\right\rangle,\left\langle C_{d_{2}}(f), f\right\rangle=\left\langle b_{0}, b_{1}, b_{3}, f\right\rangle$, and $\left\langle C_{d_{2}}(f), f\right\rangle^{a_{2}}=\left\langle b_{0}, b_{1}, b_{2} b_{3}, a_{1} f\right\rangle$. All these are self-centralizing in R.
(6)

$$
J_{r}(R)=\left\langle C_{A_{1}}(f), A_{2}, f\right\rangle=\left\langle a_{1}, b_{0}, b_{1}, b_{2}, b_{3}, f\right\rangle, Z J_{r}(R)=\left\langle b_{0}, b_{1}\right\rangle .
$$

For the proof of (3) above, see [17, Lemma 2]. (6) is a direct consequence of (5).

Lemma (2G).
(1) $N_{A}\left(A_{1}\right)=\langle f\rangle N_{L}\left(A_{1}\right)$.
(2) $N_{A}\left(A_{1}\right) / A_{1} \cong K_{1} \times\langle f\rangle H \cong \Sigma_{3} \times \Sigma_{3}$.
(3) $\quad C_{A}\left(A_{1} / Z\right)=A_{1}$.
(4) $O_{2}\left(N_{A}\left(A_{1}\right)\right)=A_{1}$.
(2), (3), and (4) above are consequences of (1) and Lemma (2C). See Lemma (2D) for the proof of the next lemma.

Lemma (2 H).
(1) $N_{A}\left(A_{2}\right)=\langle f\rangle N_{L}\left(A_{2}\right)$.
(2) $N_{A}\left(A_{2}\right) / A_{2} \cong\langle f\rangle K_{2} \cong \Sigma_{5}$.
(3) $C_{A}\left(A_{2}\right)=A_{2}$.
(4) $O_{2}\left(N_{A}\left(A_{2}\right)\right)=A_{2}$.

Lemma (2I). $\quad N_{A}\left(\left\langle C_{\Lambda_{1}}(f), f\right\rangle\right)=\langle f\rangle K_{1} A_{1}$.

Proof. Observe that b_{0} is the only central involution of L contained in A_{1}. By Lemma (2E)(2), we have

$$
N_{A}\left(\left\langle C_{A_{1}}(f), f\right\rangle\right) \leqq N_{A}\left(C_{A_{1}}(f)\right) \leqq C_{A}\left(b_{0}\right)=\langle f\rangle N_{L}\left(A_{1}\right) .
$$

Thus, using Lemma (2C)(1), we obtain the result.
Lemma (2J).
(1) $C_{A}\left(C_{A_{2}}(f)\right)=\left\langle A_{2}, f\right\rangle$.
(2) $N_{A}\left(\left\langle C_{A_{2}}(f), f\right\rangle\right)=\left\langle f, a_{1}, s_{2}, A_{2}\right\rangle$.

Proof. Use Lemma (2E)(3) to prove (1). Once (1) is proved, then $N_{A}\left(\left\langle C_{A_{2}}(f), f\right\rangle\right) \leqq N_{A}\left(C_{A_{2}}(f)\right) \leqq N_{A}\left(\left\langle A_{2}, f\right\rangle\right) \leqq N_{A}\left(A_{2}\right)$, hence (2) follows easily.

Lemma (2K).
(1) $\quad C_{L}(f) \cong S p(4,2) \cong \Sigma_{6}$.
(2) $C_{L}\left(f b_{0}\right)=C_{L}(f) \cap C_{L}\left(b_{0}\right)=\left\langle a_{1}, b_{0}, b_{1}, b_{3}, s_{1}\right\rangle$.
(3) If $x \in I(A-L)$, then $x \sim f$ or fbo in A and $x^{4} \cap C_{L}(x) x \neq$ $\{x\}$.
(4) If $x \in I\left(N_{A}(P)-L\right)$ and $C(x) \cap N_{L}\left(A_{2}\right)$ is an extension of E_{8} by $S L(2,2)$, then $x \in f^{4}$.

Proof. For the proof of (1), (2), and (3), see [3, § 19]. For (4), suppose $\left(f b_{0}\right)^{g}=x, g \in L$. Since $C_{L}\left(f b_{0}\right)$ is also an extension of E_{8} by $S L(2,2)$ by (2), we have $C_{L}\left(f b_{0}\right)^{g}=C(x) \cap N_{L}\left(A_{2}\right)$, hence $\left\langle a_{1}, b_{0}, b_{1}\right\rangle^{g}=$ $O_{2}\left(C_{L}\left(f b_{0}\right)\right)^{g}=O_{2}\left(C(x) \cap N_{L}\left(A_{2}\right)\right)=C(x) \cap A_{2}$. Since $b_{0} \in C(x) \cap A_{2}$ and since b_{0} is strongly closed in A_{1} with respect to L by Lemma (2E), we have $b_{0}^{g}=b_{0}$, hence $g \in C_{L}\left(b_{0}\right)=N_{L}\left(A_{1}\right)$. But $C_{L}\left(f b_{0}\right)^{g} \leqq N_{L}\left(A_{1}\right) \cap$ $N_{L}\left(A_{2}\right)=N_{L}(P)$, a contradiction. Therefore, $x \in f^{A}$.
3. In this section, we begin the proof of the theorem stated in the introduction.

Let G be a finite group which contains a standard subgroup L isomorphic to $\operatorname{PSU}(4,2)$, and assume that $C(L)$ has a cyclic S_{2}-subgroup.

We identify L with the group of 4×4 matrices x satisfying (2.1). The symbols used in $\S 2$ for various objects defined for $P S U(4,2)$ will retain their meaning for the balance of the paper. Thus P is an S_{2}-subgroup of L consisting of matrices (2.2).

Let t be an involution of $C(L)$ and set $C=C(t)$. We first prove the following.

Lemma (3A). If $t^{G} \cap L C_{C}(L)=\{t\}$, then $r\left(\left\langle L^{G}\right\rangle\right)=4$.

Proof. Assume that $t^{G} \cap L C_{c}(L)=\{t\}$. Let $T \in \operatorname{Syl}_{2}\left(C_{c}(L)\right), Q=$ $P T$, and $Q \leqq R \in \operatorname{Syl}_{2}(C)$. Then $t \in Z(R)$ and $Z(R) \leqq Q$ by Lemma (2F). Therefore, $t^{a} \cap Z(R)=\{t\}$ by our assumption, and hence $N(R) \leqq C$. This implies that $R \in \operatorname{Syl}_{2}(G)$.

Now if $t \in Z^{*}(G)$, then $L O(G) \triangleleft G$ by Lemma (1H). Therefore, we may assume that $t^{G} \cap R \neq\{t\}$ by [10].

Let $t \neq u \in t^{G} \cap R$. Then $u \notin Q$ by our assumption, and so $|R: Q|=2$. Notice that $Q / P \cong T$ is cyclic by our hypothesis. Hence if R / P is nonabelian, then $u P \sim t u P$ in R by Lemma (1A), and so $t^{G} \cap t u P \neq \varnothing$. If R / P is abelian, then by Lemma (1E), either $t^{G} \cap\langle t u\rangle P \neq \varnothing$ or $t \notin G^{\prime}$. In the latter case, $R \cap G^{\prime}=P$ or $P\langle t u\rangle$ as $P \leqq L \leqq G^{\prime}$. Hence $r\left(\left\langle L^{G}\right\rangle\right)=4$ by Lemma (2F). Therefore, we may assume that $t^{G} \cap t u L \neq \varnothing$ for all $u \in t^{G} \cap C, u \neq t$.

Suppose $t u \in t^{G}$ for all $u \in t^{G} \cap C$ with $u \neq t$. Let $t^{g} \in C-\{t\}$. If $t \notin L^{g} C\left(L^{g}\right)$, then there exists an element $x \in C_{L^{g}}(t)^{*}$ with $t x \in t^{t^{g}}$ by Lemma (2 K). Then $x=t(t x) \in t^{a}$, so $x^{g^{-1}} \in t^{G} \cap L$, contrary to our assumption. If $t \in L^{g} C\left(L^{g}\right)$, then $t \neq t^{g^{-1}} \in t^{a} \cap L C_{c}(L)$, contrary to our assumption. Thus there is a conjugate $t^{g} \in C-\{t\}$ such that $t t^{g} \nsim t$.

Choose $t^{g} \in C-\{t\}$ so that $t t^{g} \nsim t$, and let $t^{h} \in t t^{a} L$. If $C_{L}\left(t^{h}\right) \cong$ $C_{L}\left(t t^{g}\right)=C_{L}\left(t^{g}\right)$, then $t \sim t^{h} \sim t t^{g}$ by Lemma (2K), a contradiction. Hence $C_{L}\left(t^{h}\right) \not \equiv C_{L}\left(t^{g}\right)$. If R / P is nonabelian, we may choose $h \in g R$ by Lemma (1A). But then $C_{L}\left(t^{h}\right) \cong C_{L}\left(t^{g}\right)$, a contradiction. Therefore, R / P is abelian.

Now $Z(R) \leqq Q$ by Lemma (2F), so $P\left\langle t t^{g}\right\rangle$ contains no extremal conjugates of t in R. Thus $t \notin G^{\prime}$ by Lemma (1E), and $r\left(\left\langle L^{G}\right\rangle\right)=4$ as before. The proof is complete.

In view of Lemma (3A), we shall make the following hypothesis.
Hypothesis (3.1). $\quad t^{G} \cap L C_{C}(L) \neq\{t\}$.
We next prove
Lemma (3B). Under Hypothesis (3.1), $\langle t\rangle \in \operatorname{Syl}_{2}\left(C_{c}(L)\right)$.
Proof. Let $T \in \operatorname{Syl}_{2}\left(C_{c}(L)\right)$ and let $t \neq t^{g} \in L C_{c}(L)$. We may assume $t^{g} \in P T$ so $T \leqq C\left(t^{g}\right)=C^{a}$. Lemma (2E) shows that $C_{L}\left(t^{g}\right)=$ $L \cap C^{g}$ contains an E_{10}-subgroup A. The image of $A \times T$ in $C^{g} / C_{c}(L)^{g}$ has rank at least 4 and its exponent is equal to that of T as $T \cap C_{c}(L)^{g}=1$. Thus Lemma (2F)(5) forces $|T|=2$.

Definition (3.1). Let $Q=P\langle t\rangle$, and $B_{i}=A_{i}\langle t\rangle$ for $i \in\{1,2\}$.
Lemma (3C). We have $t^{G} \cap L=\varnothing$.

Proof. This is obvious if $t^{G} \cap L C_{C}(L)=\{t\}$. Therefore, we may assume Hypothesis (3.1). Suppose $t^{g} \in L$ for some $g \in G$. By Lemma $(2 \mathrm{E})$, we may assume $t^{g}=b_{0}$ or b_{1}, so that $C_{P}\left(t^{g}\right) \in \operatorname{Syl}_{2}\left(C_{L}\left(t^{g}\right)\right)$ and t^{g} has a square root in P. In particular, t has a square root in C. Hence, if $Q \leqq R \in \operatorname{Syl}_{2}(C)$, then $R / P \cong Z_{4}$ by Lemma (3B). Thus $I(C) \leqq L\langle t\rangle$. But then $C_{P}\left(t^{g}\right)=\Omega_{1}\left(C_{P}\left(t^{g}\right)\right) \leqq L^{g}\left\langle t^{g}\right\rangle$, and therefore, $t^{g} \in C_{P}\left(t^{g}\right)^{2} \leqq L^{g}$. This is a contradiction proving the lemma.

Lemma (3D). If C contains an S_{2}-subgroup of G, then $r\left(\left\langle L^{q}\right\rangle\right)=4$.
Proof. We may assume Hypothesis (3.1) by Lemma (3A). Let $Q \leqq R \in \operatorname{Syl}_{2}(C)$, so that $R \in \operatorname{Syl}_{2}(G)$. Suppose that $t \in G^{\prime}$. As $|R / P|$ is at most 4 by Lemma (3B), Lemmas (1E) and (3C) show that there is an element $u \in t^{G} \cap(R-Q)$ and, moreover, $\langle u\rangle P$ contains an extremal conjugate v of t in R. However, since $Z(R) \leqq Q$, we have $v \in P$, which is impossible by Lemma (3C). Therefore, $t \notin G^{\prime}$ and so $r\left(\left\langle L^{G}\right\rangle\right)=4$ as in the third paragraph of the proof of Lemma (3A).

Lemma (3E). $\quad N\left(B_{2}\right) \leqq N\left(A_{2}\right)$.
Proof. If $N\left(B_{2}\right) \leqq C$, then $N\left(B_{2}\right)$ normalizes $B_{2} \cap L=A_{2}$. If $N\left(B_{2}\right) \not \equiv C$, then $\Omega=t^{N\left(B_{2}\right)} \neq\{t\}$. By Lemma (3C), $\Omega \leqq A_{2} t$, so $A=$ $\langle a b \mid a, b \in \Omega\rangle$ is a nonidentity $N\left(B_{2}\right)$-invariant subgroup of A_{2}. As $K_{2}\left(\leqq N\left(B_{2}\right)\right.$) acts irreducibly on $A_{2}, A_{2}=A$. Thus $N\left(B_{2}\right) \leqq N\left(A_{2}\right)$.

Lemma (3F). $\left|C\left(A_{2}\right) \cap N\left(B_{2}\right): C\left(B_{2}\right)\right|$ is a power of 2.
Proof. As $C\left(A_{2}\right) \cap N\left(B_{2}\right)$ stabilizes the series $1<A_{2}<B_{2}$, the assertion follows from [12, Corollary 5.3.3].

Lemma (3G). Let $\Omega=t^{N\left(B_{2}\right)}$. Then $\Omega=\{t\},\left\{t, c_{1} t, c_{2} t, c_{3} t, c_{4} t, c_{5} t\right\}$ or A_{2}. If $\Omega \neq\{t\}, N\left(B_{2}\right)^{\Omega}$ is a primitive permutation group on Ω, and $C(\Omega)=C\left(B_{2}\right)$.

Proof. By Lemma (3C), $\Omega \leqq A_{2} t$. Under the action of K_{2}, which is contained in $N_{C}\left(B_{2}\right), A_{2}$ decomposes into two orbits of lengths 5 and 10 , the former consisting of $c_{1}, c_{2}, c_{3}, c_{4}$, and c_{5}. Hence it is enough to show that $|\Omega| \neq 11$. Suppose $|\Omega|=11$. Then by Lemmas (3E) and (3 F), $C\left(A_{2}\right) \cap N\left(B_{2}\right)=C\left(B_{2}\right)$ and then $N\left(B_{2}\right) / C\left(B_{2}\right)$ is isomorphic to a subgroup of $\operatorname{Aut}\left(A_{2}\right) \cong G L(4,2)$. This is a contradiction because $|G L(4,2)|$ is not divisible by 11.

Lemma (3H). Let $f \in I\left(C-L C_{C}(L)\right)$ and suppose that the action of f on L is induced by the involution of $\operatorname{Aut}\left(\boldsymbol{F}_{4}\right)$. If
$t^{G} \cap\left\langle b_{0}, b_{1}, b_{3}, t\right\rangle \leqq t^{N\left(B_{2}\right)}$, then no element of G interchanges B_{2} and $\left\langle C_{A_{2}}(f), f, t\right\rangle$ by conjugation.

Proof. If an element g of G interchanges B_{2} and $\left\langle C_{A_{2}}(f), f, t\right\rangle$, then g normalizes their intersection $\left\langle b_{0}, b_{1}, b_{3}, t\right\rangle$ and so $t^{g h}=t$ for some $h \in N\left(B_{2}\right)$ by hypothesis. However, $g h \in C$ and $\left\langle C_{A_{2}}(f), f, t\right\rangle^{g h}=$ B_{2} which is a contradiction as $\left\langle C_{A_{2}}(f), f, t\right\rangle \not \equiv\langle L, t\rangle$ while $B_{2} \leqq$ $\langle L, t\rangle$.

Lemma (3I). Let f be as in (3H) and suppose that $\left\langle C_{A_{1}}(f), f, t\right\rangle^{g}=$ B_{2} for some $g \in G$. Then $A_{1}^{g} \leqq O^{2,2^{\prime}}\left(N\left(B_{2}\right)\right)$.

Proof. As $\langle L, f, t\rangle=L\langle f\rangle \times\langle t\rangle$ and as $K_{1} A_{1}=N_{L}\left(\left\langle C_{A_{1}}(f), f\right\rangle\right)$ by Lemma (2I), we have that $X=N_{\langle L, f, t\rangle}\left(\left\langle C_{A_{1}}(f), f, t\right\rangle\right)$ is equal to $\left\langle K_{1} A_{1}, f, t\right\rangle$. Thus $O^{2,2^{\prime}}(X)=O^{2,2^{\prime}}\left(K_{1} A_{1}\right)=A_{1}$ by Lemma (2C), and hence $A_{1} \leqq O^{2,2^{\prime}}\left(N\left(\left\langle C_{A_{1}}(f), f, t\right\rangle\right)\right)$. Therefore, $A_{1}^{g} \leqq O^{2,2^{\prime}}\left(N\left(B_{2}\right)\right)$.

Lemma (3J). Under Hypothesis (3.1), the following conditions hold.
(1) $\quad N(Q) \leqq N\left(B_{1}\right) \cap N\left(B_{2}\right)$.
(2) $m(C)=5$.
(3) C does not have an E_{32}-subgroup X such that $S L(2,2) \times$ $S L(2,2) \hookrightarrow N_{C}(X) / C_{C}(X)$.

Proof. By Lemma (2A), $\mathscr{E}^{*}(Q / Z(Q))=\left\{B_{1} / Z(Q), B_{2} / Z(Q)\right\}$, hence (1) follows. (2) is a direct consequence of Lemma (2F)(5). By the same lemma, if X is an E_{32}-subgroup of C, then $X \sim B_{2},\left\langle C_{A_{1}}(f), f, t\right\rangle$, or $\left\langle C_{A_{2}}(f), f, t\right\rangle$ in C, where f is an involution acting on L as a field automorphism. Hence $N_{C}(X) / C_{C}(X) \hookrightarrow \Sigma_{5}$ or $Z_{2} \times S L(2,2)$ by Lemmas (2H)-(2J). Thus (3) holds.
4. In this section, we shall work under the following hypothesis.

Hypothesis (4.1). $\quad t^{N\left(B_{2}\right)}=\{t\}$.
We prove the following theorem.
Theorem (4A). Under Hypothesis (4.1), $r\left(\left\langle L^{G}\right\rangle\right)=4$.
The proof involves a series of reductions. First, if $t^{a} \cap L C_{C}(L)=$ $\{t\}$, then Theorem (4A) holds by Lemma (3A). Therefore, we assume
that G satisfies Hypothesis (3.1). Then $\langle t\rangle \in \operatorname{Syl}_{2}\left(C_{C}(L)\right)$ by Lemma (3B).

Lemma (4B). If $t \notin G^{\prime}$, then Theorem (4A) holds.

Proof. By Hypothesis (4.1), $N\left(B_{2}\right) \leqq C$ so that $N\left(B_{2}\right) \cap C\left(A_{2}\right)=$ $C\left(B_{2}\right)$. This implies that $B_{2} \in \operatorname{Syl}_{2}\left(C\left(A_{2}\right)\right)$ as $C\left(B_{2}\right)=B_{2} O(C)$ by Lemmas $(2 \mathrm{H})$ and (3B). Hence $N\left(A_{2}\right)=N\left(B_{2}\right) C\left(A_{2}\right)=N_{C}\left(B_{2}\right) C\left(A_{2}\right)$ by a Frattini argument, and so $N\left(A_{2}\right) / C\left(A_{2}\right) \cong A_{5}$ or Σ_{5} by Lemmas (2D) and (2H). We also have that $N_{L}\left(A_{2}\right) \leqq N_{G^{\prime}}\left(A_{2}\right)$ since $L \leqq G^{\prime}$. Therefore, $N_{G^{\prime}}\left(A_{2}\right) / C_{G^{\prime}}\left(A_{2}\right) \cong A_{5}$ or Σ_{5}. Also, $A_{2} \leqq C_{G^{\prime}}\left(A_{2}\right) \triangleleft C\left(A_{2}\right)$. Since $B_{2} \in \operatorname{Syl}_{2}\left(C\left(A_{2}\right)\right)$ and $t \notin G^{\prime}$, it follows that $A_{2} \in \operatorname{Syl}_{2}\left(C_{G^{\prime}}\left(A_{2}\right)\right)$. Thus, $r\left(G^{\prime}\right)=4$ by [17, Theorem 3] and hence $r\left(\left\langle L^{G}\right\rangle\right)=4$. The proof is complete.

Let $Q \leqq R \in \operatorname{Syl}_{2}(C)$. The following lemma follows from Lemma (3D).

Lemma (4C). If $R \in \operatorname{Syl}_{2}(G)$, then Theorem (4A) holds.
In view of Lemmas (4B) and (4C), we shall form now on assume that

$$
t \in G^{\prime} \text { and } R \notin \operatorname{Syl}_{2}(G)
$$

We shall eventually derive a contradiction from this hypothesis.
Lemma (4D). There is an involution $f \in C$ whose action on $L=P S U(4,2)$ is induced by the automorphism of \boldsymbol{F}_{4} of order 2.

Proof. It is enough to show that $I(R-Q) \neq \varnothing$. Since $R \notin$ $\operatorname{Syl}_{2}(G), N(R) \nsubseteq C$ so that $N(R) \nsubseteq N\left(B_{2}\right)$ as $N\left(B_{2}\right) \leqq C$ by Hypothesis (4.1). If $I(R) \leqq I(Q)$, then B_{2} would be the only E_{32}-subgroup of R by Lemma (2A), and so $N(R) \leqq N\left(B_{2}\right)$. Therefore, $I(R-Q) \neq \varnothing$, as required.

We assume without loss of generality that $f \in R$. Notice that $R=Q\langle f\rangle$. Let $S \in \operatorname{Syl}_{2}(N(R))$. Then $R<S$, so we may choose $g \in S-R$.

Lemma (4E). The following conditions hold.
(1) $S=R\langle g\rangle$ and $g^{2} \in R$.
(2) $t^{g}=b_{0} t$ and $b_{0}^{g}=b_{0}$.
(3) g interchanges B_{2} and $\left\langle C_{A_{1}}(f), f, t\right\rangle$ by conjugation.
(4) $g \in N\left(A_{1}\right) \cap N\left(B_{1}\right)$.

Proof. As $C_{S}(t)=R<S$, $\{t\}<t^{S}$. Also, $t^{S} \leqq Z(R)$. As $Z(R)=$ $\left\langle b_{0}, t\right\rangle$ by Lemma (2F) and as $t \nsim b_{0}$ by Lemma (3C), it follows that $t^{S}=\left\{t, b_{0} t\right\}$. Therefore, $|S: R|=2$ and $S \leqq C\left(b_{0}\right)$. Hence (1) and (2) follow.

By Lemma (2F), $B_{2},\left\langle C_{A_{1}}(f), f, t\right\rangle,\left\langle C_{A_{2}}(f), f, t\right\rangle$, and $\left\langle C_{A_{2}}(f)\right.$, $f, t\rangle^{x}$, where $x \in P-C_{A_{1}}(f) A_{2}$, are the only E_{32}-subgroups of R. Since $N\left(B_{2}\right) \leqq C$ by Hypothesis (4.1), $B_{2} \neq B_{2}^{g} \triangleleft R$. Thus (3) holds. Then Lemma (3I) shows that $A_{1}^{g} \leqq O^{2,2^{\prime}}\left(N\left(B_{2}\right)\right)$. Since $N\left(B_{2}\right) \leqq C$, $O^{2,2^{\prime}}\left(N\left(B_{2}\right)\right)=N_{L}\left(A_{2}\right)$ by Lemma (2D). Hence $A_{1}^{g} \leqq R \cap N_{L}\left(A_{2}\right)=P$. Also, $b_{0}=b_{0}^{g} \in A_{1}^{g}$. Since $A_{1} /\left\langle b_{0}\right\rangle$ is the only E_{16}-subgroup of $P /\left\langle b_{0}\right\rangle$ by Lemma (2A), we have that $A_{1}^{g}=A_{1}$. Since $B_{1}=\left\langle A_{1}, t\right\rangle$ and $t^{g}=b_{0} t \in A_{1} t, g \in N\left(B_{1}\right)$. The proof is complete.

Lemma (4F). We may choose f so that the following conditions hold.
(1) g interchanges $A_{1} \cap A_{2}$ and $C_{A_{1}}(f)$ by conjugation.
(2) g interchanges P and $\left\langle A_{1}, f\right\rangle$ by conjugation.
(3) $g \in N(\langle P, f\rangle)$.
(4) $t^{G} \cap\langle P, f\rangle=\varnothing$.

Proof. Using Lemma (4E), we may deduce as follows:

$$
\begin{aligned}
\left(A_{1} \cap A_{2}\right)^{g} & =\left(A_{1} \cap B_{2}\right)^{g} \\
& =A_{1} \cap\left\langle C_{A_{1}}(f), f, t\right\rangle \\
& =C_{A_{1}}(f)
\end{aligned}
$$

Since $g^{2} \in R \leqq N\left(A_{1} \cap A_{2}\right), C_{A_{1}}(f)^{g}=A_{1} \cap A_{2}$. Now A_{2}^{g} is a maximal subgroup of $\left\langle C_{A_{1}}(f), f, t\right\rangle$ containing $C_{A_{1}}(f)$. Since $t^{g} \cap L=\varnothing$ by Lemma (3C), $A_{2}^{g} \neq\left\langle C_{A_{1}}(f), t\right\rangle$. Therefore, $A_{2}^{g}=\left\langle C_{A_{1}}(f), f\right\rangle$ or $\left\langle C_{A_{1}}(f)\right.$, $f t\rangle$. Replacing f by $f t$ in the latter case, we may choose f so that $A_{2}^{g}=\left\langle C_{A_{1}}(f), f\right\rangle$. Then

$$
\begin{aligned}
P^{g} & =\left(A_{1} A_{2}\right)^{g} \\
& =A_{1}\left\langle C_{A_{1}}(f), f\right\rangle \\
& =\left\langle A_{1}, f\right\rangle
\end{aligned}
$$

and $\left\langle A_{1}, f\right\rangle^{g}=P$ as $g^{2} \in R \leqq N(P)$. Hence g normalizes $\left\langle P, A_{1}, f\right\rangle=$ $\langle P, f\rangle$. Since $A_{2}^{g}=\left\langle C_{A_{1}}(f), f\right\rangle$ and $t^{G} \cap A_{2}=\varnothing, t^{G} \cap\left\langle C_{A_{1}}(f), f\right\rangle=\varnothing$. By Lemma (2K), every involution of $P f$ is conjugate to an element of $C_{A_{1}}(f) f$. Therefore, $t^{G} \cap\langle P, f\rangle=\varnothing$. The proof is complete.

Lemma (4G). The following conditions hold.
(1) $\quad N(R) \leqq N\left(B_{1}\right)$.
(2) $S \in \operatorname{Syl}_{2}\left(N\left(B_{1}\right)\right)$.

Proof. Since $Z\left(B_{1}\right)=\left\langle b_{0}, t\right\rangle$ by Lemma (2C), $t^{N\left(B_{1}\right)} \leqq\left\{t, b_{0} t\right\}$. By Lemma (4E), $g \in N\left(B_{1}\right)-C$. Hence $\left|N\left(B_{1}\right): N_{C}\left(B_{1}\right)\right|=2$ and $N\left(B_{1}\right)=$ $N_{C}\left(B_{1}\right)\langle g\rangle$. Similarly, $N(R)=N_{c}(R)\langle g\rangle$. Since $N_{c}(R) \leqq N_{C}\left(B_{1}\right)$ by Lemma (3J), (1) follows. Now $R \in \operatorname{Syl}_{2}\left(N_{C}\left(B_{1}\right)\right)$, so $S=R\langle g\rangle \in$ $\operatorname{Syl}_{2}\left(N\left(B_{1}\right)\right)$. The proof is complete.

Lemma $(4 \mathrm{H}) . \quad I(S) \nsubseteq I(R)$.
Proof. Suppose this is false. Then $\Omega_{1}(S)=R$, so $N(S) \leqq N(R)$, and Lemma (4G) yields that $S \in \operatorname{Syl}_{2}(G)$. Also, $t^{G} \cap S=t^{G} \cap R \leqq$ $\langle P, f\rangle t$ by Lemma (4F)(4). As $\langle P, f\rangle \triangleleft S$ and $|S /\langle P, f\rangle|=4$ by Lemma (4 F), Lemma (1 E) forces $t \notin G^{\prime}$ against our hypothesis. Therefore, $I(S) \not \equiv I(R)$.

Now let bars denote images in $C\left(b_{0}\right) /\left\langle b_{0}\right\rangle$. Then S acts on \bar{A}_{1} by Lemma (4 E). In the following two lemmas, we collect necessary information on this action. Notice that we may choose $\bar{a}_{1}, \bar{b}_{2}, \bar{a}_{2}, \bar{b}_{1}$ as a basis of \bar{A}_{1}.

Lemma (4I). The following conditions hold.
(1) $\bar{a}_{1}^{b_{3}}=\bar{a}_{1} \bar{b}_{1}, \bar{b}_{2}^{b_{3}}=\bar{b}_{2}, \bar{a}_{2}^{b_{3}}=\bar{b}_{2} \bar{a}_{2}, \bar{b}_{1}^{b_{3}}=\bar{b}_{1}$.
(2) $\bar{a}_{1}^{f}=\bar{a}_{1}, \bar{b}_{2}^{f}=\bar{b}_{2} \bar{b}_{1}, \bar{a}_{2}^{f}=\bar{a}_{1} \bar{a}_{2}, \bar{b}_{1}^{f}=\bar{b}_{1}$.
(3) $\bar{a}_{1}^{b_{3} f}=\bar{a}_{1} \bar{b}_{1}, \bar{b}_{2}^{b_{3} f}=\bar{b}_{2} \bar{b}_{1}, \bar{a}_{2}^{b_{3} f}=\bar{a}_{1} \bar{b}_{2} \bar{a}_{2} \bar{b}_{1}, \bar{b}_{1}^{b_{3} f}=\bar{b}_{1}$.
(4) $C_{\overline{4}_{1}}\left(b_{3}\right)=\left\langle\bar{b}_{2}, \bar{b}_{1}\right\rangle$.
(5) $C_{\bar{A}_{1}}(f)=\left\langle\bar{a}_{1}, \bar{b}_{1}\right\rangle$.
(6) $C_{\bar{A}_{1}}\left(b_{3} f\right)=\left\langle\bar{a}_{1} \bar{b}_{2}, \bar{b}_{1}\right\rangle$.

Proof. (1), (2), and (3) follow from relations listed in Lemmas $(2 \mathrm{~A})$ and (2F). (4), (5), and (6) are consequences of (1), (2), and (3), respectively.

Now choose f as in Lemma (4F). So far g was an arbitrary element of $S-R$. We now prove

Lemma (4J). We may choose g so that $g^{2} \in A_{1}$ and the following relations hold:

$$
\bar{a}_{1}^{g}=\bar{b}_{2}, \bar{b}_{2}^{g}=\bar{a}_{1}, \bar{a}_{2}^{g}=\bar{a}_{2}, \bar{b}_{1}^{g}=\bar{b}_{1}
$$

For g satisfying these relations, we have that

$$
C_{\bar{A}_{1}}(g)=\left\langle\bar{a}_{1} \bar{b}_{2}, \bar{a}_{2}, \bar{b}_{1}\right\rangle .
$$

Proof. Lemma (4I) shows that b_{3}, f, and $b_{3} f$ have the following matrix forms with respect to the basis $\bar{a}_{1}, \bar{b}_{2}, \bar{a}_{2}, \bar{b}_{1}$ of \bar{A}_{1}, respectively.

$$
\left(\begin{array}{llll}
1 & & & 1 \\
& 1 & & \\
& 1 & 1 & \\
& & & 1
\end{array}\right), \quad\left(\begin{array}{llll}
1 & & & \\
& 1 & & 1 \\
1 & & 1 & \\
& & & 1
\end{array}\right), \quad\left(\begin{array}{llll}
1 & & & 1 \\
& 1 & & 1 \\
1 & 1 & 1 & 1 \\
& & & 1
\end{array}\right)
$$

Choosing a suitable element $g \in S-R$, we determine the matrix form of g. By Lemma (4F), g interchanges $\bar{A}_{1} \cap \bar{A}_{2}=\left\langle\bar{b}_{1}, \bar{b}_{2}\right\rangle$ and $\overline{C_{A_{1}}(f)}=\left\langle\bar{a}_{1}, \bar{b}_{1}\right\rangle$, and so g normalizes $\left\langle\bar{b}_{1}\right\rangle$. Therefore, g has the following matrix form.

$$
\left(\begin{array}{cccc}
& 1 & & a \\
1 & & & b \\
c & d & 1 & e \\
& & & 1
\end{array}\right)
$$

By Lemma (4H), we may assume from the outset that $g^{2} \in A_{1}$. Then g induces an involutory automorphism on \bar{A}_{1}, and so the square of the matrix of g is equal to the unit matrix. Hence we have that $a=b$ and $c=d$. Thus g has the following matrix form.

$$
\left(\begin{array}{cccc}
& 1 & & a \\
1 & & & a \\
c & c & 1 & e \\
& & & 1
\end{array}\right)
$$

Now $P^{g}=\left\langle A_{1}, f\right\rangle$ by Lemma (4F), so $g b_{3} g \equiv f \bmod A_{1}$. This implies that

$$
\left(\begin{array}{llll}
& 1 & & a \\
1 & & & a \\
c & c & 1 & e \\
& & & 1
\end{array}\right)\left(\begin{array}{llll}
1 & & & 1 \\
& 1 & & \\
& 1 & 1 & \\
& & & 1
\end{array}\right)\left(\begin{array}{llll}
& 1 & & a \\
1 & & & a \\
c & c & 1 & e \\
& & & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & & & \\
& 1 & & 1 \\
1 & & 1 & \\
& & & 1
\end{array}\right)
$$

Hence we have that $a=c$, and so g has the following matrix form.

$$
\left(\begin{array}{llll}
& 1 & & a \\
1 & & & a \\
a & a & 1 & e \\
& & & 1
\end{array}\right)
$$

We compute that $b_{3} f g$ has the following matrix form.

$$
\left(\begin{array}{cccc}
& 1 & & a+1 \\
1 & & & a+1 \\
a+1 & a+1 & 1 & e+1 \\
& & & 1
\end{array}\right)
$$

Hence replacing g by $b_{3} f g$ if $a=1$, we may assume that g has the following matrix form.

$$
\left(\begin{array}{llll}
& 1 & & \\
1 & & & \\
& & 1 & e \\
& & & 1
\end{array}\right)
$$

This implies that $a_{2}^{\sigma}=a_{2} b_{1}^{e}$ or $a_{2} b_{1}^{e} b_{0}$. Since a_{2}^{σ} is an involution, it follows that $e=0$. This implies that the relations listed in Lemma (4J) hold. The latter half of the lemma follows from this easily.

Now choose g as in Lemma (4J). We next prove
Lemma (4K). The following conditions hold.
(1) $\langle P, f, g\rangle \mid A_{1} \cong D_{8}$ and $Z\left(\langle P, f, g\rangle / A_{1}\right)=\left\langle A_{1}, b_{3} f\right\rangle \mid A_{1}$.
(2) $\bar{S}=\langle\bar{P}, \bar{f}, \bar{g}\rangle \times\langle\bar{t}\rangle$.
(3) $Z(S)=\left\langle b_{0}\right\rangle$.
(4) $\quad Z_{2}(S)=\left\langle b_{0}, b_{1}, t\right\rangle$.

Proof. By the choice of $g, g^{2} \in A_{1}$ and g interchanges $P=\left\langle A_{1}, b_{3}\right\rangle$ and $\left\langle A_{1}, f\right\rangle$. Hence (1) follows. By Lemma (4E)(2), $\bar{t} \in Z(\bar{S})$. Since $\langle P, f, g\rangle \cap R=\langle P, f\rangle, t \notin\langle P, f, g\rangle$. Thus (2) holds. Now $Z(S) \leqq$ $C_{S}(t)=R$, so $Z(S) \leqq Z(R)=\left\langle b_{0}, t\right\rangle$. Since $t^{g}=b_{0} t$ by Lemma (4 E), (3) follows. By $(2), Z(\bar{S})=Z(\langle\bar{P}, \bar{f}, \bar{g}\rangle) \times\langle\bar{t}\rangle$. Since $\left[b_{3} f, \bar{A}_{1}\right] \neq 1$ 'and since $\left\langle A_{1}, b_{3} f\right\rangle / A_{1}=Z\left(\langle P, f, g\rangle / A_{1}\right)$, we have that $C_{\langle\bar{P}, \bar{f}, \bar{g}\rangle}\left(\bar{A}_{1}\right)=\bar{A}_{1}$. Hence $Z(\langle\bar{P}, \bar{f}, \bar{g}\rangle)=C_{\bar{A}_{1}}\left(\left\langle\bar{b}_{3}, \bar{f}, \bar{g}\right\rangle\right)=\left\langle\bar{b}_{1}\right\rangle$ by Lemmas (4I) and (4J). Thus $Z(\bar{S})=\left\langle\bar{b}_{1}, \bar{t}\right\rangle$. This proves (4).

Lemma (4L). $\quad S \oplus \operatorname{Syl}_{2}(G)$.
Proof. Assume that $S \in \operatorname{Syl}_{2}(G)$. Then $\langle P, f, g\rangle$ contains an extremal conjugate u of t in S by Lemma (1E), since $t \in G^{\prime}$. Since $t^{G} \cap\langle P, f\rangle=\varnothing$ by Lemma (4F), $u \equiv g$ or $b_{3} f g \bmod A_{1}$, and we may assume that $u \equiv g \bmod A_{1}$. Then $C_{\bar{A}_{1}}(u)=\left\langle\bar{a}_{1} \bar{b}_{2}, \bar{a}_{2}, \bar{b}_{1}\right\rangle$ by Lemma (4J) and $C_{\langle p, f, g\rangle / A_{1}}(u)=\left\langle A_{1}, g, b_{3} f g\right\rangle / A_{1}$, so $\left|C_{\langle p, f, g\rangle}(u)\right| \leqq 2^{6}$ and $\left|C_{S}(u)\right| \leqq$ 2^{7}. However, $|C|_{2}=|R|=2^{8}$. This is a contradiction. Therefore, $S \notin \mathrm{Syl}_{2}(G)$.

Now let $T \in \operatorname{Syl}_{2}(N(S))$.

Lemma (4M). The following conditions hold.
(1) $|T: S|=2$.
(2) $t^{T}=\left\langle b_{0}, b_{1}\right\rangle t$.
(3) $T \in \operatorname{Syl}_{2}(G)$.

Proof. By Lemma (4L), $S<T$ and so $t^{T}=\left|T: C_{T}(t)\right|=|T: R| \geqq$ 4. On the other hand, $t^{T} \leqq Z_{2}(S)=\left\langle b_{0}, b_{1}, t\right\rangle$ by Lemma (4K), so $t^{T} \leqq\left\langle b_{0}, b_{1}\right\rangle t$ since $t^{G} \cap L=\varnothing$. Hence (1) and (2) follow.

Now $Z(T)=\left\langle b_{0}\right\rangle$ since $Z(T) \leqq C_{T}(t) \leqq S$ and $Z(S)=\left\langle b_{0}\right\rangle$. Hence $Z_{2}(T) \leqq N_{T}\left(B_{1}\right)=S$ by Lemma (4G)(2), and so $Z_{2}(T) \leqq Z_{2}(S)=$ $\left\langle b_{0}, b_{1}, t\right\rangle$. Now (2) shows that $\left\langle b_{0}, b_{1}\right\rangle \triangleleft T$, so $\left\langle b_{0}, b_{1}\right\rangle \leqq Z_{2}(T)$. It also follows from (2) and Lemma (4E)(2) that $t^{h}=b_{1} t$ or $b_{0} b_{1} t$ for $h \in T-S$. This implies that $t \notin Z_{2}(T)$. Therefore, $Z_{2}(T)=\left\langle b_{0}, b_{1}\right\rangle$.

Let $X=Z_{3}(T)$. Then $X \leqq N_{T}\left(B_{1}\right)=S$, and $[X, S] \leqq\left\langle b_{0}, b_{1}\right\rangle$. Hence $[\bar{X}, \bar{S}] \leqq\left\langle\bar{b}_{1}\right\rangle=Z(\bar{T})$. Now $\left\langle\bar{b}_{1}, \bar{t}\right\rangle=Z(\bar{S}) \triangleleft \bar{T}$, so $\left\langle\bar{b}_{1}, \bar{t}\right\rangle \leqq \bar{X}$. In particular, $\bar{t} \in \bar{X}$ and so, if $\bar{Y}=\bar{X} \cap\langle\bar{P}, \bar{f}, \bar{g}\rangle$, then $\bar{X}=\bar{Y}\langle\bar{t}\rangle$ by Lemma (4K)(2). We have that

$$
[\bar{Y},\langle\bar{P}, \bar{f}, \bar{g}\rangle] \leqq\left\langle\bar{b}_{1}\right\rangle \leqq \bar{A}_{1}
$$

Hence $\bar{Y} \leqq Z\left(\langle\bar{P}, \bar{f}, \bar{g}\rangle \bmod \bar{A}_{1}\right)=\left\langle\bar{A}_{1}, \bar{b}_{3} \bar{f}\right\rangle$ by Lemma $(4 \mathrm{~K})(1)$. From Lemma (4I)(3), we get that $\left[\bar{b}_{3} \bar{f}, \bar{a}_{2}\right]=\bar{a}_{1} \bar{b}_{2} \bar{b}_{1} \notin\left\langle\bar{b}_{1}\right\rangle$. Hence, $\bar{Y} \leqq \bar{A}_{1}$ and using Lemmas (4I), (4J), we get that $\bar{Y} \leqq\left\langle\bar{a}_{1} \bar{b}_{2}, \bar{b}_{1}\right\rangle$. Therefore, $\left\langle\bar{b}_{1}, \bar{t}\right\rangle \leqq \bar{X} \leqq\left\langle\bar{a}_{1} \bar{b}_{2}, \bar{b}_{1}, \bar{t}\right\rangle$. That is, $\left\langle b_{0}, b_{1}, t\right\rangle \leqq Z_{3}(T) \leqq\left\langle a_{1} b_{2}, b_{0}, b_{1}, t\right\rangle$. Hence $\Omega_{1}\left(Z_{3}(T)\right)=\left\langle b_{0}, b_{1}, t\right\rangle$.

Now let $U \in \operatorname{Syl}_{2}(N(T))$. Then $t^{U} \leqq\left\langle b_{0}, b_{1}, t\right\rangle$ by the above, and so $t^{U}=\left\langle b_{0}, b_{1}\right\rangle t$. This shows that $|U: R|=4$. Hence $U=T$ and $T \in \operatorname{Syl}_{2}(G)$. The proof is complete.

Lemma (4N). $t \notin G^{\prime}$.

Proof. Let $h \in T-S$. Then $R \cap R^{h} \triangleleft T$ as $h^{2} \in S \leqq N(R)$ by Lemma (4M). Since $R=C_{T}(t)$ and $t^{h} \in\left\langle b_{0}\right\rangle b_{1} t$ by Lemmas (4E) and (4M),

$$
R \cap R^{h}=C_{R}\left(t^{h}\right)=C_{R}\left(b_{1}\right)=\left\langle a_{1}, b_{0}, b_{1}, b_{2}, b_{3}, f, t\right\rangle
$$

Now $t \sim b_{0} t \sim b_{1} t$ by Lemma (4M), and since every involution of L is conjugate in L to b_{0} or b_{1}, it follows that $t \sim x t$ for all $x \in I(L)$. Since $P^{g}=\left\langle A_{1}, f\right\rangle$ and $t^{g}=b_{0} t$, we also have that $b_{0} t \sim\left(f b_{0}\right) b_{0} t=f t$. Hence $t \sim f t$. Also, $t^{G} \cap\left\langle a_{1}, b_{0}, b_{1}, b_{2}, b_{3}, f\right\rangle=\varnothing$ by Lemma (4F)(4). Therefore, we conclude that the subgroup generated by the products of two elements of $t^{G} \cap\left\langle a_{1}, b_{0}, b_{1}, b_{2}, b_{3}, f, t\right\rangle$ is equal to $\left\langle a_{1}, b_{0}, b_{1}, b_{2}\right.$, $\left.b_{3}, f\right\rangle$. This shows that $\left\langle a_{1}, b_{0}, b_{1}, b_{2}, b_{3}, f\right\rangle \triangleleft T$. Hence $\langle P, f\rangle \cap$ $\langle P, f\rangle^{h}=\left\langle a_{1}, b_{0}, b_{1}, b_{2}, b_{3}, f\right\rangle$. Thus $N=\langle P, f\rangle\langle P, f\rangle^{h}$ is a normal
subgroup of T of index 4, and moreover, $t \notin N$ as $S=\langle N, t\rangle$.
Let u be an extremal conjugate of t in T. Assume that $u \in S$. Notice that $\left\langle b_{0}, t\right\rangle \triangleleft S$ and $S /\left\langle b_{0}, t\right\rangle \cong\langle P, f, g\rangle \mid\left\langle b_{0}\right\rangle$ by Lemma (4K). Hence if $u \notin R$, then $u \equiv g$ or $b_{3} f g \bmod B_{1}$, and so $\left|C_{S^{\prime} B_{1}}(u)\right|=4$ and $\left|C_{\left.B_{1}<b_{0}, t\right\rangle}(u)\right|=8$ by Lemma (4J). Since $\left|C_{T}(u)\right|=2^{8}$ by assumption, we get that $C_{\left\langle b_{0}, t\right\rangle}(u)=\left\langle b_{0}, t\right\rangle$. But then $u \in C_{T}(t)=R$, a contradiction. Hence $u \in R$ and so $u \in\langle P, f\rangle t \leqq N t$ by Lemma (4F)(4).

Assume that $u \notin S$. Then we may choose $h=u$. Now \bar{B}_{1}^{h} is an E_{32}-subgroup of \bar{S}, and $\bar{B}_{1}^{h} \neq \bar{B}_{1}$ since $S \in \operatorname{Syl}_{2}\left(N\left(B_{1}\right)\right)$ by Lemma (4G). Also, $\bar{t} \in Z(\bar{S}) \leqq \bar{B}_{1}^{h}$ by Lemma (4K)(4). Therefore, $\bar{B}_{1}^{h}=\bar{X}\langle\bar{t}\rangle$ for some E_{16}-subgroup \bar{X} of $\langle\bar{P}, \bar{f}, \bar{g}\rangle$ different from \bar{A}_{1} by Lemma $(4 \mathrm{~K})(2)$. Thus $\bar{X} \bar{A}_{1} / \bar{A}_{1}$ is a nonidentity elementary abelian subgroup of $\langle\bar{P}, \bar{f}, \bar{g}\rangle / \bar{A}_{1}$ which centralizes the subgroup $\bar{X} \cap \bar{A}_{1}$ of \bar{A}_{1}. We argue that $\bar{X} \bar{A}_{1}=\left\langle\bar{A}_{1}, \bar{b}_{3} \bar{f}, \bar{g}\right\rangle$. If not, then using Lemma (4I)(4), (5), (6), and Lemma (4J), we get that $\bar{X} \bar{A}_{1}=\left\langle\bar{A}_{1}, \bar{g}\right\rangle$ or $\left\langle\bar{A}_{1}, \bar{g}_{3} \bar{f} \bar{g}\right\rangle$. Conjugating, we may assume the former. Then $\bar{X} \cap \bar{A}_{1}=Z\left(\left\langle\bar{A}_{1}, \bar{g}\right\rangle\right)=\left\langle\bar{a}_{1} \bar{b}_{2}\right.$, $\left.\bar{a}_{2}, \bar{b}_{1}\right\rangle$ by Lemma (4J). But then $a_{2} \in B_{1}^{h} \leqq R^{h}$, so $a_{2} \in R \cap R^{h}=$ $\left\langle a_{1}, b_{0}, b_{1}, b_{2}, b_{3}, f, t\right\rangle$, which is a contradiction. Therefore, $\bar{X} \bar{A}_{1}=$ $\left\langle\bar{A}_{1}, \bar{b}_{3} \bar{f}, \bar{g}\right\rangle$ and so $\bar{B}_{1} \bar{B}_{1}^{h}=\left\langle\bar{B}_{1}, \bar{b}_{3} \bar{f}, \bar{g}\right\rangle$. This implies that $B_{1} \cap B_{1}^{h}$ has index 4 in B_{1}, so that $\left|B_{1} \cap B_{1}^{h}\right|=2^{4}$. We also have that $B_{1} \cap$ $R^{h}=B_{1} \cap\left(R \cap R^{h}\right)=\left\langle a_{1}, b_{0}, b_{1}, b_{2}, t\right\rangle$. Hence $\left|B_{1} \cap R^{h}\right|=2^{5}$. Now consider the following normal series of T.

$$
B_{1} \cap B_{1}^{h} \leqq\left(B_{1} \cap R^{h}\right)\left(B_{1}^{h} \cap R\right) \leqq R \cap R^{h} \leqq R R^{h}=S \leqq T
$$

The factors of this series have order 2 except for $\left(B_{1} \cap R^{h}\right)\left(B_{1}^{h} \cap R\right) /$ $B_{1} \cap B_{1}^{h}$ and $R R^{h} / R \cap R^{h}$, which are fours groups. Therefore, the centralizer of h in each factor has order 2. There are 4 factors and $\left|C_{T}(h)\right|=2^{8}$ by the choice of h. Hence h must centralize $B_{1} \cap B_{1}{ }^{h}$. But then, as $t \in Z_{2}(S) \leqq B_{1} \cap B_{1}^{h}, h \in C_{T}(t) \leqq S$, which is a contradiction. Therefore, $u \in S$ and so $u \in N t$ as shown before.

We have shown that each extremal conjugate of t in T is contained in Nt. Thus Lemma (1E) shows that $t \notin G^{\prime}$.

Lemma (4 N) conflicts with our assumption. Therefore, we have proved Theorem (4A).
5. In this section, we shall make the following hypothesis.

Hypothesis (5.1). $t^{\curlyvee\left(B_{2}\right)}=\left\{t, c_{1} t, c_{2} t, c_{3} t, c_{4} t, c_{5} t\right\}$.
The purpose of this section is to prove the following.

Theorem (5A). Under Hypothesis (5.1), $r\left(\left\langle L^{G}\right\rangle\right)=4$.

The proof of this theorem is similar to that of Theorem (4A), although the arguments involved in this section are much more complicated than in §4. We begin the proof by studying the permutation representation of $N\left(B_{2}\right)$ on $\Omega=t^{N\left(B_{2}\right)}$. Let

$$
n_{1}=t \text { and } n_{i}=c_{i-1} t
$$

for $i \in\{2,3,4,5,6\}$, so that

$$
\Omega=\left\{n_{1}, n_{2}, n_{3}, n_{4}, n_{5}, n_{6}\right\}
$$

Lemma (5B). $\quad N\left(B_{2}\right)^{\Omega} \cong N\left(B_{2}\right) / C\left(B_{2}\right) \cong \Sigma_{6}$ or A_{6}.
Proof. First, observe that $\langle\Omega\rangle=B_{2}$. Hence $C(\Omega)=C\left(B_{2}\right)$ and $N\left(B_{2}\right)^{2} \cong N\left(B_{2}\right) / C\left(B_{2}\right)$. By Hypothesis (5.1), $\left|N\left(B_{2}\right): N_{c}\left(B_{2}\right)\right|=6$. Since $N_{c}\left(B_{2}\right) / C\left(B_{2}\right) \cong \Sigma_{5}$ or A_{5} by Lemmas (2D) and (2H), it follows that $\left|N\left(B_{2}\right) / C\left(B_{2}\right)\right|=720$ or 360 . Thus $N\left(B_{2}\right)^{2}$ is a subgroup of the symmetric group on Ω of index 1 or 2 . Hence $N\left(B_{2}\right)^{2} \cong \Sigma_{6}$ or A_{6}.

Notice that Hypothesis (5.1) implies Hypothesis (3.1). Therefore, $\langle t\rangle \in \operatorname{Syl}_{2}\left(C_{c}(L)\right)$ by Lemma (3B).

Lemma (5C). The following conditions hold.
(1) $N\left(A_{2}\right) / C\left(A_{2}\right) \cong N\left(B_{2}\right) / C\left(B_{2}\right)$.
(2) $N\left(B_{2}\right) \cap C\left(A_{2}\right)=C\left(B_{2}\right)=B_{2} O(C)$.
(3) $\quad B_{2} \in \operatorname{Syl}_{2}\left(C\left(A_{2}\right)\right)$.

Proof. Since $\langle t\rangle \in \operatorname{Syl}_{2}\left(C_{C}(L)\right)$, Lemma (2 H) shows that $C\left(B_{2}\right)=$ $B_{2} O(C)$. By Lemma (5B), $N\left(B_{2}\right) / C\left(B_{2}\right)$ has no nonidentity normal 2-subgroups. Since $N\left(B_{2}\right) \cap C\left(A_{2}\right) / C\left(B_{2}\right)$ is a normal 2-subgroup of $N\left(B_{2}\right) / C\left(B_{2}\right)$ by Lemmas (3E) and (3F), it follows that $N\left(B_{2}\right) \cap C\left(A_{2}\right)=$ $C\left(B_{2}\right)$. This proves (3), since $B_{2} \in \operatorname{Syl}_{2}\left(C\left(B_{2}\right)\right)$. Finally, (1) holds by a Frattini argument.

Now $O\left(C\left(B_{2}\right)\right)=O(C)$ by Lemma (5C)(2), so let bars denote images in $N\left(B_{2}\right) / O(C)$. Then since $C\left(B_{2}\right)=B_{2} O(C), \overline{N\left(B_{2}\right) / \bar{B}_{2}} \cong \Sigma_{6}$ or A_{6} by Lemma (5B). Choose the subgroup \bar{M} of $\overline{N\left(B_{2}\right)}$ such that $\bar{B}_{2} \leqq \bar{M}$ and $\bar{M} / \bar{B}_{2} \cong A_{6}$. Then since $\bar{K}_{2} \bar{B}_{2} / \bar{B}_{2} \cong A_{5}, \bar{K}_{2} \bar{B}_{2} \leqq \bar{M}$ and in particular, $\bar{Q} \leqq \bar{M}$. Now $\bar{A}_{2} \triangleleft N\left(\bar{B}_{2}\right)$ by Lemma (3E). Hence \bar{M} / \bar{A}_{2} is an extension of Z_{2} by A_{6}, and it contains $\bar{Q} / \bar{A}_{2} \cong E_{8}$. Therefore, the extension splits, and there is a subgroup \bar{N} of \bar{M} such that $\bar{A}_{2} \leqq \bar{N}$ and $\bar{M} / \bar{A}_{2}=\bar{N} / \bar{A}_{2} \times \bar{B}_{2} / \bar{A}_{2}$. As before, $\bar{K}_{2} \bar{A}_{2} \leqq \bar{N}$, and so $\bar{P} \leqq \bar{N}$.

Definition (5.1). Let M and N be the preimages of \bar{M} and \bar{N},
respectively. Furthermore, let $Q \leqq R \in \operatorname{Syl}_{2}(C), R \leqq T \in \operatorname{Syl}_{2}\left(N\left(B_{2}\right)\right)$, $S=T \cap M$, and $U=S \cap N$.

Thus $U \triangleleft T, T=R U, R \cap U=P$, and $R \cap S=Q$ by the above remark. In particular, $T / U \cong R / P$. Notice also that $N\left(B_{2}\right) / C\left(B_{2}\right) \cong$ Σ_{6} if and only if $Q<R$, as $R \in \operatorname{Syl}_{2}\left(N_{C}\left(B_{2}\right)\right)$.

Lemma (5D). If T / U is cyclic, then Theorem (5A) holds.
Proof. Suppose that T / U is cyclic. Then $t^{G} \cap T \leqq S$. Hence $t^{G} \cap R \leqq S \cap R=Q$, so $B_{2}=\left\langle t^{G} \cap B_{2}\right\rangle$ is weakly closed in R with respect to G by Lemma (2A). Let $t^{g} \in B_{2}$. Then $B_{2}^{g^{-1}} \leqq C$, so there is an element $c \in C$ such that $B_{2}^{g^{-1}} \leqq R^{c}$. By the weak closure of $B_{2}, B_{2}^{g^{-1}}=B_{2}^{c}$ and $t^{g}=t^{c g} \in t^{N\left(B_{2}\right)}$. Therefore, $t^{G} \cap B_{2}=t^{N\left(B_{2}\right)}=\Omega$.

Let $x \in t^{G} \cap\left(Q-B_{2}\right)$. Then $x \in B_{1}$ by Lemma (2A) and x is conjugate to an element of $B_{1} \cap B_{2}$ in $N_{C}\left(B_{1}\right)$ by Lemma (2E). Since $t^{G} \cap B_{1} \cap B_{2}=\Omega \cap B_{1}=\left\{t, c_{1} t\right\}$ and since t and $c_{1} t \in Z\left(N_{C}\left(B_{1}\right)\right), x=t$ or $c_{1} t$ and so $x \in B_{2}$, which is a contradiction. Therefore, $t^{G} \cap Q=t^{G} \cap B_{2}$. This in turn implies that $t^{G} \cap S=t^{G} \cap B_{2}$, as M / B_{2} has one conjugacy class of involutions by the definition of M. Thus $t^{G} \cap T=t^{G} \cap B_{2}=$ Ω. Hence $N(T) \leqq N\left(B_{2}\right)$ and so $T \in \operatorname{Syl}_{2}(G)$. Also, $t^{G} \cap T \leqq U t$. Therefore, $t \notin G^{\prime}$ by Lemma (1E). Since $U \leqq N^{\prime} \leqq G^{\prime}$, we conclude that $U \in \operatorname{Syl}_{2}\left(G^{\prime}\right)$.

Now $N\left(A_{2}\right) / C\left(A_{2}\right) \cong \Sigma_{6}$ or A_{6} by Lemmas (5C) and (5B). As $N_{N^{\prime}}\left(A_{2}\right) / C_{N^{\prime}}\left(A_{2}\right) \cong A_{6}$ and $U \in \operatorname{Syl}_{2}\left(N_{G^{\prime}}\left(A_{2}\right)\right)$, it follows that $N_{G^{\prime}}\left(A_{2}\right) /$ $C_{G^{\prime}}\left(A_{2}\right) \cong A_{0}$. Also, since $B_{2} \in \operatorname{Syl}_{2}\left(C\left(A_{2}\right)\right)$ and since $t \notin G^{\prime}, A_{2} \in$ $\operatorname{Syl}_{2}\left(C_{G^{\prime}}\left(A_{2}\right)\right)$. Thus by [17, Theorem 3], $r\left(G^{\prime}\right)=4$ and hence $r\left(\left\langle L^{i}\right\rangle\right)=$ 4. The proof is complete.

In view of Lemma (5D), we shall assume from now on that T / U is not cyclic. This implies that $T / U \cong E_{4}$. Let bars denote images in $N\left(B_{2}\right) / O(C)$. Then since $\overline{N\left(\overline{B_{2}}\right)} / \bar{N} \cong \bar{T} / \bar{U}$, there is a subgroup \bar{K} of $\overline{N\left(B_{2}\right)}$ such that $\bar{N}<\bar{K}$ and $\overline{N\left(B_{2}\right)} / \bar{A}_{2}=\bar{K} / \bar{A}_{2} \times \bar{B}_{2} / \bar{A}_{2}$.

Definition (5.2). Let K be the preimage of \bar{K} in $N\left(B_{2}\right)$ and set $V=T \cap K$.

Since $R / P \cong E_{4}$, we may assume without loss of generality that there is an involution $f \in R-Q$ whose action on L is induced by the automorphism of \boldsymbol{F}_{4} of order 2.

Now $A_{2} \triangleleft R$, so R acts on A_{2} by conjugation. In the following lemma, we collect information on this action. For the proof, see Lemmas (2A) and (2F).

Lemma (5E). The following conditions hold.
(1) $b_{0}^{a_{1}}=b_{0}, b_{1}^{a_{1}}=b_{1}, b_{2}^{a_{1}}=b_{0} b_{2}, b_{3}^{a_{1}}=b_{0} b_{1} b_{3}$.
(2) $b_{0}^{a_{2}}=b_{0}, b_{1}^{a_{2}}=b_{0} b_{1}, b_{2}^{a_{2}}=b_{2}, b_{3}^{a_{2}}=b_{0} b_{2} b_{3}$.
(3) $b_{0}^{f}=b_{0}, b_{1}^{f}=b_{1}, b_{2}^{f}=b_{1} b_{2}, b_{3}^{f}=b_{3}$.
(4) $C_{A_{2}}\left(a_{1}\right)=\left\langle b_{0}, b_{1}\right\rangle$.
(5) $C_{A_{2}}\left(a_{2}\right)=\left\langle b_{0}, b_{2}\right\rangle$.
(6) $C_{A_{2}}(f)=\left\langle b_{0}, b_{1}, b_{3}\right\rangle$.

Permutation representations of a_{1}, a_{2}, and f on Ω can be computed by using Lemma (5E) and the expressions of c_{i} 's in terms of b_{i} 's given in $\S 2$. We have that

$$
a_{1}^{\Omega}=\left(n_{3}, n_{4}\right)\left(n_{5}, n_{6}\right), a_{2}^{\Omega}=\left(n_{3}, n_{5}\right)\left(n_{4}, n_{6}\right), f^{Q}=\left(n_{5}, n_{6}\right) .
$$

Therefore, we may assume without loss of generality that

$$
T^{\Omega}=\left\langle a^{\Omega}, f^{\Omega}, a_{1}^{\Omega}, a_{2}^{\Omega}\right\rangle,
$$

where

$$
a^{a}=\left(n_{1}, n_{2}\right)
$$

That is, $t^{a}=c_{1} t,\left(c_{1} t\right)^{a}=t$, and $\left(c_{i} t\right)^{a}=c_{i} t$ for $i \in\{2,3,4,5\}$. Noticing that $c_{i}=\left(c_{i} t\right) t$, we get that $c_{1}^{a}=c_{1}$ and $c_{i}^{a}=c_{1} c_{i}$ for $i \in\{2,3,4,5\}$. Thus we can determine the action of a on B_{2}, using the relations $b_{0}=c_{1}, b_{1}=c_{4} c_{5}, b_{2}=c_{1} c_{2} c_{4}$, and $b_{3}=c_{2}$. Furthermore, we can compute [$\left.B_{2}, a\right]$ and $C_{B_{2}}(a)$. Also, $C_{T}(\Omega)=B_{2}$ and a^{Ω} is an involution which centralizes $a_{1}^{\Omega}, a_{2}^{2}$, and f^{Ω}. Thus we have the following result.

Lemma (5F). There is an element $a \in T-R$ which satisfies the following conditions.
(1) $a^{2},\left[a_{1}, a\right],\left[a_{2}, a\right]$, and $[f, a] \in B_{2}$.
(2) $b_{0}^{a}=b_{0}, b_{1}^{a}=b_{1}, b_{2}^{a}=b_{2}, b_{3}^{a}=b_{0} b_{3}, t^{a}=b_{0} t$.
(3) $\left[B_{2}, a\right]=\left\langle b_{0}\right\rangle$.
(4) $C_{B_{2}}(a)=\left\langle b_{0}, b_{1}, b_{2}, b_{3} t\right\rangle$.

Our next result shows that T has the unique structure.

Lemma (5G).
(1) We may choose a in Lemma (5F) and f so that $a^{2}=$ $\left[a_{1}, a\right]=\left[a_{2}, a\right]=[f, a]=1$.
(2) If P^{*} / A_{2} is an E_{4}-subgroup of U / A_{2} different from P / A_{2}, then $\mathscr{E}^{*}\left(P^{*}\right)$ consists of two E_{16}-subgroups.

Proof. Observe first that $V \cap R=\langle P, f\rangle$ or $\langle P, f t\rangle$. Replacing f by $f t$ in the latter case, we may assume that $f \in V$.

Choose an element $a \in T-R$ as in Lemma (5F), and let bars denote images in $N\left(B_{2}\right) / C\left(B_{2}\right)$. Then $\bar{T}=\langle\bar{a}\rangle \times\left\langle\bar{a}_{1}, \bar{a}_{2}, \bar{f}\right\rangle \cong Z_{2} \times D_{8}$ and $Z(\bar{T})=\left\langle\bar{a}, \bar{a}_{1}\right\rangle$.

Now $\bar{a}_{1} \in Z(\bar{T})$, so $\left\langle a_{1}\right\rangle A_{2} \triangleleft V$. Also, $C_{A_{2}}\left(a_{1}\right)=\left\langle b_{0}, b_{1}\right\rangle$ and so $I\left(a_{1} A_{2}\right)=a_{1}^{A_{2}}$ by Lemma (1C). Thus $V=C_{V}\left(a_{1}\right) A_{2}$, and consequently $\left|C_{V}\left(a_{1}\right)\right|=64$.

Now $\left\langle a_{1}, a_{2}, f, b_{0}\right\rangle \leqq N\left(\left\langle a_{1}, a_{2}\right\rangle\right) \cap C_{V}\left(a_{1}\right)$. Suppose that equality holds here. Then $C_{V}\left(a_{1}\right) \cap C_{V}\left(a_{2}\right)=C\left(a_{2}\right) \cap\left\langle a_{1}, a_{2}, f, b_{0}\right\rangle=\left\langle a_{1}, a_{2}, b_{0}\right\rangle$ and so $\left|C_{V}\left(a_{1}\right): C_{V}\left(a_{1}\right) \cap C_{V}\left(a_{2}\right)\right|=8$. This shows that $\left|a_{2}^{\sigma_{V}\left(a_{1}\right)}\right|=8$. However, since $\left\langle\bar{a}_{1}, \bar{a}_{2}\right\rangle \triangleleft \bar{T},\left\langle a_{1}, a_{2}, C_{A_{2}}\left(a_{1}\right)\right\rangle \triangleleft C_{V}\left(a_{1}\right)$. Similarly, $\left\langle a_{1}, C_{A_{2}}\left(a_{1}\right)\right\rangle \triangleleft C_{V}\left(a_{1}\right)$. Hence $a_{2}^{\sigma_{V}\left(a_{1}\right)} \leqq a_{2}\left\langle a_{1}, C_{A_{2}}\left(a_{1}\right)\right\rangle$, whereas $\mid I\left(a_{2}\left\langle a_{1}\right.\right.$, $\left.\left.C_{A_{2}}\left(a_{1}\right)\right\rangle\right) \mid=4$ as $C\left(a_{2}\right) \cap\left\langle a_{1}, C_{A_{2}}\left(a_{1}\right)\right\rangle=\left\langle a_{1}, b_{0}\right\rangle$ has order 4. This contradiction shows that $\left\langle a_{1}, a_{2}, f, b_{0}\right\rangle \neq N\left(\left\langle a_{1}, a_{2}\right\rangle\right) \cap C_{V}\left(a_{1}\right)$, so $N\left(\left\langle a_{1}\right.\right.$, $\left.\left.a_{2}\right\rangle\right) \cap C_{V}\left(a_{1}\right)$ has index 2 in $C_{V}\left(a_{1}\right)$.

Now $C_{A_{2}}\left(a_{1}\right) \not \equiv N\left(\left\langle a_{1}, a_{2}\right\rangle\right)$, so that by the above paragraph,

$$
C_{V}\left(a_{1}\right)=\left(N\left(\left\langle\alpha_{1}, a_{2}\right\rangle\right) \cap C_{V}\left(a_{1}\right)\right) C_{A_{2}}\left(a_{1}\right) .
$$

Thus $V=N_{V}\left(\left\langle a_{1}, a_{2}\right\rangle\right) A_{2}$ and so we may assume $a \in N_{V}\left(\left\langle a_{1}, a_{2}\right\rangle\right)$. Then, since $\left[\bar{a},\left\langle\bar{a}_{1}, \bar{a}_{2}\right\rangle\right]=1,\left[a,\left\langle a_{1}, a_{2}\right\rangle\right]=1$. Also, since $\bar{a}^{2}=\left(\overline{a f)^{2}}=\right.$ $1, a^{2}$ and $(a f)^{2} \in N_{A_{2}}\left(\left\langle a_{1}, a_{2}\right\rangle\right)=\left\langle b_{0}\right\rangle$. Using the relation $t^{a}=b_{0} t$, we may deduce as follows:

$$
\begin{aligned}
(a t f)^{2} & =(a f t)^{2}=(a f)^{2}(a f)^{-1} t(a f) t \\
& =(a f)^{2} t^{a f} t \\
& =(a f)^{2} t b_{0} t \\
& =(a f)^{2} b_{0} .
\end{aligned}
$$

Also,

$$
(a t)^{2}=a^{2} t^{a} t=a^{2}\left(b_{0} t\right) t=a^{2} b_{0}
$$

If $a^{2}=b_{0}$, let $a_{0}=a t$. Then $a_{0}^{2}=1$ and $\left(a_{0} f\right)^{2}=(a f)^{2} b_{0} \in\left\langle b_{0}\right\rangle$ by the above. If $\left(a_{0} f\right)^{2}=b_{0}$, let $f_{0}=f t$. Then $\left(a_{0} f_{0}\right)^{2}=(a f)^{2}=\left(a_{0} f\right)^{2} b_{0}=1$. If $a^{2}=1$ and $(a f)^{2}=b_{0}$, then $\left(a f_{0}\right)^{2}=(a f)^{2} b_{0}=1$. Therefore, replacing a and f by at and $f t$, if necessary, we may assume that $a^{2}=$ $(a f)^{2}=1$. This proves (1).

Now $(a f)^{\Omega}=\left(n_{1}, n_{2}\right)\left(n_{5}, n_{6}\right)$ by definition, so $a f \in S$ and $S=\left\langle a_{1}\right.$, $\left.a_{2}, a f\right\rangle B_{2}$. Since $P^{*} B_{2} / B_{2}$ is an E_{4}-subgroup of S / B_{2} different from $P B_{2} / B_{2}$ and since $P B_{2}=\left\langle a_{1}, a_{2}\right\rangle B_{2}$, it follows that $P^{*} B_{2}=\left\langle a_{1}, a f\right\rangle B_{2}$. Hence if $x \in P^{*}-A_{2}$, then $C_{A_{2}}(x)=C_{A_{2}}\left(a_{1}\right), C_{A_{2}}(a f)$ or $C_{A_{2}}\left(a_{1} a f\right)$, and so using Lemmas (5E) and (5F), we have that $C_{A_{2}}(x)=\left\langle b_{0}, b_{1}\right\rangle$. Now (1) shows that $\left\langle a, a_{1}, a_{2}, f\right\rangle$ is a complement for B_{2} in T, so that B_{2} has a complement Y in $N\left(B_{2}\right)$ by Gaschütz's theorem [19, Hauptsatz 17.4]. Then Y^{\prime} is a complement for A_{2} in N^{\prime}, and so there is a fours group X such that $X A_{2}=P^{*}$ and $X \cap A_{2}=1$. Since $C_{A_{2}}(x)=$
$\left\langle b_{0}, b_{1}\right\rangle$ for $x \in X^{\#},[11,(1 \mathrm{C})]$ shows that $\mathscr{E}^{*}\left(P^{*}\right)=\left\{A_{2}, X\left\langle b_{0}, b_{1}\right\rangle\right\}$. This proves (2).

Now choose an element $a \in T-R$ as in Lemma (5G). As remarked in the proof of Lemma (5G)(2), $T=\left\langle a, a_{1}, a_{2}, f\right\rangle B_{2}$ and $\left\langle a, a_{1}, a_{2}, f\right\rangle \cap B_{2}=1$.

Lemma (5H). The following conditions hold.
(1) $Z(T)=\left\langle b_{0}\right\rangle$.
(2) $Z_{2}(T)=\left\langle a, b_{0}, b_{1}, t\right\rangle$.

Proof. As $Z(T) \leqq C_{r}(t)=R, Z(T) \leqq Z(R)=\left\langle b_{0}, t\right\rangle$. As $t^{a}=b_{0} t$ by Lemma (5F)(2), $Z(T)=\left\langle b_{0}\right\rangle$.

Now $Z_{2}(T) \leqq C_{T}\left(B_{2} /\left\langle b_{0}\right\rangle\right) \leqq Z\left(T \bmod B_{2}\right)=\left\langle a, a_{1}\right\rangle B_{2}$. \quad Since $\left[a, B_{2}\right]=$ $\left\langle b_{0}\right\rangle$ by Lemma (5F)(3) and since $\left[a_{1}, B_{2}\right]=\left\langle b_{0}, b_{1}\right\rangle$ by Lemma (5E)(1), we have that $\langle a\rangle \leqq Z_{2}(T) \leqq\langle a\rangle B_{2}$. Hence if $X=B_{2} \cap Z_{2}(T)$, then $Z_{2}(T)=\langle a\rangle X$.

By definition $X \leqq Z_{2}(Q)=\left\langle b_{0}, b_{1}, b_{2}, t\right\rangle$. Clearly, $b_{0} \in X$. We have that $\left[\left\langle a, a_{1}, a_{2}, f\right\rangle, b_{1}\right]=\left\langle b_{0}\right\rangle$ by Lemmas (5E) and (5F). Also, $\left[\left\langle a, a_{1}, a_{2}, f\right\rangle, t\right]=\left\langle b_{0}\right\rangle$. Hence b_{1} and $t \in X$. However, $b_{2} \notin X$ since $\left[f, b_{2}\right]=b_{1}$ by Lemma (5E)(3). Therefore, $X=\left\langle b_{0}, b_{1}, t\right\rangle$ and so $Z_{2}(T)=\left\langle a, b_{0}, b_{1}, t\right\rangle$.

Lemma (5I). The following conditions hold.
(1) $C_{T}\left(b_{1} t\right)=\left\langle a a_{2}, a_{1}, f, B_{2}\right\rangle$.
(2) B_{2} and $D=\left\langle a_{1}, f, b_{0}, b_{1}, t\right\rangle$ are E_{32}-subgroups of $C_{T}\left(b_{1} t\right)$ and both are normal in T.
(3) $C_{T}(a)=\left\langle a, a_{1}, a_{2}, f, b_{0}, b_{1}, b_{2}, b_{3} t\right\rangle$.
(4) $C_{T}\left(a b_{1}\right)=\left\langle a, a_{1}, f, b_{0}, b_{1}, b_{2}, b_{3} t, a_{2} t\right\rangle$.
(5) $E=\left\langle a, b_{0}, b_{1}, b_{2}, b_{3} t\right\rangle$ and $F=\left\langle a, a_{1}, f, b_{0}, b_{1}\right\rangle$ are E_{32}-subgroups of $C_{T}(a)$ and $C_{T}\left(a b_{1}\right)$, and both E and F are normal in T.

Proof. Since B_{2} is abelian, $C_{T}\left(b_{1} t\right)=C_{\left\langle a, a_{1}, a_{2}, f\right\rangle}\left(b_{1} t\right) B_{2}$. By Lemma (5E), a_{1} and f centralize $b_{1} t$. Also, $\left(b_{1} t\right)^{a a_{2}}=\left(b_{1} b_{0} t\right)^{a_{2}}=b_{0} b_{1} b_{0} t=b_{1} t$ by Lemmas (5E) and (5F). However, $a \notin C\left(b_{1} t\right)$ by Lemma (5F)(2). Thus $C_{\left\langle a, a_{1}, a_{2}, f\right\rangle}\left(b_{1} t\right)=\left\langle a a_{2}, a_{1}, f\right\rangle$ and hence (1) follows.

To prove (2), it is enough to show that $a \in N(D)$ as $D=\left\langle C_{A_{1}}(f)\right.$, $f, t\rangle\langle R$ by Lemma (2F). By Lemmas (5F) and (5G), a centralizes a_{1}, f, b_{0}, b_{1}. Also, $t^{a}=b_{0}$. Thus $a \in N(D)$. (3) is a direct consequence of Lemmas (5G)(1) and (5F)(4).

As a consequence of (3), we have that E is elementary of order 32. Also, F is elementary of order 32 as $\left\langle a, a_{1}, f\right\rangle$ centralizes $\left\langle b_{0}, b_{1}\right\rangle$ by Lemmas (5E) and (5F). Thus E and $F \leqq C_{T}\left(a b_{1}\right)$. Now $\left(a b_{1}\right)^{a_{2} t}=\left(a b_{0} b_{1}\right)^{t}=\left(a b_{0}\right) b_{0} b_{1}=a b_{1}$ by Lemmas (5E) and (5F)(2). Hence
$\left\langle E, F, a_{2} t\right\rangle \leqq C_{T}\left(a b_{1}\right)$ and as $\left\langle E, F, a_{2} t\right\rangle$ is maximal in T and $a b_{1} \notin Z(T)$ by Lemma (5 H), we conclude that $C_{T}\left(a b_{1}\right)=\left\langle E, F, a_{2} t\right\rangle=\left\langle a, a_{1}, f, b_{0}\right.$, $\left.b_{1}, b_{2}, b_{3} t, a_{2} t\right\rangle$.

Now $\left\langle a_{1}, a_{2}, f\right\rangle$ centralizes a and normalizes $\left\langle b_{0}, b_{1}, b_{2}, b_{3} t\right\rangle$ by Lemmas (5E) and (5F). Also, $\left[B_{2}, a\right]=\left\langle b_{0}\right\rangle$ and B_{2} centralizes $\left\langle b_{0}, b_{1}\right.$, $\left.b_{2}, b_{3} t\right\rangle$. Thus $T=\left\langle a_{1}, a_{2}, f, E, B_{2}\right\rangle$ normalizes E.

Similarly, we see that a_{2} normalizes $\left\langle a, a_{1}, f\right\rangle$ and $\left\langle b_{0}, b_{1}\right\rangle$. Furthermore, $\left[\left\langle a, a_{1}, f\right\rangle, B_{2}\right] \leqq\left\langle b_{0}, b_{1}\right\rangle$ and B_{2} centralizes $\left\langle b_{0}, b_{1}\right\rangle$. Hence $T=\left\langle a_{2}, F, B_{2}\right\rangle$ normalizes F.

Lemma (5J). $t^{\prime t} \cap\left\langle A_{1}, t\right\rangle=t^{T}=\left\{t, b_{0} t\right\}$ and $t^{(t} \cap B_{2}=t^{N\left(B_{2}\right)}$.
Proof. Suppose that $t \sim b_{1} t$. Since $R \in \operatorname{Syl}_{2}(C(t))$, t is extremal in an S_{2}-subgroup of G containing T. Therefore, there is an element $g \in G$ such that $\left(b_{1} t\right)^{g}=t$ and $C_{T}\left(b_{1} t\right)^{g}=R$. By Lemma (2F), B_{2} and D are the only normal E_{32}-subgroup of R, so Lemma (5I)(2) shows that $\left\{B_{2}, D\right\}^{g}=\left\{B_{2}, D\right\}$. Since $b_{1} t \in t^{N\left(B_{2}\right)}$ by Hypothesis (5.1), $g \in N\left(B_{2}\right)$ and therefore, $D^{g}=B_{2}$.

Now $T \leqq N\left(C_{T}\left(b_{1} t\right)\right) \cap N(D)$ by Lemma (5I), so $T^{g} \leqq N\left(B_{2}\right) \cap N(R)$. Also, $T \leqq N\left(B_{2}\right) \cap N(R)$. Hence there is an element $h \in g\left(N\left(B_{2}\right) \cap\right.$ $N(R)$) such that $T^{h}=T$. Thus $b_{0}^{h}=b_{0}$ since $Z(T)=\left\langle b_{0}\right\rangle, D^{h}=B_{2}$, and $\left(b_{1} t\right)^{h}=t$ or $b_{0} t$ since $Z(R)=\left\langle b_{0}, t\right\rangle$.

It follows from Lemma (3I) that $A_{1}^{h} \leqq T \cap O^{2,2^{\prime}}\left(N\left(B_{2}\right)\right)=U$ as $O^{2}\left(N\left(B_{2}\right)\right)=N$. Suppose that $A_{1}^{h}=A_{1}$. Then $B_{1}^{h}=\left\langle A_{1}, b_{1} t\right\rangle^{h}=\left\langle A_{1}, t\right\rangle$ or $\left\langle A_{1}, b_{0} t\right\rangle$, so $h \in N\left(B_{1}\right) \leqq N\left(Z\left(B_{1}\right)\right)$. However, $Z\left(B_{1}\right)=\left\langle b_{0}, t\right\rangle$ and $t^{h-1}=b_{1} t$ or $b_{0} b_{1} t \notin Z\left(B_{1}\right)$. This is a contradiction. Therefore, $A_{1}^{h} \neq A_{1}$ and so $A_{1}^{h} \not \leq P$ since $A_{1} /\left\langle b_{0}\right\rangle$ is the unique E_{10}-subgroup of $P /\left\langle b_{0}\right\rangle$. Hence $A_{1}^{h} A_{2} / A_{2}$ is contained in the E_{4}-subgroup P^{*} / A_{2} of U / A_{2} different from P / A_{2}, and so $A_{1}^{h} \leqq P^{*}$. However, $\left|\mathscr{E}^{*}\left(P^{*}\right)\right|=2$ by Lemma (5G), whereas $\left|\mathscr{E}^{*}\left(A_{1}\right)\right|>2$. This is a contradiction. Therefore, $t \nsim b_{1} t$ and then $t^{G} \cap B_{2}=t^{N\left(B_{2}\right)}$ by Lemma (2D).

Now $t^{G} \cap A_{1}=\varnothing$ by Lemma (3C). Also, (2E) shows that involutions in $A_{1} t-\left\{t, b_{0} t\right\}$ are conjugate to $b_{1} t$. Thus $t^{G} \cap\left\langle A_{1}, t\right\rangle \leqq\left\{t, b_{0} t\right\}$. Since $b_{0} t=t^{a}$ and $R=C_{T}(t)$ has index 2 in T, we conclude that $t^{\prime \prime} \cap\left\langle A_{1}, t\right\rangle=\left\{t, b_{0} t\right\}=t^{\prime \prime}$.

Lemma (5K). Let $T_{1} \in \operatorname{Syl}_{2}(N(T))$. Then the following holds.
(1) $\left|T_{1}: T\right| \leqq 2$.
(2) If $g \in T_{1}-T$, then $\left\langle b_{0}, b_{1}, t\right\rangle^{g}=\left\langle a, b_{0}, b_{1}\right\rangle, B_{2}^{g}=F, F^{g}=B_{2}$, $D^{g}=E$, and $E^{g}=D$.
(3) If $T<T_{1}$, then there is an element $g \in T_{1}-T$ such that $g^{2} \in\left\langle b_{0}, b_{1}{ }_{1}\right\rangle$.
(4) If $T<T_{1}$, then there is an element $g \in T_{1}-T$ such that $t^{\prime}=a$ or $a b_{1}$.

Proof. First of all, $Z_{2}(T)=\left\langle a, b_{0}, b_{1}, t\right\rangle$ and $C_{\left\langle b_{0}, b_{1}, t\right\rangle}(a)=\left\langle b_{0}, b_{1}\right\rangle$ by Lemmas (5F) and (5H). Hence

$$
\mathscr{E}^{*}\left(Z_{2}(T)\right)=\left\{\left\langle a, b_{0}, b_{1}\right\rangle,\left\langle b_{0}, b_{1}, t\right\rangle\right\}
$$

and

$$
\left\langle b_{0}, b_{1}\right\rangle=Z\left(Z_{2}(T)\right) \triangleleft T_{1} .
$$

Assume that $T<T_{1}$ and let $g \in T_{1}-T$. By Lemma (5J),

$$
t^{G} \cap\left\langle b_{0}, b_{1}, t\right\rangle=\left\{t, b_{0} t\right\} .
$$

On the other hand, $\left|t^{T\langle g\rangle}\right|=|T\langle g\rangle: R| \geqq 4$. Hence we must have that $\left\langle b_{0}, b_{1}, t\right\rangle \nexists T\langle g\rangle$. However, $\left\langle b_{0}, b_{1}, t\right\rangle \triangleleft T$ by Lemma (5 H). Therefore, $g \notin N\left(\left\langle b_{0}, b_{1}, t\right\rangle\right)$. Since g acts on $\mathscr{E}^{*}\left(Z_{2}(T)\right)$, we conclude that

$$
\left\langle b_{0}, b_{1}, t\right\rangle^{g}=\left\langle a, b_{0}, b_{1}\right\rangle .
$$

As a consequence of this, we have that $\left|t^{G} \cap\left\langle a, b_{0}, b_{1}\right\rangle\right|=2$ and moreover $t^{G} \cap\left\langle a, b_{0}, b_{1}\right\rangle \leqq a\left\langle b_{0}, b_{1}\right\rangle$ since $\left\langle b_{0}, b_{1}\right\rangle \triangleleft T_{1}$. Now $a^{b_{3}}=a b_{0}$ and $\left(a b_{1}\right)^{a_{2}}=a b_{0} b_{1}$ by Lemmas (5E) and (5F). Hence

$$
t^{G} \cap\left\langle a, b_{0}, b_{1}\right\rangle=\left\{a, a b_{0}\right\} \text { or }\left\{a b_{1}, a b_{0} b_{1}\right\} .
$$

This proves (4), and we may assume that $t^{g}=a$ or $a b_{1}$ in proving the remaining part of (2) since B_{2}, D, E, and $F \triangleleft T$.

Now we have shown that $t^{G} \cap Z_{2}(T)=\left\{t, b_{0} t, a, a b_{0}\right\}$ or $\left\{t, b_{0} t, a b_{1}\right.$, $\left.a b_{0} b_{1}\right\}$. Therefore, $\left|T_{1}: R\right|=\left|t^{T_{1}}\right| \leqq 4$ and $\left|T_{1}: T\right| \leqq 2$.

Let $g \in T_{1}-T$ and suppose $t^{g}=a$ or $a b_{1}$. By Lemma (2F), B_{2} and D are the only normal E_{32}-subgroups of $C_{T}(t)=R$. Also, E and F are normal E_{32}-subgroups of $C_{T}(a)$ and $C_{T}\left(a b_{1}\right)$ by Lemma (5I). Hence $\left\{B_{2}, D\right\}^{g}=\{E, F\}$. Now $\left\langle a, B_{2}\right\rangle$ is conjugate to $\left\langle f, B_{2}\right\rangle$ in $N\left(B_{2}\right)$ since $a^{\Omega}=\left(n_{1}, n_{2}\right)$ and $f^{a}=\left(n_{5}, n_{6}\right)$. Since $\mathscr{E}^{*}\left(\left\langle a, B_{2}\right\rangle\right)=\left\{E, B_{2}\right\}$ by Lemma (5F)(4) and since $\mathscr{E}^{*}\left(\left\langle f, B_{2}\right\rangle\right)=\left\{\left\langle C_{A_{2}}(f), f, t\right\rangle, B_{2}\right\}$, it follows that E is conjugate to $\left\langle C_{A_{2}}(f), f, t\right\rangle$ in $N\left(B_{2}\right)$. Thus $B_{2}^{g} \neq E$ by Lemma (3 H) and so $B_{2}^{g}=F$ and $D^{g}=E$. This proves (2) as $g^{2} \in T \leqq N\left(B_{2}\right) \cap N(D)$.

Now $\left\langle b_{0}, b_{1}\right\rangle\left\langle T_{1}\right.$ and $\left\langle b_{0}, b_{1}\right\rangle \not \equiv Z(T)$, so $C_{T}\left(\left\langle b_{0}, b_{1}\right\rangle\right)$ is a subgroup of $C_{T_{1}}\left(\left\langle b_{0}, b_{1}\right\rangle\right)$ of index 2. Furthermore, $C_{T}\left(\left\langle b_{0}, b_{1}\right\rangle\right)=B_{2} F$ and $B_{2} \cap$ $F=\left\langle b_{0}, b_{1}\right\rangle$. The assertion (3) now follows from Lemma (1B) applied to $C_{T_{1}}\left(\left\langle b_{0}, b_{1}\right\rangle\right) /\left\langle b_{0}, b_{1}\right\rangle$.

Lemma (5L). If $T<T_{1} \in \operatorname{Syl}_{2}(N(T))$, then the following conditions hold.
(1) $Z\left(T_{1}\right)=\left\langle b_{0}\right\rangle$.
(2) $Z_{2}\left(T_{1}\right)=\left\langle b_{0}, b_{1}, a t\right\rangle$.
(3) $Z_{3}\left(T_{1}\right)=\left\langle a, a_{1} b_{2}, b_{0}, b_{1}, t\right\rangle$.

Proof. Since $Z\left(T_{1}\right) \leqq C(t) \cap T_{1}=R \leqq T, Z\left(T_{1}\right) \leqq Z(T)=\left\langle b_{0}\right\rangle$ by Lemma (5H). Hence $Z\left(T_{1}\right)=\left\langle b_{0}\right\rangle$, and consequently, $Z_{2}\left(T_{1}\right) \leqq$ $N_{T_{1}}\left(B_{2}\right)=T$. Since $Z\left(T_{1}\right)=Z(T), \quad Z_{2}\left(T_{1}\right) \leqq Z_{2}(T)=\left\langle a, b_{0}, b_{1}, t\right\rangle \quad$ by Lemma (5H). Now Lemma (5K)(2) shows that T_{1} normalizes $\left\langle b_{0}, b_{1}\right\rangle$, so $\left\langle b_{0}, b_{1}\right\rangle \leqq Z_{2}\left(T_{1}\right)$. Furthermore, if $g \in T_{1}-T$, then g interchanges $\left\langle a, b_{0}, b_{1}\right\rangle$ and $\left\langle b_{0}, b_{1}, t\right\rangle$. Hence $\left\langle b_{0}, b_{1}\right\rangle \leqq Z_{2}\left(T_{1}\right) \leqq\left\langle b_{0}, b_{1}, a t\right\rangle$. We show that $a t \in Z_{2}\left(T_{1}\right)$. We may assume that $t^{g}=a$ or $a b_{1}$ by Lemma $(5 \mathrm{~K})(4)$. If $t^{g}=a$, then $a^{g}=t$ or $b_{0} t$ since $g^{2} \in T$ and $t^{T}=\left\{t, b_{0} t\right\}$. Hence $(a t)^{g}=a t b_{0}$ or $a t$ by Lemma (5F)(2). If $t^{g}=a b_{1}$, then $\left(a b_{1}\right)^{g}=t$ or $b_{0} t$, so $\left(a b_{1} t\right)^{g}=\left(a b_{1} t\right) b_{0}$ or $a b_{1} t$. In either case, $a t \in Z_{2}\left(T_{1}\right)$. Therefore, $Z_{2}\left(T_{1}\right)=\left\langle b_{0}, b_{1}, a t\right\rangle$.

It remains to prove (3). Suppose first that $Z_{3}\left(T_{1}\right) \nsubseteq T$. Then we may choose $g \in Z_{3}\left(T_{1}\right)-T$. However, since g normalizes $Z_{2}\left(T_{1}\right) B_{2}=$ $\left\langle a, B_{2}\right\rangle$ and since $\mathscr{E}^{*}\left(\left\langle a, B_{2}\right\rangle\right)=\left\{E, B_{2}\right\}$ by Lemma (5F), we must have that $B_{2}^{g}=E$, contrary to Lemma (5 K)(2). Thus $Z_{3}\left(T_{1}\right) \leqq T$.

Let bars denote images in $T_{1} /\left\langle b_{0}, b_{1}\right\rangle$. Then $\overline{F_{2}}$ is a normal E_{64}-subgroup of \bar{T}_{1} by Lemma (5K)(2) d \bar{T}_{1} an $=\overline{F B_{2}}\left\langle\bar{a}_{2}, \bar{g}\right\rangle$. We choose $\bar{a}_{1}, \bar{f}, \bar{a}, \bar{b}_{2}, \bar{b}_{3}, \bar{t}$ as a basis of $\overline{F B_{2}}$ and represent \bar{a}_{2} and \bar{g} by 6×6 matrices with respect to this basis. Using Lemmas (5E) and (5F), we see that \bar{a}_{2} has the following matrix form.

$$
\left(\begin{array}{llllll}
1 & & & & & \\
1 & 1 & & & & \\
& & 1 & & & \\
& & & 1 & & \\
& & & 1 & 1 & \\
& & & & & 1
\end{array}\right)
$$

Therefore, $Z(\bar{T})=C_{\overline{F_{B_{2}}}}\left(\bar{a}_{2}\right)=\left\langle\bar{a}, \bar{a}_{1}, \bar{b}_{2}, \bar{t}\right\rangle$. Then by Lemma (5K)(2), \bar{g} interchanges $\left\langle\bar{a}, \bar{a}_{1}\right\rangle$ and $\left\langle\bar{b}_{2}, \bar{t}\right\rangle$ as $\left\langle\bar{a}, \bar{a}_{1}\right\rangle=Z(\bar{T}) \cap \bar{F}$ and $\left\langle\bar{b}_{2}, \bar{t}\right\rangle=$ $Z(\bar{T}) \cap \bar{B}_{2}$. Also, \bar{g} interchanges $\left\langle\bar{a}_{1}, \bar{f}\right\rangle$ and $\left\langle\bar{b}_{2}, \bar{b}_{3} \bar{t}\right\rangle$ as $\left\langle\bar{a}_{1}, \bar{f}\right\rangle=$ $\bar{F} \cap \bar{D}$ and $\left\langle\bar{b}_{2}, \bar{b}_{3} \bar{t}\right\rangle=\bar{E} \cap \bar{B}_{2}$. Thus \bar{g} interchanges $\left\langle\bar{a}_{1}\right\rangle$ and $\left\langle\bar{b}_{2}\right\rangle$, and also interchanges $\langle\bar{a}, \overline{a f}\rangle$ and $\left\langle\bar{b}_{2}, \bar{b}_{3}\right\rangle$. Since \bar{g} also interchanges $\langle\bar{t}\rangle$ and $\langle\bar{a}\rangle$ by Lemma (5K)(2), we get that the matrix of \bar{g} has the following shape.

$$
\left(\begin{array}{llllll}
& & & 1 & & \\
& & & \alpha & 1 & 1 \\
& & & & & 1 \\
1 & & & & & \\
\beta & 1 & 1 & & & \\
& & 1 & & &
\end{array}\right)
$$

By Lemma (5K)(3), we may assume from the outset that $\bar{g}^{2}=1$. This implies that the square of the above matrix is the unit matrix. Hence $\alpha=\beta$ and \bar{g} has the following matrix form.

$$
\left(\begin{array}{llllll}
& & & & 1 & \\
& & & \alpha & 1 & 1 \\
& & & & & 1 \\
1 & & & & & \\
\alpha & 1 & 1 & & & \\
& & 1 & & &
\end{array}\right)
$$

Now an element \bar{x} of $\bar{F} \bar{B}_{2}$ is represented by a sextuplet (β_{1}, β_{2}, $\left.\beta_{3}, \beta_{4}, \beta_{5}, \beta_{6}\right)$. Using matrix forms of \bar{a}_{2} and \bar{g}, we see that $\left[\bar{x}, \bar{a}_{2}\right]$ and $[\bar{x}, \bar{g}]$ are represented by the sextuplets $\left(\beta_{2}, 0,0, \beta_{5}, 0,0\right)$ and $\left(\beta_{1}+\beta_{4}+\alpha \beta_{5}, \beta_{2}+\beta_{5}, \beta_{3}+\beta_{5}+\beta_{6}, \beta_{1}+\alpha \beta_{2}+\beta_{4}, \beta_{2}+\beta_{5}, \beta_{2}+\beta_{3}+\right.$ $\left.\beta_{6}\right)$, respectively. This shows first that $\left[\overline{F B}_{2}, \bar{a}_{2}\right]=\left\langle\bar{a}_{1}, \bar{b}_{2}\right\rangle \nsubseteq\langle\overline{a t}\rangle$. Therefore, $Z_{3}\left(T_{1}\right) \leqq F B_{2}$. Next, both $\left[\bar{x}, \bar{a}_{2}\right]$ and $[\bar{x}, \bar{g}]$ are contained in $\langle\overline{a t}\rangle$ if and only if the following equations hold.

$$
\begin{aligned}
& \beta_{2}=\beta_{5}=0, \quad \beta_{1}+\beta_{4}+\alpha \beta_{5}=0, \quad \beta_{2}+\beta_{5}=0 \\
& \beta_{3}+\beta_{5}+\beta_{6}=\beta_{2}+\beta_{3}+\beta_{6}, \beta_{1}+\alpha \beta_{2}+\beta_{4}=0
\end{aligned}
$$

These are satisfied if and only if $\beta_{1}=\beta_{4}$ and $\beta_{2}=\beta_{5}=0$. This implies that $\overline{Z_{3}\left(T_{1}\right)}=\left\langle\bar{a}_{1} \bar{b}_{2}, \bar{a}, \bar{t}\right\rangle$. Hence (3) follows.

In the course of the proof of Lemma (5L), we have proved the following.

Lemma (5M). Let $T_{1} \in \operatorname{Syl}_{2}(N(T))$ and let g be an element of $T_{1}-T$ such that $g^{2} \in\left\langle b_{0}, b_{1}\right\rangle$. Then g acts on $\overline{F B}_{2}=F B_{2} /\left\langle b_{0}, b_{1}\right\rangle$ in the following fashion.

$$
\begin{aligned}
& \bar{a}_{1}^{g}=\bar{b}_{2}, \bar{f}^{g}=\bar{b}_{2}^{\alpha} \bar{b}_{3} \bar{t}, \bar{a}^{g}=\bar{t} \\
& \bar{b}_{2}^{g}=\bar{a}_{1}, \bar{b}_{3}^{g}=\bar{a}_{1}^{\alpha} \overline{f a}, \bar{t}^{g}=\bar{a}
\end{aligned}
$$

Here, $\alpha=0$ or 1.

Lemma (5N). $N(T)$ contains an S_{2}-subgroup of G.
Proof. Let $T_{1} \in \operatorname{Syl}_{2}(N(T))$. If $T=T_{1}$, then $T \in \operatorname{Syl}_{2}(G)$. Therefore, assume that $T<T_{1}$. Then by Lemmas (5L), (5E), and (5F),

$$
\begin{aligned}
Z_{3}\left(T_{1}\right) & =\left\langle a, a_{1} b_{2}, b_{0}, b_{1}, t\right\rangle \\
& =\left\langle b_{1}\right\rangle \times\langle a, t\rangle *\left\langle a_{1} b_{2}\right\rangle \\
& \cong Z_{2} \times D_{8^{*}} Z_{4}
\end{aligned}
$$

Therefore, $Z_{3}\left(T_{1}\right)$ has exactly 3 abelian maximal subgroups

$$
\begin{aligned}
& Y_{1}=\left\langle b_{1}, t, a_{1} b_{2}\right\rangle \\
& Y_{2}=\left\langle b_{1}, a, a_{1} b_{2}\right\rangle \\
& Y_{3}=\left\langle b_{1}, a t, a_{1} b_{2}\right\rangle .
\end{aligned}
$$

Let $X \in \operatorname{Syl}_{2}\left(N\left(T_{1}\right)\right)$. Since Y_{3} contains $Z_{2}\left(T_{1}\right)=\left\langle b_{0}, b_{1}\right.$, at \rangle while Y_{1} and Y_{2} do not, X acts on $\left\{Y_{1}, Y_{2}\right\}$. Since $t^{G} \cap Y_{1}=\left\{t, b_{0} t\right\}=t^{T}$ by Lemma (5J), $N_{X}\left(Y_{1}\right) \leqq N_{X}\left(\left\{t, b_{0} t\right\}\right)=T$. Thus $|X: T| \leqq 2$ and so $X=T_{1}$. This shows $T_{1} \in \operatorname{Syl}_{2}(G)$.

Now let T_{1} be an S_{2}-subgroup of G containing T.
LEMMA (50). The following conditions hold.
(1) $W=\left\langle a, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}, t\right\rangle=\left\langle A_{1}, a, t\right\rangle$ is a normal subgroup of T_{1}.
(2) W is an extra-special group of order 2^{7}, and $Z(W)=\left\langle b_{0}\right\rangle$.
(3) $T_{1} / W=\left\{\begin{array}{l}\left\langle f, b_{3}, W\right\rangle / W \cong E_{4} \text { if } T=T_{1}, \\ \langle f, g, W\rangle / W \cong D_{8} \text { if } g \in T_{1}-T .\end{array}\right.$

Proof. First of all, $\left|T_{1}: T\right| \leqq 2$ by Lemmas (5K) and (5N). Next, using Lemmas (5E) and (5F), we have that $\mathscr{E}^{*}\left(T / B_{2}\right)=\left\{F B_{2} / B_{2}\right.$, $\left.\left\langle a, a_{1}, a_{2}\right\rangle B_{2} / B_{2}\right\}$ and that $\mathscr{E}^{*}(T / F)=\left\{B_{2} F / F,\left\langle a_{2}, b_{2}, t\right\rangle F / F\right\}$. Since T_{1} permutes B_{2} and F and since $B_{2} F \triangleleft T_{1}$ by Lemmas (5I) and (5K), it follows that T_{1} permutes $\left\langle a, a_{1}, a_{2}\right\rangle B_{2}$ and $\left\langle a_{2}, b_{2}, t\right\rangle F$. Hence T_{1} normalizes their intersection. Since $\left\langle a_{2}, b_{2}, t\right\rangle F=\left\langle a, a_{1}, a_{2}, f\right\rangle\left\langle b_{0}, b_{1}\right.$, $\left.b_{2}, t\right\rangle$, the intersection is equal to $\left\langle a, a_{1}, a_{2}\right\rangle\left\langle b_{0}, b_{1}, b_{2}, t\right\rangle=W$. Hence (1) holds.

Now $\quad W=\left\langle a_{1}, b_{2}\right\rangle *\left\langle a_{2}, b_{1}\right\rangle *\langle a, t\rangle \cong D_{8} * D_{8} * D_{8} \quad$ and $\quad Z(W)=\left\langle b_{0}\right\rangle$. We have that $T=\left\langle f, b_{3}, W\right\rangle$, so $T / W \cong E_{4}$. Assume that $T<T_{1}$. Then by Lemma (5 K), there is an element $g \in T_{1}$ such that $T_{1}=\langle g\rangle T$ and $g^{2} \in\left\langle b_{0}, b_{1}\right\rangle \leqq W$. Lemma (5 M) shows that $f^{g} \in b_{3} W$. Thus $T_{1}=$ $\langle f, g, W\rangle$ and $T_{1} / W \cong D_{8}$. The proof is complete.

Now let bars denote images in $C\left(b_{0}\right) /\left\langle b_{0}\right\rangle$. Then T_{1} acts on \bar{W} by Lemma (50). In the following two lemmas, we collect information on this action. Notice that we may choose $\bar{a}_{1}, \bar{b}_{2}, \bar{a}_{2}, \bar{b}_{1}, \bar{a}, \bar{t}$ as a basis of \bar{W}.

Lemma (5P). The following conditions hold.
(1) $\bar{a}_{1}^{b_{3}}=\bar{a}_{1} \bar{b}_{1}, \bar{b}_{2}^{b_{3}}=\bar{b}_{2}, \bar{a}_{2}^{b_{3}}=\bar{b}_{2} \bar{a}_{2}, \bar{b}_{1}^{b_{3}}=\bar{b}_{1}, \bar{a}^{b_{3}}=\bar{a}, \bar{t}^{b_{3}}=\bar{t}$.
(2) $\bar{a}_{1}^{f}=\bar{a}_{1}, \bar{b}_{2}^{f}=\bar{b}_{2} \bar{b}_{1}, \bar{a}_{2}^{f}=\bar{a}_{1} \bar{a}_{2}, \bar{b}_{1}^{f}=\bar{b}_{1}, \bar{a}^{f}=\bar{a}, \bar{t}^{f}=\bar{t}$.
(3) $\bar{a}_{1}^{f b_{3}}=\bar{a}_{1} \bar{b}_{1}, \bar{b}_{2}^{f b_{3}}=\bar{b}_{2} \bar{b}_{1}, \bar{a}_{2}^{f b_{3}}=\bar{a}_{1} \bar{b}_{2} \bar{a}_{2} \bar{b}_{1}, \bar{b}_{1}^{f b_{3}}=\bar{b}_{1}, \bar{a}^{f b_{3}}=\bar{a}, \bar{t}^{f b_{3}}=\bar{t}$.
(4) $C_{\bar{w}}\left(b_{3}\right)=\left\langle\bar{b}_{2}, \bar{b}_{1}, \bar{a}, \bar{t}\right\rangle$.
(5) $C_{\bar{w}}(f)=\left\langle\bar{a}_{1}, \bar{b}_{1}, \bar{a}, \bar{t}\right\rangle$.
(6) $C_{\bar{W}}\left(f b_{3}\right)=\left\langle\bar{a}_{1} \bar{b}_{2}, \bar{b}_{1}, \bar{a}, \bar{t}\right\rangle$.

Proof. (1), (2), and (3) follow from relations listed in Lemmas (2A) and (2F) together with Lemmas (5F) and (5G)(1). (4), (5), and (6) are consequences of (1), (2), and (3), respectively.

Lemma (5Q). If $T<T_{1}$, then there is an element $g \in T_{1}-T$ which satisfies the following conditions.
(1) $g^{2} \in\left\langle A_{1}, a t\right\rangle$.
(2) $\bar{a}_{1}^{g}=\bar{b}_{2}, \bar{b}_{2}^{g}=\bar{a}_{1}, \bar{a}_{2}^{g}=\bar{a}_{2}\left(\bar{b}_{1} \bar{a} \bar{t}\right)^{\alpha}, \bar{b}_{1}^{g}=\bar{b}_{1}, \bar{a}^{g}=\bar{b}_{1}^{\alpha} \bar{t}, \bar{t}^{g}=\bar{b}_{1}^{\alpha} \bar{a}$, where $\alpha=0$ or 1 .
(3) $C_{\bar{w}}(g)=\left\{\begin{array}{l}\left\langle\bar{a}_{1} \bar{b}_{2}, \bar{a}_{2}, \bar{b}_{1}, \overline{a t}\right\rangle \text { if } \alpha=0, \\ \left\langle\bar{a}_{1} \bar{b}_{2}, \bar{b}_{1}, \bar{a}_{2}^{\beta} \bar{a} \bar{t}^{\hat{t}} \mid \beta, \gamma, \delta \in\{0,1\}, \beta+\gamma+\delta=0\right\rangle \text { if } \alpha=1 .\end{array}\right.$

Proof. Choose $\bar{a}_{1}, \bar{b}_{2}, \bar{a}_{2}, \bar{b}_{1}, \bar{a}, \bar{t}$ as a basis of \bar{W}. Lemma (5P) shows that b_{3}, f, and $f b_{3}$ have the following matrix forms with respect to this basis, respectively.

$$
\left(\begin{array}{lllll}
1 & & & 1 & \\
& 1 & & & \\
& 1 & 1 & & \\
& & & 1 & \\
& & & & 1 \\
& & & & \\
& & & & \\
& 1 & & 1 & \\
1 & & 1 & & \\
& & & 1 & \\
& & & & 1 \\
& & & & \\
& & & & \\
& & & \\
1 & & & & \\
& 1 & & 1 & \\
1 & 1 & 1 & 1 & \\
& & & 1 & \\
\\
& & & & 1
\end{array}\right)
$$

Choosing a suitable element $g \in T_{1}-T$, we determine the matrix of g. We choose g so that $g^{2} \in\left\langle b_{0}, b_{1}\right\rangle$ by Lemma (5K)(3). From Lemmas (5L) and (5M), we get that $\left\langle a_{1}, b_{0}, b_{1}\right\rangle^{g}=\left\langle b_{0}, b_{1}, b_{2}\right\rangle,\left\langle b_{0}, b_{1}\right\rangle^{g}=$ $\left\langle b_{0}, b_{1}\right\rangle$, and $\left\langle a, b_{0}, b_{1}\right\rangle^{g}=\left\langle b_{0}, b_{1}, t\right\rangle$. Hence g has the following matrix form.

$$
\left(\begin{array}{cccccc}
& 1 & & \alpha & & \\
1 & & & \beta & & \\
\gamma_{1} & \gamma_{2} & \gamma_{3} & \gamma_{4} & \gamma_{5} & \gamma_{6} \\
& & & 1 & & \\
& & & \delta & & 1 \\
& & & \varepsilon & 1 &
\end{array}\right)
$$

Clearly, $\gamma_{3}=1$. Since $g^{2} \in W$, the square of this matrix should be the unit matrix. Hence we have that $\alpha=\beta, \delta=\varepsilon, \gamma_{1}=\gamma_{2}$, and $\gamma_{5}=\gamma_{6}$, and so, changing notation, we see that g has the following
matrix form.

$$
\left(\begin{array}{llllll}
& 1 & & \alpha & & \\
1 & & & \alpha & & \\
\beta & \beta & 1 & \gamma & \delta & \delta \\
& & & 1 & & \\
& & & \varepsilon & & 1 \\
& & & \varepsilon & 1 &
\end{array}\right)
$$

By Lemma (5M), $g b_{3} g \in f W$. This implies that

$$
\left.\left.\left(\begin{array}{llllll}
& 1 & & \alpha & & \\
1 & & & \alpha & & \\
\beta & \beta & 1 & \gamma & \delta & \delta \\
& & & 1 & & \\
& & & \varepsilon & & 1 \\
& & & \varepsilon & 1 &
\end{array}\right) \right\rvert\, \begin{array}{llllll}
1 & & & 1 & & \\
& 1 & & & & \\
& 1 & 1 & & & \\
& & & 1 & & \\
& & & & 1 & \\
& & & & & 1
\end{array}\right)\left(\begin{array}{llllll}
& 1 & & \alpha & & \\
1 & & & \alpha & & \\
\beta & \beta & 1 & \gamma & \delta & \delta \\
& & & 1 & & \\
& & & \varepsilon & & 1 \\
& & & & \varepsilon & 1
\end{array}\right)
$$

is equal to the matrix of f. Hence we have that $\alpha=\beta$. Now $g f b_{3}$ has the following matrix form.

$$
\left(\begin{array}{ccccc}
& & 1 & & \alpha+1 \\
& \\
1 & & & \alpha+1 & \\
\alpha+1 & \alpha+1 & 1 & \gamma+1 & \delta \\
& & & \delta & \\
& & & \varepsilon & \\
& & & \varepsilon & 1
\end{array}\right)
$$

Hence, replacing g by $g f b_{3}$ if $\alpha=1$, we may assume that $\alpha=0$. Thus the matrix of g has the following shape.

$$
\left.\left\lvert\, \begin{array}{llllll}
& 1 & & & & \\
1 & & & & & \\
& & 1 & \gamma & \delta & \delta \\
& & & 1 & & \\
& & & \varepsilon & & 1 \\
& & & \varepsilon & 1 &
\end{array}\right.\right)
$$

This in turn implies that $a_{2}^{g} \in a_{2} b_{1}^{r} a^{\delta} t^{\delta}\left\langle b_{0}\right\rangle$ and so $1=\left(a_{2}^{g}\right)^{2}=\left(a_{2} b_{1}^{\gamma}\right)^{2}\left(a^{\delta} t^{\delta}\right)^{2}$. Hence we have that $\gamma=\delta$. Finally, \bar{W} becomes a nonsingular symplectic space over \boldsymbol{F}_{2} with respect to the bilinear form $(\bar{x}, \bar{y})=\lambda$, where $[x, y]=b_{0}^{2}, \lambda \in\{0,1\}$, and the basis we have chosen is a symplectic basis. Furthermore, g induces a symplectic transforma-
tion on \bar{W}. This implies that the matrix of g is invariant under the transpose-inverse mapping followed by conjugation by the matrix

Hence we have that $\gamma=\varepsilon$. Thus, changing notation, we conclude that g has the following matrix form.

$$
\left(\begin{array}{cccccc}
& 1 & & & & \\
1 & & & & & \\
& & 1 & \alpha & \alpha & \alpha \\
& & & 1 & & \\
& & & \alpha & & 1 \\
& & & \alpha & 1 &
\end{array}\right)
$$

This implies that g satisfies (2).
Now let $W_{0}=\left\langle A_{1}, a t\right\rangle$. We have chosen g so that $g^{2} \in\left\langle b_{0}, b_{1}\right\rangle \leqq$ W_{0}, and we may have replaced g by $g f b_{3}$. However, Lemma (5M) shows that $\left(f b_{3}\right)^{g} \in\left\langle a_{1} b_{2}, b_{0}, b_{1}, a t\right\rangle f b_{3} \leqq W_{0} f b_{3}$ and so $\left(g f b_{3}\right)^{2}=g^{2}\left(f b_{3}\right)^{g} f b_{3} \in$ W_{0}. Therefore, the property that $g^{2} \in W_{0}$ is preserved. Thus g satisfies (1). Since (3) is a consequence of (2), we have proved the lemma.

Lemma (5R). W is weakly closed in T_{1} with respect to G.
Proof. Assume that T_{1} contains a conjugate X of W different from W. Since $|X W: W| \leqq\left|T_{1}: W\right| \leqq 2^{3},|X \cap W| \geqq 2^{4}$. If $Z(X) \nsubseteq$ W, then $(X \cap W)^{2} \leqq W \cap Z(X)=1$ and $(X \cap W) Z(X)$ is elementary abelian of order at least 2^{5}. However, this is impossible as X is extra-special of order 2^{7}. Therefore, $Z(X) \leqq W$. Then $X^{2}=Z(X) \leqq$ W, so $X W / W$ is elementary abelian. Hence $|X W: W| \leqq 2^{2}$ by Lemma (50), and $|X \cap W| \geqq 2^{5}$. Thus, $W^{\prime}=(X \cap W)^{\prime}=X^{\prime}$ and so X centralizes $X \cap W / W^{\prime}$. Since $\left|X \cap W / W^{\prime}\right| \geqq 2^{4}$ and since no element of $T_{1}-W$ centralizes a hyperplane of W / W^{\prime} by Lemmas (5P) and (5Q), we have that $\left|X \cap W / W^{\prime}\right|=2^{4}$ and $|X W / W|=2^{2}$. However, $X W=\left\langle f, b_{3}, W\right\rangle$ or $\left\langle f b_{3}, g, W\right\rangle$ by Lemma (50) and so $\left|C_{W / W^{\prime}}(X)\right|<2^{4}$ by Lemmas (5P) and (5Q). Here we choose g so that $g^{2} \in W$. This is a contradiction proving the lemma.

Lemma (5S). $t \in G^{\prime}$.
Proof. Define

$$
W_{0}=\left\langle A_{1}, a t\right\rangle,
$$

and

$$
T_{0}=\left\{\begin{array}{l}
\left\langle a f, b_{3}, W_{0}\right\rangle \text { if } T=T_{1}, \\
\left\langle a f, b_{3}, g, W_{0}\right\rangle \text { if } g \in T_{1}-T
\end{array}\right.
$$

We choose g as in Lemma (5Q). Lemmas (5P) and (5Q) show that f and b_{3} normalize A_{1} and $\langle a t\rangle$, and that g normalizes W_{0}. Hence $W_{0} \triangleleft T_{1}$. Using Lemmas (5E) and (5F), we get that $\left(a f b_{3}\right)^{2}=b_{0}$. Therefore, $\left\langle a f, b_{3}\right\rangle \cong D_{8}$ and $\left\langle a f, b_{3}, W_{0}\right\rangle=\left\langle a f, b_{3}\right\rangle W_{0}$ has order 2^{8}. By the choice of g and Lemma (5M), $(a f)^{g} \in b_{3}\left\langle b_{0}, b_{1}, b_{2}\right\rangle \leqq b_{3} W_{0}$ and $b_{3}^{g} \in a f\left\langle a_{1}, b_{0}, b_{1}\right\rangle \leqq a f W_{0}$. Hence g normalizes $\left\langle a f, b_{3}, W_{0}\right\rangle$ and $\langle a f$, $\left.b_{3}, g, W_{0}\right\rangle / W_{0} \cong D_{8}$. In particular, $\left|\left\langle a f, b_{3}, g, W_{0}\right\rangle\right|=2^{9}$. Hence T_{0} is a maximal subgpoup of T_{1} in either case.

Assume that $t \in G^{\prime}$. Then T_{0} contains an extremal conjugate u of t in T_{1} by Lemma (1E). We may assume that $u^{x}=t$ and $C_{T_{1}}(u)^{x}=$ $C_{F_{1}}(t)=R$ for some $x \in G$.

Suppose $u \in W_{0}$. Since $u \notin Z(W)=\left\langle b_{0}\right\rangle,\left|C_{W}(u)\right|=2^{6}$ by Lemma (1D), and so $\left|C_{T_{1}}(u): C_{W b}(u)\right|=2^{2}$. Hence $C_{T_{1}}(u)^{\prime \prime} \leqq\left\langle b_{0}\right\rangle$. Since $C_{T_{1}}(u)^{x}=$ R and since $R^{\prime \prime}=\left\langle b_{0}\right\rangle$, it follows that $x \in C\left(b_{0}\right)$. Now $W /\left\langle b_{0}\right\rangle$ is weakly closed in $C\left(b_{0}\right) /\left\langle b_{0}\right\rangle=\overline{C\left(b_{0}\right)}$ by Lemma (5R), so there exists an element $y \in N(W)$ such that $\bar{t}^{y}=\bar{u}$. Then $t^{y}=u$ or $u b_{0}$, and so $C_{W}(t)^{y}=C_{W}(u)$. Now $\left|C_{T_{1}}(u): C_{W}(u)\right|=2^{2}$, so ${\overline{f b_{3}}} \in C_{\bar{T}_{1}}(\bar{u})$. Hence $\bar{u} \in$ $C_{\bar{w}_{0}}\left(\overline{f b}_{3}\right)=\left\langle\bar{a}_{1} \bar{b}_{2}, \bar{b}_{1}, \overline{a t}\right\rangle$ by Lemma (5P). Thus $u \in\left\langle a_{1} b_{2}\right\rangle\left\langle b_{0}, b_{1}\right\rangle\langle a t\rangle$. Also, $u \in A_{1} a t$ as $t^{G} \cap A_{1}=\varnothing$. Since $u^{2}=1$, we conclude that $u \in$ $a_{1} b_{2} a t\left\langle b_{0}, b_{1}\right\rangle$. Now $a_{1} b_{2} a t b_{0}=\left(a_{1} b_{2} a t\right)^{t}, a_{1} b_{2} a t b_{1}=\left(a_{1} b_{2} a t\right)^{f}$, and $a_{1} b_{2} a t b_{0} b_{1}=$ $\left(a_{1} b_{2} a t\right)^{f t}$. Therefore, $a_{1} b_{2} a t\left\langle b_{0}, b_{1}\right\rangle \leqq u^{G} \cap C_{W}(u)$. But now $t^{G} \cap C_{W}(t)=$ $t^{G} \cap\left\langle A_{1}, t\right\rangle=\left\{t, b_{0} t\right\}$ by Lemma (5J), so $\left(t^{G} \cap C_{w}(t)\right)^{y}=u^{G} \cap C_{w}(u)$ contains only two elements. This contradiction shows that $u \notin W_{0}$.

Suppose $u \in T_{1}-\left\langle f b_{3}, W\right\rangle$. Then $\overline{C_{T_{1}}(u)} \leqq \bar{T}$ or $\left\langle\overline{f b_{3}}, \bar{g}, \bar{W}\right\rangle$, so $\left|C_{T_{1}}(u): C_{W}(u)\right| \leqq 2^{2}$. Also, $u W$ is conjugate to $f W, b_{3} W$, or $g W$ in T_{1}, so $\left|C_{\bar{W}}(u)\right| \leqq 2^{4}$ by Lemmas (5P) and (5Q). But then $\left|C_{W}(u)\right| \leqq 2^{5}$ and $\left|C_{T_{1}}(u)\right| \leqq 2^{7}$, which is a contradiction. Therefore, $u \in\left\langle f b_{3}, W\right\rangle \cap$ $T_{0}=\left\langle a f b_{3}, W_{0}\right\rangle$ and then $u \in a f b_{3} W_{0}$.

Now $\left(a f b_{3}\right)^{2}=b_{0}$, so $\overline{a f b_{3}}$ is an involution which normalizes \bar{A}_{1} and $\langle\overline{a t}\rangle$. Moreover, $C_{\bar{A}_{1}}\left(\overline{a f b_{3}}\right)=\left\langle\bar{a}_{1} \bar{b}_{2}, \bar{b}_{1}\right\rangle$ by Lemma (50), hence Lemma (1C) shows that \bar{u} is conjugate to $\overline{a f b_{3}}$ or $\overline{a f b_{3} a t}$ under \bar{A}_{1}. Since $u^{2}=1$, we have that u is conjugate in T_{1} to an element of $a f b_{3} a t\left\langle b_{0}\right\rangle$. Notice that $a f b_{3} a t\left\langle b_{0}\right\rangle=f b_{3} t\left\langle b_{0}\right\rangle$ by (5F) and (5G). So we assume that $u \in f b_{3} t\left\langle b_{0}\right\rangle$. Then $C_{T_{1}}(u)=C_{T_{1}}\left(f b_{3} t\right)$. Now $C_{\bar{w}}\left(\overline{f b_{3}} \bar{t}\right)=$
$\mathrm{C}_{\bar{w}}\left(\overline{f b}_{3}\right)=\left\langle\bar{a}_{1} \bar{b}_{2}, \bar{b}_{1}, \bar{a}, \bar{t}\right\rangle$ by Lemma (5P), and so $C_{W}\left(f b_{3} t\right) \leqq\left\langle a_{1} b_{2}, b_{1}, a, t\right\rangle$. Equality does not hold here, since $\left(f b_{3} t\right)^{a_{1} b_{2}}=\left(f b_{0} b_{1} b_{3} t\right)^{b_{2}}=f b_{1} b_{0} b_{1} b_{3} t=$ $f b_{0} b_{3} t$. Therefore, $\left|C_{W}\left(f b_{3} t\right)\right| \leqq 2^{4}$ and since $\left|C_{T_{1}}\left(f b_{3} t\right): C_{W}\left(f b_{3} t\right)\right| \leqq 2^{3}$, it follows that $\left|C_{T_{1}}\left(f b_{3} t\right)\right| \leqq 2^{7}$. This is a contradiction because $C_{T_{1}}\left(f b_{3} t\right)=C_{T_{1}}(u)$ has order 2^{8}. Therefore, $t \notin G^{\prime}$.

Now we conclude the proof of Theorem (5A). Let $X=\left\langle L^{G}\right\rangle$ and let bars denote images in $G / O(G)$. Since $|G|_{2} \leqq 2^{10}$ and $t \notin G^{\prime}$, we have that $|\bar{X}|_{2} \leqq 2^{9}$. Hence by Lemma (1H), \bar{X} is a simple group and $C_{\bar{G}}(\bar{X})=1$. Now $N\left(A_{2}\right) / C\left(A_{2}\right) \cong \Sigma_{6}$ or A_{6} by Lemmas (5B) and (5C). Since $O^{2^{\prime}}(N)=\left\langle P^{N}\right\rangle \leqq N_{X}\left(A_{2}\right)$, it follows that $N_{\bar{X}}\left(\bar{A}_{2}\right) /$ $C_{\bar{X}}\left(\bar{A}_{2}\right) \cong \Sigma_{6}$ or A_{6}. Also, since $B_{2} \in \operatorname{Syl}_{2}\left(C\left(A_{2}\right)\right)$ and since $t \notin X$, we get that $\bar{A}_{2} \in \operatorname{Syl}_{2}\left(C_{\bar{X}}\left(\bar{A}_{2}\right)\right)$. Assume that $N_{\bar{X}}\left(\bar{A}_{2}\right) / C_{\bar{X}}\left(\bar{A}_{2}\right) \cong \Sigma_{6}$. Then since $|\bar{X}|_{2} \leqq 2^{9}$, [26] shows that \bar{X} is isomorphic to the HigmanSims simple group. However, the centralizer of an involution in the automorphism group of the Higman-Sims group does not have a component isomorphic to $\operatorname{PSU}(4,2)$ (see [2]). Hence $N_{\bar{X}}\left(\bar{A}_{2}\right) / C_{\bar{X}}\left(\bar{A}_{2}\right) \cong$ A_{6}, and so $r(X)=4$ by [17, Theorem 3].
6. In this section, we consider the following situation.

Hypothesis (6.1). $t^{N\left(B_{2}\right)}=A_{2} t$.
Notice that this implies Hypothesis (3.1). Hence $\langle t\rangle \in \operatorname{Syl}_{2}\left(C_{C}(L)\right)$ by Lemma (3B). We prove the following theorem.

Theorem (6A). Under Hypothesis (6.1), $\left\langle L^{G}\right\rangle \cong P S L(4,4)$ or $\operatorname{PSU}(4,2) \times \operatorname{PSU}(4,2)$, or else Case (3) of the main theorem occurs.

We begin the proof by studying the structure of $N\left(B_{2}\right)$.
Definition (6.1). Let $D_{2}=O_{2}\left(N\left(B_{2}\right)\right)$.
Lemma (6B). The following conditions hold.
(1) $\quad N\left(B_{2}\right)=N_{C}\left(B_{2}\right) D_{2}$ and $N_{C}\left(B_{2}\right) \cap D_{2}=B_{2}$.
(2) D_{2} / B_{2} is elementary abelian and commutation by t induces an $N_{C}\left(B_{2}\right)$-isomorphism $D_{2} / B_{2} \rightarrow A_{2}$.
(3) $Z\left(D_{2}\right)=D_{2}^{2}=A_{2}$.

Proof. By Hypothesis (6.1), $\left|N\left(B_{2}\right): N_{C}\left(B_{2}\right)\right|=16$. As $N_{C}\left(B_{2}\right) /$ $C\left(B_{2}\right) \cong A_{5}$ or Σ_{5}, we have that $\left|N\left(B_{2}\right) / C\left(B_{2}\right)\right|=2^{6} \cdot 3 \cdot 5$ or $2^{7} \cdot 3 \cdot 5$. Then a theorem of [4] shows that $N\left(B_{2}\right) / C\left(B_{2}\right)$ is not simple; so let $C\left(B_{2}\right)<X \triangleleft N\left(B_{2}\right), X \neq N\left(B_{2}\right)$. Recall from Lemma (3G) that $N\left(B_{2}\right) /$ $C\left(B_{2}\right)$ is a primitive permutation group on $\Omega=A_{2} t$. Hence we have
$N\left(B_{2}\right)=N_{C}\left(B_{2}\right) X$. Furthermore, either $N_{C}\left(B_{2}\right) \cap X / C\left(B_{2}\right) \cong A_{5}$ or 1. Assume the former. Then $N_{C}\left(B_{2}\right) / C\left(B_{2}\right) \cong \Sigma_{5}$ as $X \neq N\left(B_{2}\right)$, and so $\left|N\left(B_{2}\right) / C\left(B_{2}\right)\right|_{2}=2^{7}$. Hence $N\left(B_{2}\right) / C\left(B_{2}\right)$ can not be embedded in $G L(4,2)$. Thus Lemma (3E) forces $C\left(B_{2}\right)<C\left(A_{2}\right) \cap N\left(B_{2}\right) \triangleleft N\left(B_{2}\right)$, and so $C\left(A_{2}\right) \cap N\left(B_{2}\right) / C\left(B_{2}\right)$ is a nontrivial normal 2-subgroup of $N\left(B_{2}\right) / C\left(B_{2}\right)$ by Lemma (3F). Therefore, we can always choose X so that $N_{C}\left(B_{2}\right) \cap X=C\left(B_{2}\right)$. Let us fix such X, and let bars denote images in $N\left(B_{2}\right) / C\left(B_{2}\right)$. Then \bar{X}^{a} is the regular normal subgroup of $\overline{N\left(B_{2}\right)^{2}}$ and so \bar{X} is a self-centralizing elementary abelian subgroup of order 16. Let $Y=C(O(C)) \cap N\left(B_{2}\right)$. Then as $C\left(B_{2}\right)=B_{2} \times O(C)$, $O(C) \triangleleft N\left(B_{2}\right)$ and $\bar{Y} \triangleleft \overline{N\left(B_{2}\right)}$. Moreover, $\bar{Y} \neq 1$ as $\bar{K}_{2} \leqq \bar{Y}$. Hence we have $\bar{X} \cap \bar{Y} \neq 1$, and so $\bar{X} \leqq \bar{Y}$. This implies that $X=$ $C_{X}(O(C)) O(C)$. Thus X is 2-closed and, as $O_{2}\left(N_{C}\left(B_{2}\right)\right)=B_{2}$, the statement (1) follows.

Now $A_{2} \triangleleft D_{2}$ by Lemma (3E), so $A_{2} \cap Z\left(D_{2}\right) \neq 1$. As K_{2} acts irreducibly on A_{2}, it follows that $A_{2} \leqq Z\left(D_{2}\right)$. Also, $Z\left(D_{2}\right) \leqq C_{D_{2}}(t)=$ B_{2}. Therefore, $Z\left(D_{2}\right)=A_{2}$. Consequently, (2) holds. Moreover, $A_{2} \cap D_{2}^{2} \neq 1$ and so $A_{2} \leqq D_{2}^{2} \leqq B_{2}$. Suppose that $D_{2}^{2}=B_{2}$. Then D_{2} / A_{2} has a cyclic subgroup X / A_{2} of order 4. As $A_{2}=Z\left(D_{2}\right), X$ is abelian. But this contradicts $C_{D_{2}}(t)=B_{2}$. Therefore, $D_{2}^{2}=A_{2}$.

Definition (6.2). Let $Q_{2}=Q D_{2}, Q_{1}=N_{Q_{2}}(Q)$, and $F=N_{Q_{2}}\left(Q_{1}\right)$. Let $V=\langle Z, t\rangle, D_{1}=O_{2}\left(N\left(B_{1}\right)\right)$, and $D_{0}=C_{D_{1}}\left(A_{1}\right)$.

Remark. We have $Q_{1} / B_{2}=Q / B_{2} \times N_{D_{2} / B_{2}}\left(Q / B_{2}\right)$ and the $N_{C}\left(B_{2}\right)$ isomorphism $D_{2} / B_{2} \rightarrow A_{2}$ maps $N_{D_{D_{2} / B_{2}}}\left(Q / B_{2}\right)$ onto $C_{A_{2}}(Q)=Z(P)$. Hence $\left|N_{D_{2} / B_{2}}\left(Q / B_{2}\right)\right|=2$ and $\left|Q_{1} / Q\right|=2$. Also, F is the product of Q and the group of elements x of D_{2} such that $[Q, x] \leqq N_{D_{2}}(Q)$. Commutation by t maps the latter group onto the group of elements $y \in A_{2}$ such that $[Q, y] \leqq Z(P)$, which is equal to $A_{1} \cap A_{2}$. Thus we have $\left|F / B_{2}\right|=32$.

Lemma (6C). The following conditions hold.
(1) $\quad N\left(B_{1}\right) \leqq N\left(A_{1}\right)$.
(2) $N\left(B_{1}\right)=N(V)$.
(3) $N\left(B_{1}\right) / B_{1}=N_{C}\left(B_{1}\right) / B_{1} \times D_{1} / B_{1}$.
(4) $Q D_{1}=Q_{1}$.
(5) $D_{1}=B_{1} D_{0}$ and $B_{1} \cap D_{0}=V$.
(6) $\quad D_{0} \cong D_{8}$.
(7) $\quad D_{0} \leqq D_{2}$.
(8) $\left[N_{L}\left(A_{1}\right), D_{0}\right]=1$.

Proof. Every involution of $A_{1} t$ is conjugate to an element of
$A_{2} t$ under L, and so it is conjugate to t by Hypothesis (6.1). As $t^{G} \cap A_{1}=\varnothing$ by Lemma (3C) and as $A_{1}=\Omega_{1}\left(A_{1}\right)$, it follows that $A_{1}=$ $\left\langle a b \mid a, b \in t^{G} \cap B_{1}\right\rangle$. Hence (1) follows.

Now $\left|Q_{1} \cap D_{2}: B_{2}\right|=2$ by Lemma (6B) and so $Q_{1} \cap D_{2}=B_{2}\left(Q_{1} \cap\right.$ $\left.D_{2} \cap C(H O(C))\right)$. Let $x \in Q_{1} \cap D_{2} \cap C(H O(C))-B_{2}$. Then $x \in N\left(B_{1}\right)$ by Lemma (3J). In particular, $N_{C}\left(B_{1}\right)<N\left(B_{1}\right)$. Now, $N\left(B_{1}\right) \leqq N(V)$ as $Z\left(B_{1}\right)=V$, and $N_{C}\left(B_{1}\right)=N_{C}(V)$ as $O_{2}\left(N_{L}(V)\right)=A_{1}$. Moreover, $\mid N(V)$: $N_{C}(V) \mid \leqq 2$ as $t^{N(V)} \leqq\left\{t, b_{0} t\right\}$. Hence $N\left(B_{1}\right)=N(V)=\left\langle N_{C}\left(B_{1}\right), x\right\rangle$. In particular, (2) holds.

Now $B_{1} C\left(B_{1}\right)=B_{1} \times O(C)$ by Lemma (2G). Hence $O(C) \triangleleft N\left(B_{1}\right)$ and $X=C_{N\left(B_{1}\right)}(O(C)) O(C)$ is a normal subgroup of $N\left(B_{1}\right)$ containing $B_{1} O(C)$. Let bars denote images in $N\left(B_{1}\right) / B_{1} O(C)$. Then $\bar{H} \triangleleft \overline{N_{C}\left(B_{1}\right)}$ by the structure of $N_{C}\left(B_{1}\right)$, and as $\overline{N\left(B_{1}\right)}=\left\langle\overline{N_{C}\left(B_{1}\right)}, \bar{x}\right\rangle$, it follows that $\bar{H} \triangleleft \overline{N\left(B_{1}\right)}$. Hence $\bar{Y}=C_{\bar{X}}(\bar{H})$ is a normal subgroup of $\overline{N\left(B_{1}\right)}$. Now, $\bar{x} \in \bar{Y}$ by the choice of x, and so $\bar{Y}=\left\langle\bar{Y} \cap \bar{N}_{C}\left(\bar{B}_{1}\right), \bar{x}\right\rangle$. As $\overline{N_{L}\left(A_{1}\right)}=\bar{K}_{1} \times \bar{H} \leqq \bar{Y} \cap \overline{N_{C}\left(B_{1}\right)} \leqq C(\bar{H}) \cap \overline{N_{C}\left(B_{1}\right)}=\overline{N_{L}\left(A_{1}\right)}$, it follows that $\bar{Y}=\left(\bar{K}_{1} \times \bar{H}\right)\langle\bar{x}\rangle$. Now $\bar{K}_{1} \cong \Sigma_{3}$. Hence $\bar{K}_{1}=O^{3}\left(\bar{K}_{1} \times \bar{H}\right) \triangleleft \bar{Y}$, and so, as Aut $\left(\Sigma_{3}\right) \cong \Sigma_{3}$, it follows that $\bar{Y}=\bar{K}_{1} \times \bar{H} \times \bar{K}$ for some subgroup \bar{K} of order 2. Clearly, $\bar{K}=O_{2}(\bar{Y}) \triangleleft \overline{N\left(B_{1}\right)}$. Now let K denote the preimage of \bar{K} in $N\left(B_{1}\right)$. Then as $O(C) \leqq K \leqq X, K=$ $C_{K}(O(C)) O(C)$ and thus K is 2-closed. As $O_{2}\left(N_{C}\left(B_{1}\right)\right)=B_{1}$ by Lemma (2G), (3) holds.

As a consequence of (3) we have $D_{1} \leqq N(Q)$, so $D_{1} \leqq N\left(B_{2}\right)$ by Lemma (3J). Hence D_{1} normalizes $Q_{2}=Q D_{2}$. Also, $B_{1} \cap B_{2}<B_{1}<D_{1}$ is a series of H-invariant normal subgroups of D_{1}. As H acts irreducibly on $B_{1} / B_{1} \cap B_{2}$ by Lemma (2B), it follows that D_{1} centralizes $B_{1} / B_{1} \cap B_{2}$. Noticing that $B_{1} / B_{1} \cap B_{2} \cong Q_{2} / D_{2}$, we conclude that D_{1} centralizes Q_{2} / D_{2}. However, $N\left(B_{2}\right) / D_{2} O(C) \cong A_{5}$ or Σ_{5} by Lemma (6B) and, in particular, an S_{2}-subgroup of $N\left(B_{2}\right) / D_{2}$ is either E_{4} or D_{8}. Thus we have $D_{1} \leqq Q_{2}$, and as $D_{1} \leqq N(Q)$ and $\left|Q_{1}: Q\right|=2$, (4) follows.

To prove the remaining assertions, set $D=C_{D_{1}}(H)$. Then as H centralizes D_{1} / B_{1} and as $C_{B_{1}}(H)=V$, we have $D_{1}=B_{1} D$ and $B_{1} \cap D=$ V. Consequently, $|D|=8$ and as $C_{D}(t)=C_{B_{1}}(H)=V$, we see that $D \cong D_{8}$. Now $D \leqq Q_{2}$ by (4) and H acts regularly on Q_{2} / D_{2} as $Q_{2} / D_{2} \cong Q / B_{2}$ as H-modules. Therefore, $D \leqq D_{2}$, and then $D \leqq D_{2}^{s_{1}}$ as $s_{1} \in N(D)$ by the definition of D. Thus by Lemma (6B), D centralizes $\left\langle A_{2}, A_{2}^{s_{1}}, H\right\rangle=N_{L}\left(A_{1}\right)$. In particular, $\left[A_{1}, D\right]=1$ and hence it follows that $D=D_{0}$. Thus all parts of the lemma hold.

Lemma (6D). D_{2} has a maximal subgroup E_{2} which is either elementary abelian or homocyclic of exponent 4 and is inverted by t.

Proof. Let $\Gamma=\left\{c_{1}, c_{2}, c_{2}, c_{4}, c_{5}\right\}$. We may choose elements $d_{i} \in$
$D_{2}, i \in\{1,2,3,4,5\}$, such that $\left[d_{i}, t\right]=c_{i}$ by Lemma (6B)(2). Let $\bar{D}_{2}=D_{2} / B_{2}$ and $\Delta=\left\{\bar{d}_{1}, \bar{d}_{2}, \bar{d}_{3}, \bar{d}_{4}, \bar{d}_{\xi}\right\}$. Now Γ is the set of central involutions of L contained in A_{2}, so $N_{C}\left(B_{2}\right)$ acts transitively on Γ. Hence $N\left(B_{2}\right)$ acts transitively on Δ by Lemma (6B). We may choose each d_{i} to be an involution. Indeed, we can choose $d_{1} \in I\left(D_{0}\right)$ by Lemma (6C), and then choose conjugates $d_{2}, d_{3}, d_{4}, d_{5}$ of d_{1} under $N_{C}\left(B_{2}\right)$. Then $\left\langle d_{i}, A_{2}\right\rangle$ is elementary abelian since $A_{2}=Z\left(D_{2}\right)$, and moreover, $C_{\left\langle d_{i}, A_{\rangle}\right\rangle}(t)=A_{2}$. Hence $\mathscr{E}^{*}\left(\left\langle d_{i}, B_{2}\right\rangle\right)=\left\{\left\langle d_{i}, A_{2}\right\rangle, B_{2}\right\}$, and so if $\widetilde{D}_{2}=D_{2} / A_{2}$, then $\left\{\widetilde{d}_{1}, \widetilde{d}_{2}, \cdots, \widetilde{d}_{5}\right\}$ is $N\left(B_{2}\right)$-invariant. Now $c_{1} c_{2} \cdots c_{5}=$ 1 , so $\bar{d}_{1} \bar{d}_{2} \cdots \bar{d}_{5}=1$. Thus there are two cases: $\widetilde{d}_{1} \widetilde{d}_{2} \cdots \widetilde{d}_{5}=1$ or \tilde{t}. As $A_{2}=\left\langle c_{1}, c_{2}, \cdots, c_{5}\right\rangle, \bar{D}_{2}=\left\langle\bar{d}_{1}, \bar{d}_{2}, \cdots, \bar{d}_{5}\right\rangle$ and so $\widetilde{D}_{2}=\left\langle\tilde{d}_{1}, \widetilde{d}_{2}, \cdots, \widetilde{d}_{5}\right.$, $\tilde{t}\rangle$. Hence if $\tilde{d}_{1} \tilde{d}_{2} \cdots \widetilde{d}_{5}=1$, then we may choose $\tilde{d}_{1} \tilde{t}, \widetilde{d}_{2} \tilde{t}, \cdots, \widetilde{d}_{5} \tilde{t}$ as a basis of \widetilde{D}_{2}. If $\tilde{d}_{1} \widetilde{d}_{2} \cdots \widetilde{d}_{5}=\tilde{t}$, then we may choose $\tilde{d}_{1}, \widetilde{d}_{2}, \cdots, \widetilde{d}_{5}$ as a basis of \widetilde{D}_{2}. In either case, the basis of \widetilde{D}_{2} we have chosen is $N\left(B_{2}\right)$-invariant. Hence if we define \widetilde{E}_{2} to be the subgroup of \widetilde{D}_{2} generated by the elements that are the products of even number of the basis elements, then \widetilde{E}_{2} is an $N\left(B_{2}\right)$-invariant maximal subgroup of \widetilde{D}_{2} and $\widetilde{B}_{2} \cap \widetilde{E}_{2}=1$.

Let E_{2} be the preimage of \widetilde{E}_{2} in D_{2}. Then $E_{2} / A_{2} \cong A_{2}$ as K_{2} modules by Lemma (6B)(2), so E_{2} is abelian by Theorem 1 of [24].

If $\widetilde{d}_{1} \widetilde{d}_{2} \cdots \tilde{d}_{5}=1$, then $\widetilde{d}_{1}=\left(\widetilde{d}_{2} \tilde{t}\right)\left(\widetilde{d}_{3} \widetilde{t}\right)\left(\widetilde{d}_{4} \widetilde{t}\right)\left(\widetilde{d}_{5} \tilde{t}\right) \in \widetilde{E}_{2}$ by the definition of \widetilde{E}_{2}, and so E_{2} is generated by involutions. If $\widetilde{d}_{1} \widetilde{d}_{2} \cdots \widetilde{d}_{5}=\tilde{t}$, then $\widetilde{d}_{1} \tilde{t}=\widetilde{d}_{2} \widetilde{d}_{3} \widetilde{d}_{4} \widetilde{d}_{5} \in \widetilde{E}_{2} . \quad$ As $\left(d_{1} t\right)^{2}=\left[d_{1}, t\right]=c_{1}, E_{2}$ has a basis consisting of elements of order 4 inverted by t. The proof is complete.

Definition (6.3). Let $W=D_{0} \cap E_{2}$.
Since $D_{2}=E_{2}\langle t\rangle$ and $t \in D_{0} \leqq D_{2}$, we have $D_{0}=W\langle t\rangle$ and $W \cong Z_{4}$ or E_{4}. Also, $W A_{2}=Q_{1} \cap E_{2}$. Indeed, $A_{2} W \leqq Q_{1} \cap E_{2}$ by definition, $\left|Q_{1} \cap E_{2}: A_{2}\right|=2$ by a remark following Definition (6.2), and $W \not \equiv A_{2}$ as $W\langle t\rangle=D_{0} \nsubseteq B_{2}=A_{2}\langle t\rangle$ by Lemma (6C).

Lemma (6E). The following conditions hold.
(1) $\quad N\left(B_{1}\right) \leqq N\left(D_{0}\right) \leqq N\left(D_{1}\right) \leqq N\left(A_{1} W\right) \leqq N(W)$.
(2) $Q_{2} \cap N\left(D_{1}\right)=F$.
(3) If $N\left(B_{1}\right)=N\left(D_{0}\right)$, let $D=O_{2}\left(N\left(D_{1}\right)\right)$. Then $N\left(D_{1}\right)=N\left(B_{1}\right) D$, $N\left(B_{1}\right) \cap D=D_{1}, \quad D / D_{1}$ is elementary abelian, and $D / D_{1} \cong A_{1} / Z$ as $N\left(B_{1}\right)$-modules.
(4) If $N\left(B_{1}\right)<N\left(D_{0}\right)$, then the following hold.
(4.1) $C\left(D_{1} / W\right)=D_{1} O(C)$.
(4.2) $\quad N\left(D_{1}\right) / D_{1} O(C) \cong \Sigma_{6}$.
(4.3) $\quad N\left(D_{0}\right) / D_{1} O(C) \cong \Sigma_{3}$ wreath Z_{2}.
(4.4) $W \cong Z_{4}$.
(4 L.5) $C \neq C_{C}(L)$.

Proof. By definition, $D_{0}=C_{D_{1}}\left(A_{1}\right) \triangleleft N\left(A_{1}\right) \cap N\left(D_{1}\right)$. As $N\left(B_{1}\right) \leqq$ $N\left(A_{1}\right) \cap N\left(D_{1}\right)$ by Lemma (6C), $N\left(B_{1}\right) \leqq N\left(D_{0}\right)$. Recall also from Lemma (6C) that $N\left(B_{1}\right)=N(V)$ and that $D_{0} \cong D_{8}$. These show

$$
\begin{equation*}
\left|N\left(D_{0}\right): N\left(B_{1}\right)\right| \leqq 2, \tag{a}
\end{equation*}
$$

as V is one of the two E_{4}-subgroups of D_{0}. In particular, $N\left(B_{1}\right) \triangleleft$ $N\left(D_{0}\right)$ and so, as $D_{1}=O_{2}\left(N\left(B_{1}\right)\right)$, we have $N\left(D_{0}\right) \leqq N\left(D_{1}\right)$. As $A_{1}=$ $C_{D_{1}}\left(D_{0}\right)$, we also have that

$$
\begin{equation*}
N\left(D_{0}\right) \leqq N\left(A_{1}\right) \tag{b}
\end{equation*}
$$

We argue that $N\left(D_{0}\right) \leqq N(W)$ and $V \nsim W$. If $W \cong Z_{4}$, this is obvious. If $W \cong E_{4}$, then $E_{2} \cong E_{266}$ by Lemma (6D) and so $t^{G} \cap W=$ \varnothing as $m(C)=5$. Thus $V \nsim W$ and consequently $N\left(D_{0}\right) \leqq N(W)$. Furthermore, if $N\left(B_{1}\right)<N\left(D_{0}\right)$, then $W \cong Z_{4}$ as otherwise $V \sim W$ in $N\left(D_{0}\right)$, a contradiction. As $C_{D_{1}}(W)=A_{1} W$, it follows that $N\left(D_{1}\right) \cap$ $N(W) \leqq N\left(A_{1} W\right)$. Finally, $N\left(A_{1} W\right) \leqq N(W)$ as $Z\left(A_{1} W\right)=W$. Thus we have proved the following.

$$
\begin{equation*}
N\left(B_{1}\right) \leqq N\left(D_{0}\right) \leqq N\left(D_{1}\right) \cap N(W) \leqq N\left(A_{1} W\right) \leqq N(W) . \tag{c}
\end{equation*}
$$

Let $X=N\left(D_{1}\right) \cap N(W)$ and $a=\left|X: N\left(D_{0}\right)\right|$. We shall determine the value of a and prove that $X=N\left(D_{1}\right)$. The statement (1) will, then, follow from (c). First, we shall obtain two expressions for $|X: N(Q)|$. It follows from the structure of $N_{c}\left(B_{1}\right)$, Lemma (3J), and Lemma (6C) that $\left|N\left(B_{1}\right): N(Q)\right|=3$. Hence

$$
\begin{equation*}
|X: N(Q)|=3\left|N\left(D_{0}\right): N\left(B_{1}\right)\right| a . \tag{d}
\end{equation*}
$$

Now $Q_{1}=Q D_{1}=Q D_{0}=P * D_{0}$ by Lemma (6C), so $Z=Z\left(Q_{1}\right)$ and $\mathscr{E} \mathscr{E}^{*}\left(Q_{1} / Z\right)=\left\{A_{1} D_{0} / Z, A_{2} D_{0} / Z\right\}$. Thus $N\left(Q_{1}\right)$ normalizes $A_{1} D_{0}=D_{1}$ and, in particular, $F \leqq N\left(D_{1}\right)$. Also, $F \leqq N(W)$ as $Q_{2}=B_{1} E_{2}$ normalizes W. Therefore, $F \leqq X$. More precisely, we have that $F=Q_{2} \cap X$ as $Q_{2} \cap N\left(D_{1}\right)$ normalizes $Q_{1}=D_{1} B_{2}$. The statement (2) will follow from this once we prove $X=N\left(D_{1}\right)$. By Lemma (3J) and the definition of $D_{i}, i \in\{1,2\}, N(Q) \leqq N\left(B_{i}\right) \leqq N\left(D_{i}\right)$. Hence $N(Q) \leqq N\left(Q_{i}\right)$ and then $N(Q) \leqq N(F)$. Furthermore,

$$
\begin{equation*}
N\left(D_{0}\right) \cap F=Q_{1} \tag{e}
\end{equation*}
$$

as $N\left(D_{0}\right) \cap F$ normalizes $Q=A_{1} B_{2}$ by (b). In particular, $N(Q) \cap F=$ Q_{1}. Thus setting $b=|X: N(Q) F|$, we have another expression:

$$
\begin{equation*}
|X: N(Q)|=4 b . \tag{f}
\end{equation*}
$$

Now let bars denote images in X / W. Then, as $\langle\bar{t}\rangle=\bar{D}_{0}, C(\bar{t})=$ $\overline{N\left(D_{0}\right)}$ and

$$
\left|\bar{t}^{\bar{x}}\right|=\left|X: N\left(D_{0}\right)\right|=a .
$$

Also, as $\bar{D}_{1}=\langle\bar{t}\rangle \times \bar{A}_{1}$ and $\bar{A}_{1} \triangleleft \bar{X}$,

$$
\left|\bar{t}_{\bar{x}}\right|=1+\left|\bar{t}^{\bar{x}} \cap \bar{t} \bar{A}_{1}^{\#}\right| .
$$

To determine the second term, consider the action of $C(\bar{t})=\overline{N\left(D_{0}\right)}$ on $\bar{A}_{1}^{\ddagger}=\left(A_{1} W / W\right)^{*}$. By (b), $A_{1} W / W \cong A_{1} / Z$ as $N\left(D_{0}\right)$-modules. We know that under the action of $N_{L}\left(A_{1}\right)$, which is contained in $N\left(D_{0}\right)$, $\left(A_{1} / Z\right)^{\#}$ decomposes into two orbits of lengths 9 and 6 , one corresponding to the involutions of $A_{1}-Z$ and the other corresponding to the elements of order 4 of A_{1} (see Lemma (2C)). Therefore, under the action of $C(\bar{t}), \bar{A}_{1}^{*}$ decomposes into two orbits of lengths 9 and 6. Thus

$$
\left|\bar{t}^{\bar{x}} \cap \bar{t} \bar{A}_{1}^{\sharp}\right|=0,6,9 \text { or } 15,
$$

and hence

$$
\begin{equation*}
a=1,7,10 \text { or } 16 \tag{g}
\end{equation*}
$$

Now recall that $t^{(i} \cap A_{1}=\varnothing$. This yields that $t^{N\left(D_{\mathrm{i}}\right)} \leqq I\left(D_{1}-\right.$ A_{1}), so

$$
\left|t^{N\left(D_{1}\right)}\right| \leqq 52
$$

as $D_{1} \cong D_{8} * D_{8} * D_{8}$ and $A_{1} \cong D_{8} * D_{8}$. On the other hand,

$$
\left|t^{v\left(D_{1}\right)}\right|=\left|N\left(D_{1}\right): X\right|\left|X: N_{C}\left(B_{1}\right)\right|
$$

as $N\left(D_{1}\right) \cap C=N_{C}\left(B_{1}\right)$, so

$$
\left|t^{v\left(D_{1}\right)}\right|=\left\{\begin{array}{l}
2\left|N\left(D_{1}\right): X\right| a \text { if } N\left(B_{1}\right)=N\left(D_{0}\right), \\
4\left|N\left(D_{1}\right): X\right| a \text { if } N\left(B_{1}\right)<N\left(D_{0}\right)
\end{array}\right.
$$

Therefore,

$$
\left|N\left(D_{1}\right): X\right| a \leqq\left\{\begin{array}{l}
26 \text { if } N\left(B_{1}\right)=N\left(D_{0}\right) \tag{h}\\
13 \text { if } N\left(B_{1}\right)<N\left(D_{0}\right)
\end{array}\right.
$$

Now assume that $N\left(B_{1}\right)=N\left(D_{0}\right)$. Then $3 a=4 b$ by (d) and (f). Thus $a=16$ by (g), and then $N\left(D_{1}\right)=X$ by (h). Assume next that $N\left(B_{1}\right)<N\left(D_{0}\right)$. Then $3 a=2 b$ by (a), (d), and (f). Also, $a \leqq 13$ by (h). Therefore, $a=10$ by (g) and then $N\left(D_{1}\right)=X$ by (h). Thus $a=10$ or 16 and $N\left(D_{1}\right)=X$ in either case. Statements (1) and (2) follow from this as remarked before.

Now $\left\langle\bar{t}^{\bar{X}}\right\rangle=\bar{D}_{1}$ in either case and so $\tilde{X}=\bar{X} / C\left(\bar{D}_{1}\right)$ is a permutation group on $\Omega=\bar{t}^{\bar{x}}$. Furthermore, \widetilde{X}^{2} is primitive in either case. We shall determine the structure of \widetilde{X}^{Ω}. By Lemma (6C), $D_{1} \leqq$
$C\left(D_{1} / W\right)$. Also, $N\left(B_{1}\right)=D_{1} N_{c}\left(B_{1}\right)$, and $C_{c}\left(B_{1} / Z\right)=B_{1} O(C)$ by Lemma (2G). Hence

$$
\begin{aligned}
C\left(D_{1} / W\right) \cap N\left(B_{1}\right) & =D_{1}\left(C\left(D_{1} / W\right) \cap N_{c}\left(B_{1}\right)\right) \\
& =D_{1}\left(C\left(B_{1} / Z\right) \cap N_{C}\left(B_{1}\right)\right) \\
& =D_{1}\left(B_{1} O(C)\right) \\
& =D_{1} O(C) .
\end{aligned}
$$

Notice that $\left[D_{1}, O(C)\right]=1$ as $O(C)$ stabilizes the series $1 \leqq B_{1} \leqq D_{1}$.
Assume that $N\left(B_{1}\right)=N\left(D_{0}\right)$. Then $|\Omega|=16$ and $C_{\bar{X}}(\bar{t})=\overline{N\left(D_{0}\right)}=$ $\overline{N\left(B_{1}\right)}$, and consequently, $C\left(\bar{D}_{1}\right)=\overline{D_{1} O(C)}$ by the above. Thus $\langle\tilde{X}$: $C_{\widetilde{\chi}}(\bar{t}) \mid=16$ and $C_{\widetilde{X}}(\bar{t}) \cong N_{c}\left(B_{1}\right) / B_{1} O(C) \cong \Sigma_{3} \times Z_{3}$ or $\Sigma_{3} \times \Sigma_{3}$ by Lemma (2C) and Lemma (2G). This shows that \tilde{X} is a $\{2,3\}$-group that has no nonidentity normal 3 -subgroup. Then by Burnside's theorem [12, Theorem 4.3.3], $O_{2}(\tilde{X}) \neq 1$ and so \tilde{X} has a regular normal subgroup \widetilde{Y}. As $1 \neq \widetilde{K}_{1} \leqq \widehat{C_{X}(O(C))} \triangleleft \widetilde{X}$ and \tilde{Y} is a self-centralizing minimal normal subgroup of \tilde{X}, it follows that $\tilde{Y} \leqq C_{X}(O(C))$. This implies that the preimage Y of \tilde{Y} in X is written as $Y=C_{Y}(O(C)) O(C)$. Hence Y is 2 -closed and if $D \in \operatorname{Syl}_{2}(Y)$, then $D=O_{2}\left(N\left(D_{1}\right)\right), N\left(D_{1}\right)=$ $N\left(B_{1}\right) D, N\left(B_{1}\right) \cap D=D_{1}$, and D / D_{1} is elementary. Furthermore, the irreducible action of $\overline{N\left(B_{1}\right)}$ on \bar{A}_{1} yields that $\bar{A}_{1}=Z(\bar{D})$ and so commutation by \bar{t} induces an $N\left(B_{1}\right)$-isomorphism $\bar{D} / \bar{D}_{1} \rightarrow \bar{A}_{1}$. Thus (3) holds.

Assume, therefore, that $N\left(B_{1}\right)<N\left(D_{0}\right)$ Recall that $W \cong Z_{4}$ in this case. The \widetilde{X}^{a} is a 2 -transitive group of degree 10 , and the point-stabilizer $C_{\widetilde{X}}(\bar{t})=\widetilde{N\left(D_{0}\right)}$ has a normal subgroup $O_{3}\left(\widetilde{\left.N\left(B_{1}\right)\right)}=\right.$
 (see Lemma (2C)). A theorem of [18] now shows that

$$
P S L(2,9) \hookrightarrow \tilde{X} \hookrightarrow P \Gamma L(2,9) .
$$

Now $\left|X: N\left(D_{0}\right)\right|=10,\left|N\left(D_{0}\right): N\left(B_{1}\right)\right|=2$, and $N\left(B_{1}\right) / D_{1} O(C) \cong \Sigma_{3} \times Z_{3}$ or $\Sigma_{3} \times \Sigma_{3}$. Furthermore, $C\left(D_{1} / W\right) \cap N\left(B_{1}\right)=D_{1} O(C)$ as remarked before. Therefore, $|\widetilde{X}|_{2} \leqq 16$ and equality holds only when $C\left(D_{1} / W\right)=$ $D_{1} O(C)$ and $N\left(B_{1}\right) / D_{1} O(C) \cong \Sigma_{3} \times \Sigma_{3}$. We argue that F / D_{1} is elementary. Indeed, $F / D_{1} \cong F \cap E_{2} / D_{1} \cap E_{2}$. By Lemmas (6B) and (6D), the mapping which associates with each element of E_{2} its square induces an $N_{C}\left(B_{2}\right)$-isomorphism $E_{2} / A_{2} \rightarrow A_{2}$, and it maps $F \cap E_{2}$ onto $A_{1} \cap A_{2}$ by the definition of F. Thus $\left(F \cap E_{2}\right)^{2}=A_{1} \cap A_{2}$ and consequently, F / D_{1} is elementary. This implies that $m(X) \geqq 3$ as $F \cap$ $C\left(D_{1} / W\right)=F \cap N\left(D_{0}\right) \cap C\left(D_{1} / W\right)=Q_{1} \cap C\left(D_{1} / W\right)=D_{1}$ by (e). Thus $\tilde{X}=\Sigma_{6}$ is the only possibility. In particular, $|\tilde{X}|_{2}=16$ and hence $C\left(D_{1} / W\right)=D_{1} O(C)$ and $N\left(B_{1}\right) / D_{1} O(C) \cong \Sigma_{3} \times \Sigma_{3}$. This occurs only if $C \neq L C_{c}(L)$ (see Lemmas (2C) and (2G)). Furthermore, $N\left(D_{0}\right) / D_{1} O(C)=$
$C_{\widetilde{X}}(\bar{t}) \cong \Sigma_{3}$ wreath Z_{2} by the structure of Σ_{6}. Thus all parts of the lemma hold.

Lemma (6F). If $N\left(B_{1}\right)<N\left(D_{0}\right)$, then Case (3) of the main theorem occurs.

Proof. We shall apply Lemma (1R) with $C(W), W, A_{1} W / W$, and t in place of \widehat{G}, \hat{Z}, A, and t, respectively. Recall from Lemma (6E) that

$$
N\left(D_{1}\right) \leqq N\left(A_{1} W\right) \leqq N(W)
$$

$N\left(D_{1}\right) \cap C\left(A_{1} W / W\right) / C\left(D_{1} / W\right)$ is a normal 2-subgroup of $N\left(D_{1}\right) / C\left(D_{1} / W\right)$ and so by Lemma (6E),
(a)

$$
N\left(D_{1}\right) \cap C\left(A_{1} W / W\right)=D_{1} O(C)
$$

As a consequence, we have that

$$
\begin{equation*}
D_{1} \in \operatorname{Syl}_{2}\left(C\left(A_{1} W / W\right)\right) . \tag{b}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
N\left(A_{1} W\right)=N\left(D_{1}\right) C\left(A_{1} W / W\right) \tag{c}
\end{equation*}
$$

by a Frattini argument, and hence

$$
\begin{equation*}
N\left(A_{1} W\right) / C\left(A_{1} W / W\right) \cong \Sigma_{6} \tag{d}
\end{equation*}
$$

by (a) and Lemma (6E). Now $C \neq L C_{C}(L)$ by Lemma (6E)(4.5), so there is an element $f \in N_{C}(Q)-Q$ such that $f^{2} \in Q$. Then $f \in N\left(B_{1}\right) \cap$ $N\left(B_{2}\right)$ by Lemma (3J) and so f normalizes $Q_{2}=D_{1} D_{2}$ and $Q_{2}\langle f\rangle$ has order 2^{12}. Also, $f \in N\left(D_{1}\right) \leqq N(W)$ and $Q_{2}=D_{1} E_{2} \leqq N(W)$. Thus $Q_{2}\langle f\rangle \leqq N(W)$. Furthermore,

$$
N\left(A_{1} W\right) \cap Q_{2}\langle f\rangle=\left(N\left(A_{1} W\right) \cap Q_{2}\right)\langle f\rangle=F\langle f\rangle
$$

as $N\left(A_{1} W\right) \cap Q_{2}$ normalizes $A_{1} W B_{2}=Q_{1}$. Now $|F\langle f\rangle|=2^{11}$. Thus, $F\langle f\rangle \in \operatorname{Syl}_{2}\left(N\left(A_{1} W\right)\right)$ by (b) and (d), and hence
$\left|N(W): N\left(A_{1} W\right)\right|$ is even.
Now $W \cong Z_{4}$ by Lemma (6E) and $t \notin C(W)$, so

$$
N(W)=C(W)\langle t\rangle .
$$

It is now clear that (d), (b), and (e) imply the conditions (1), (2), and (3) of Lemma (1R), respectively.

Now notice that $\langle t, W\rangle=D_{0}$, and recall from Lemma (6E) that

$$
N\left(D_{0}\right) \leqq N\left(D_{1}\right) \text { and } N\left(D_{0}\right) / D_{1} O(C) \cong \Sigma_{3} \text { wreath } Z_{2}
$$

Thus

$$
\begin{equation*}
A_{1} W \leqq N\left(D_{0}\right) \leqq N\left(A_{1} W\right) \tag{f}
\end{equation*}
$$

and using (a), we have
(g)

$$
N\left(D_{0}\right) C\left(A_{1} W / W\right) / C\left(A_{1} W / W\right) \cong \Sigma_{3} \text { wreath } Z_{2}
$$

Noticing that $\left\langle t, A_{1} W\right\rangle=D_{1}$, we can now derive conditions (5), (6), and (7) of Lemma (1R) from (f), (g), and (c), respectively. We know that conditions (4) and (8) are satisfied. Thus by Lemma (1R), $C(W)$ has a quasisimple characteristic subgroup K containing W such that
(h)

$$
C(K)=W O(C(W))
$$

and either $K / O(K) \cong S U(4,3)$ or $K / Z(K)$ has an S_{2}-subgroup of type $P S L(6, q), q \equiv 3 \bmod 4$. Now $N(W) \leqq C(Z), K \triangleleft N(W)$, and $W / Z \in \operatorname{Syl}_{2}(C(K / Z))$ by (h). Thus K / Z is a standard subgroup of $C(Z) / Z$. The fours group D_{0} / Z acts on $X=O(C(Z))$. Let $x \in N\left(D_{0}\right)-$ $N\left(B_{1}\right)$. Then $V^{x} \neq V$ as $N(V)=N\left(B_{1}\right)$ and so $X=\left\langle N_{X}(V), N_{X}\left(V^{x}\right)\right.$, $\left.N_{X}(W)\right\rangle \leqq O(N(W))$. Hence $[K, X]=1$. We have proved that Case (3) of the main theorem occurs.

In view of Lemma (6F), we assume from now on that G satisfies the following.

Hypothesis (6.2). $\quad N\left(B_{1}\right)=N\left(D_{0}\right)$.
Furthermore, we make the following definition.
Definition (6.4). Let $D=O_{2}\left(N\left(D_{1}\right)\right)$ and $R_{1}=Q_{1} D$.
Then by Lemma (6E)(3), $N\left(D_{1}\right)=N\left(B_{1}\right) D, N\left(B_{1}\right) \cap D=D_{1}, D / D_{1}$ is elementary, and $D / D_{1} \cong A_{1} / Z$ as $N\left(B_{1}\right)$-modules.

Lemma (6G). The following conditions hold.
(1) $\quad R_{1} \cap Q_{2}=F$.
(2) $R_{1} \leqq N\left(Q_{2}\right)$.
(3) E_{2} is elementary abelian.
(4) $N\left(D_{2}\right)=N\left(B_{2}\right) \leqq N\left(E_{2}\right)$.
(5) $N\left(Q_{2}\right) \leqq N\left(E_{2}\right)$.

Proof. By Lemma (6E)(2), $N\left(D_{1}\right) \cap Q_{2}=F$. Hence (1) will follow once we show $F \leqq R_{1}$. To see this, notice first that $\left|N\left(D_{1}\right) / D\right|_{2} \leqq 4$ by Lemmas (6C)(3) and (6E)(3). Next, $F \leqq N\left(R_{1}\right)$ as $F \leqq N\left(Q_{1}\right) \cap$ $N\left(D_{1}\right)$. Hence $Q_{1}<R_{1} \cap F \leqq F$. As H acts irreducibly on F / Q_{1} by

Lemma (6B) and $H \leqq N\left(R_{1} \cap F\right)$, we have that $F=R_{1} \cap F$, proving (1).

Now Lemma (6E)(3) in particular implies that $\left|N_{R_{1}}\left(Q_{1}\right) / D_{1}\right|=8$, so $F=N_{R_{1}}\left(Q_{1}\right)$ and consequently, $F \triangleleft R_{1}$ by Lemma (1C).

We show that $F \cap E_{2}$ is the only A_{128}-subgroup of F. Suppose X is an A_{128}-subgroup of F. If $X \leqq F \cap D_{2}$, then as $F \cap E_{2}$ is an abelian maximal subgroup of $F \cap D_{2}$ and as $Z\left(F \cap D_{2}\right) \leqq B_{2}$, it follows that $X=F \cap E_{2}$. Assume, therefore, that $X \nsubseteq F \cap D_{2}$. Then $F \neq X\left(F \cap E_{2}\right)$. For otherwise, $Y=X \cap F \cap E_{2}$ has order 16 and $Y \leqq Z(F)$. However, $Z(F) \leqq Z\left(C_{F}(t)\right)=Z(Q)=V$, a contradiction. Thus $|Y| \geqq 32$ and so if $x \in X-D_{2}$, then $\left|C_{E_{2}}(x)\right| \geqq 32$. However, on the other hand, Lemma (6B) shows that $\left|C_{E_{2} / A_{2}}(x)\right|=4=$ $\left|C_{A_{2}}(x)\right|$ if $x \in Q_{2}-D_{2}$. This contradiction shows that $F \cap E_{2}$ is the only A_{128}-subgroup of F.

A similar argument shows that E_{2} is the only A_{256}-subgroup of Q_{2}. Therefore, $N(F) \leqq N\left(F \cap E_{2}\right)$ and $N\left(Q_{2}\right) \leqq N\left(E_{2}\right)$.

Now $R_{1} \leqq N(F) \leqq N\left(F \cap E_{2}\right)$. However, $R_{1} \nsubseteq N\left(A_{2}\right)$ as $N_{R_{1}}\left(A_{2}\right) \leqq$ $N_{R_{1}}\left(A_{2} D_{1}\right)=N_{R_{1}}\left(Q_{1}\right)=F$. These and Lemma (6D) imply that $F \cap E_{2}$ is elementary abelian, and hence (3) follows. The statement (4) now follows from Lemma (1C). By the same lemma, $C\left(F / F \cap E_{2}\right) \leqq$ $N\left(F \cap D_{2}\right) \leqq N\left(B_{2}\right)$. Also, $Q_{2} \leqq C\left(F / F \cap E_{2}\right)$ as $Q_{2} / F \cap E_{2}=F / F \cap F_{2} \times$ $E_{2} / F \cap E_{2}$ and $F / F \cap E_{2} \cong Q / A_{2}$. Therefore, Q_{2} is the only S_{2}-subgroup of $C\left(F / F \cap E_{2}\right)$ by the structure of $N\left(B_{2}\right) / B_{2}$ discussed in Lemma (6B). Thus $Q_{2} \triangleleft N(F)$ as $C\left(F / F \cap E_{2}\right) \triangleleft N(F)$. In particular, $R_{1} \leqq N\left(Q_{2}\right)$. The proof is complete.

Definition (6.5). Let $T=R_{1} Q_{2}, S=C_{T}(W)$, and $E_{1}=C_{D}(W)$.
Because of Lemma (6G)(2), T is a subgroup.
Lemma (6H). The following conditions hold.
(1) $T \leqq N\left(E_{2}\right)$.
(2) $T=S\langle t\rangle$.
(3) $D=E_{1}\langle t\rangle$.
(4) $W^{s_{2}}=\left(E_{2} \cap E_{2}^{s_{1}}\right)^{s_{2}}=\left(\left(E_{1} \cap E_{2}\right) \cap\left(E_{1} \cap E_{2}\right)^{s_{1}}\right)^{s_{2}} \quad$ is a complement for E_{1} in S.
(5) $\left(\left(E_{1} \cap E_{2}\right) \cap\left(E_{1} \cap E_{2}\right)^{s_{2}}\right)^{s_{1}}$ is a complement for E_{2} in S.
(6) E_{1} / W is elementary abelian.
(7) $N(Q) \leqq N(S)$.

Proof. The assertion (1) follows from Lemma (6G)(5). By Lemma $(6 \mathrm{E})(1), R_{1} \leqq N\left(D_{1}\right) \leqq N(W)$. Also, $Q_{2}=D_{1} E_{2}$ normalizes W. Therefore, $T \leqq N(W)$ and hence (2) and (3) follow.

Let $X=E_{2} \cap E_{2}^{s_{1}}$. Then as $B_{2} \cap B_{2}^{s_{1}}=V$ and $N(V)=N\left(B_{1}\right)$ by

Lemma (6C)(2), we have that $X \leqq N_{Q_{2}}\left(B_{1}\right)=Q_{1}$. Thus $X \leqq Q_{1} \cap Q_{1_{1}^{s}}^{s_{1}}=$ D_{1}. By Lemma (6C), $D_{1} \cap D_{2}=\left(B_{1} \cap D_{2}\right) D_{0}=\left(B_{1} \cap B_{2}\right) D_{0}$ and then $X \leqq\left(B_{1} \cap B_{2}\right) D_{0} \cap\left(\left(B_{1} \cap B_{2}\right) D_{0}\right)^{s_{1}}=D_{0}$. Thus $X \leqq D_{0} \cap E_{2}=W$. As $W=W^{s_{1}} \leqq X$ by Lemma (6C)(8), we conclude that $W=E_{2} \cap E_{2}^{s_{1}}=$ $\left(E_{1} \cap E_{2}\right) \cap\left(E_{2} \cap E_{2}\right)^{s_{1}}$. Furthermore, as $\left|E_{1}\right|=2^{10}$ by (3), we have $E_{1}=\left(E_{1} \cap E_{2}\right)\left(E_{1} \cap E_{2}\right)^{s_{1}}$ by order consideration. As $E_{1} \cap E_{2} \triangleleft E_{1}$ by (1), (6) holds by Lemma (6G)(3).

Now by Lemma (6B), commutation by t induces an $N_{c}\left(B_{2}\right)$-isomorphism $E_{2} / A_{2} \rightarrow A_{2}$, which maps $W A_{2} / A_{2}$ onto Z and $F \cap E_{2} / A_{2}$ onto $A_{1} \cap A_{2}$. Hence $\left(F \cap E_{2}\right) \cap W^{s_{2}} A_{2}=A_{2}$ as $\left(A_{1} \cap A_{2}\right) \cap Z^{s_{2}}=1$. Notice that $E_{1} \cap E_{2} \leqq F \cap E_{2}$ by Lemma (6G)(1) and that $E_{1} \cap A_{2}=$ $A_{1} \cap A_{2}$ by Lemmas (6C)(3) and (6E)(3). Therefore, $E_{1} \cap W^{s_{2}} \leqq$ $\left(A_{1} \cap A_{2}\right) \cap Z^{s_{2}}=1$. As $\left|S: E_{1}\right|=4$ by (2) and (3), we conclude that $W^{s_{2}}$ is a complement for E_{1} in S, proving (4). In particular, $S=$ $E_{1} E_{2}$.

As a consequence of (4), we have that $\left(E_{1} \cap E_{2}\right)^{s_{2}}=\left(\left(E_{1} \cap E_{2}\right) \cap\right.$ $\left.\left(E_{1} \cap E_{2}\right)^{s_{2}}\right) \times W^{s_{2}}$ and so

$$
\left(E_{1} \cap E_{2}\right)^{s_{1}}=\left(\left(E_{1} \cap E_{2}\right) \cap\left(E_{1} \cap E_{2}\right)^{s_{2}}\right)^{s_{1}} \times W .
$$

Hence

$$
\begin{aligned}
S & =E_{1} E_{2} \\
& =\left(E_{1} \cap E_{2}\right)\left(E_{1} \cap E_{2}\right)^{s_{1}} E_{2} \\
& =\left(E_{1} \cap E_{2}\right)^{s_{1}} E_{2} \\
& =\left(\left(E_{1} \cap E_{2}\right) \cap\left(E_{1} \cap E_{2}\right)^{s_{2}}\right)^{s_{1}} W E_{2} \\
& =\left(\left(E_{1} \cap E_{2}\right) \cap\left(E_{1} \cap E_{2}\right)^{s_{2}}\right)^{s_{1}} E_{2} .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
& \left(\left(E_{1} \cap E_{2}\right) \cap\left(E_{1} \cap E_{2}\right)_{2}^{s_{2}}\right)^{s_{1}} \cap E_{2} \\
& \quad \leqq\left(E_{1} \cap E_{2}\right) \cap\left(E_{1} \cap E_{2}\right)^{s_{1}} \\
& \quad=W .
\end{aligned}
$$

Therefore (5) holds.
Finally, $N(Q) \leqq N\left(B_{1}\right) \cap N\left(B_{2}\right)$ by Lemma (3J). Hence subgroups used to define S are all normalized by $N(Q)$ (see Definitions (6.1)(6.5)). Thus $N(Q) \leqq N(S)$.

Definition (6.6). Let $K=K_{2} E_{2}$ and $L_{2}=\left\langle K^{N\left(E_{2}\right)}\right\rangle$.
Lemma (6I). The following conditions hold.
(1) $\quad L_{2} / E_{2} \cong S L(2,4) \times S L(2,4)$ and t interchanges two components of L_{2} / E_{2}.
(2) $S \in \operatorname{Syl}_{2}\left(L_{2}\right)$.
(3) $O\left(N\left(E_{2}\right) \bmod E_{2}\right)=C\left(L_{2} / E_{2}\right)$.
(4) $C\left(E_{2}\right) \leqq O\left(N\left(E_{2}\right) \bmod E_{2}\right)$.
(5) $Z(S)=W$.

Proof. Let bars denote images in $N\left(E_{2}\right) / E_{2}$. Then by Lemma (6G)(4) and Lemma (6B), $C(\bar{t})=\overline{N\left(B_{2}\right)}={\bar{N} C_{C}\left(B_{2}\right)}^{2}$. Therefore, $\bar{K} \triangleleft C(\bar{t})$ and $\langle\bar{t}\rangle \in \operatorname{Syl}_{2}(C(\bar{K}) \cap C(\bar{t}))$. Furthermore, \bar{S} is an E_{16}-subgroup of $\overline{N\left(E_{2}\right)}$ and is invariant under $N\left(Q_{2}\right) \cap N\left(B_{2}\right)=N(Q) E_{2}$ by Lemma (6 H). Thus (2) and (3) hold and either (1) holds or $L_{2} / E_{2} \cong S L(2,16)$ by Lemma (1N). As a consequence, we have that $C\left(E_{2}\right) \cap L_{2}=E_{2}$ since $K \not \equiv C\left(A_{2}\right)$. Thus (4) follows from (3). Hence $Z(S) \leqq N_{E_{2}}(P) \leqq Q_{1} \cap$ $E_{2}=A_{2} W$, and then $Z(S) \leqq Z(P W)=W$. As W centralizes $S=E_{1} E_{2}$ by Lemma (6H)(4), (5), (5) holds.

Now $\bar{P} \in \operatorname{Syl}_{2}(\bar{K}), \bar{P} \leqq \bar{S} \in \operatorname{Syl}_{2}\left(\bar{L}_{2}\right)$, and $C_{E_{2}}(\bar{S})=Z(S)=W$. Furthermore, A_{2} is a \bar{K}-invariant subgroup of E_{2} and $C_{A_{2}}(\bar{P})=Z<W$. Thus $\bar{L}_{2} \not \equiv S L(2,16)$ by Lemma (1 K). The proof is complete.

In view of Lemma (6I), we make the following definition.
Definition (6.7). Let $L_{2} / E_{2}=M_{2} / E_{2} \times M_{2}^{t} / E_{2}$ with $M_{2} / E_{2} \cong S L(2,4)$, and set $S_{2}=S \cap M_{2}$.

Lemma (6J). Assume that $C_{E_{2}}\left(M_{2}\right)=1$. Then $\left\langle L^{G}\right\rangle \cong P S L(4,4)$.
Proof. Let $N=N\left(E_{2}\right)$ and let bars denote images in $N / C\left(E_{2}\right)$. Our aim is to use Lemma (1L) to E_{2} and \bar{N}. By Lemma (6G)(3), E_{2} is elementary abelian of order 256. By Lemma (6I)(4), $C\left(E_{2}\right)=$ $E_{2} O(N)$ and so Definition (6.7) and Lemma (6I)(3) imply that \bar{N} satisfies the conditions (1) and (2) of Hypothesis (1.1). Also, $C_{E_{2}}\left(\bar{S}_{2} \bar{S}_{2}^{t}\right)=C_{E_{2}}(\bar{S})=Z(S)=W$ by Lemma (6I)(5), so \bar{N} satisfies the condition (3) of Hypothesis (1.1) as well. Our assumption implies that $C_{E_{2}}\left(\bar{M}_{2}\right)=1$, so that \bar{N} satisfies the condition (4) of Lemma (1L). Now $\bar{K}=C_{\bar{L}_{2}}(\bar{t})=\left\{\overline{x t x t} \mid \bar{x} \in \bar{L}_{2}\right\}$ and \bar{H} is a complement for $\bar{P}=C_{\bar{S}}(\bar{t})$ in $N_{\bar{K}}(\bar{P})$ as $\bar{K}=\bar{K}_{2}$. Hence $\bar{H}=\left\{\overline{h t h t} \mid \bar{h} \in \bar{H}^{*}\right\}$ for some complement \bar{H}^{*} for \bar{S}_{2} in $N_{\bar{M}_{2}}\left(\bar{S}_{2}\right)$. Since $[W, H]=1$ by Lemma (6C)(8), \bar{N} satisfies the condition (5) Lemma (1L) as well. Thus we can apply Lemma (1L) to determine the structure of \bar{N} and the action of \bar{N} on E_{2}. As for the structure of \bar{N}, we have

$$
\left\langle L^{*}, t^{*}\right\rangle \hookrightarrow \bar{N} \hookrightarrow\left\langle L^{*}, t^{*}, f^{*}, D^{*}\right\rangle .
$$

In this embedding, $\bar{L}_{2}, \bar{M}_{2}, \bar{S}$, and \bar{t} correspond to $L^{*}, M^{*}, R^{*} R^{* t^{*}}$, and t^{*}, respectively.

Let $S_{0}=\left(\left(E_{1} \cap E_{2}\right) \cap\left(E_{1} \cap E_{2}\right)^{s_{2}}\right)^{s_{1}}$. Then by Lemma (6H)(5) $\left\langle S_{0}, t\right\rangle=$ $S_{0}\langle t\rangle$ is a complement for E_{2} in T. Since $S \in \operatorname{Syl}_{2}\left(L_{2}\right)$ by Lemma
(6I)(2), $T \in \operatorname{Syl}_{2}\left(\left\langle L_{2}, t\right\rangle\right)$ and hence E_{2} has a complement in $\left\langle L_{2}, t\right\rangle$ by Gaschütz's theorem [19, Hauptsatz 17.4]. Therefore, the structure of $\left\langle L_{2}, t\right\rangle$ is uniquely determined by Lemma (1L). There is an isomorphism

$$
\sigma:\left\langle L_{2}, t\right\rangle \longrightarrow\left\langle L^{*} E^{*}, t^{*}\right\rangle .
$$

Here $L_{2}^{\sigma}=L^{*} E^{*},\left(t E_{2}\right)^{\sigma}=t^{*} E^{*}$, and σ maps S onto the group S^{*} of matrices

$$
\left|\begin{array}{llll}
1 & & & \\
a & 1 & & \\
b & c & 1 & \\
d & e & f & 1
\end{array}\right|
$$

with entries in \boldsymbol{F}_{4}. We know that each S^{*} and $S^{*} / Z\left(S^{*}\right)$ has precisely one E_{256}-subgroup, E_{2}^{*} and $E_{1}^{*} / Z\left(S^{*}\right)$. Since E_{2} and E_{1} / W are elementary and $Z(S)=W$ (see Lemmas (6G)-(6I)), it follows that E_{1} and E_{2} are characteristic subgroups of S and that $E_{i}^{\sigma}=E_{i}^{*}$ for $i \in\{1,2\}$.

Now consider the case where \bar{N} does not contain an element that corresponds to f^{*}. Then $T=\langle S, t\rangle \in \operatorname{Syl}_{2}(N)$. Since $\langle S, t\rangle^{\sigma}=$ $\left\langle S^{*}, t^{*}\right\rangle$, we see that E_{2} is the only E_{256}-subgroup of T. Hence $N(T) \leqq N$, which implies that $T \in \operatorname{Syl}_{2}(\mathrm{G})$. Next, since $S^{\sigma}=S^{*}$ and $I\left(S^{*}\right)=I\left(E_{1}^{*}\right) \cup I\left(E_{2}^{*}\right)$, we have $I(S)=I\left(E_{1}\right) \cup I\left(E_{2}\right)$. Hence if $x \in t^{G} \cap S$, then $x \in E_{i}$ for some $i \in\{1,2\}$. Since $\left|C_{E_{i}}(x)\right| \geqq 256$ by Lemma (1D) and $|C|_{2} \leqq 256$, we have $C_{E_{i}}(x) \in \operatorname{Syl}_{2}(C(x))$. But class of $C_{E_{i}}(x) \leqq 2$ and class of $P=3$, a contradiction. Therefore, $t^{G} \cap$ $S=\varnothing$. Then $t \notin G^{\prime}$ by Lemma (1E), and since $L_{2}^{\sigma}=L^{*} E^{*}$ is perfect, $S \in \operatorname{Syl}_{2}\left(G^{\prime}\right)$. We now appeal to [22] to conclude that $O^{2^{\prime}}\left(G^{\prime} / O\left(G^{\prime}\right)\right) \cong$ $O^{2^{2}}(X)$ for some parabolic subgroup X of $P S L(4,4)$. By Lemma (1H), $L(G)=\left\langle L^{G}\right\rangle$ and $\left[\left\langle L^{G}\right\rangle, O(G)\right]=1 . \quad$ Therefore, $\left\langle L^{G}\right\rangle \cong P S L(4,4)$.

Assume, therefore, that \bar{N} contains an element \bar{f} that corresponds to f^{*}. Let f^{\prime} be a preimage of \bar{f} in N. Since $\bar{f} \in N(\bar{T})$, we may choose $f^{\prime} \in N_{N}(T)$. Then as $\bar{f} \in C(\bar{t})$ and $\langle\bar{t}\rangle=\bar{D}_{2}, f^{\prime} \in N\left(D_{2}\right)=$ $N\left(B_{2}\right)$ by Lemma (6G)(4). Also, since \bar{f} normalizes $\bar{Q}_{2}=C_{\bar{T}}(\bar{t}), f^{\prime} \in$ $N\left(Q_{2}\right)$. Recall that $N\left(B_{2}\right)=N_{C}\left(B_{2}\right) E_{2}$ and $N_{C}\left(B_{2}\right) \cap E_{2}=A_{2}$. Hence we may choose $f^{\prime} \in N_{C}\left(B_{2}\right)$. Then f^{\prime} normalizes $Q_{2} \cap C=Q$, but $f^{\prime} \notin Q$. Thus $f^{\prime} \in C-L C_{C}(L)$. Also, we may choose f^{\prime} so that $f^{\prime 2} \in$ E_{2}. Then $f^{\prime 2} \in C \cap E_{2}=A_{2} \leqq L$. Therefore, $L\left\langle f^{\prime}\right\rangle \cong \operatorname{Aut}(L)$. We can now choose $f \in I\left(L f^{\prime}\right)$ so that the action of f on L is induced by the involutive automorphism of \boldsymbol{F}_{4}. Then $f \in C\left(s_{1}\right) \cap C\left(s_{2}\right)$ and $f \in N(S)$ by Lemma (6 H$)(7)$, hence $f \in N\left(S_{0}\right)$. Thus, $\left\langle S_{0}, t, f\right\rangle$ is a complement for E_{2} in $\langle S, t, f\rangle$. As $\langle S, t, f\rangle \in \operatorname{Syl}_{2}\left(\left\langle L_{2}, t, f\right\rangle\right), E_{2}$ has a complement in $\left\langle L_{2}, t, f\right\rangle$ by Gaschütz's theorem, and the structure
of $\left\langle L_{2}, t, f\right\rangle$ is uniquely determined by Lemma (1L). Notice that $f \in P f^{\prime h}$ for some $h \in H$, hence $f \in N_{N}\left(M_{2}\right)$. Hence by Lemma (1L), there is an isomorphism

$$
\sigma:\left\langle L_{2}, t, f\right\rangle \longrightarrow\left\langle L^{*}, E^{*}, t^{*}, f^{*}\right\rangle
$$

such that $L_{2}^{\sigma}=L^{*} E^{*}, S^{\sigma}=S^{*},\left(t E_{2}\right)^{\sigma}=t^{*} E^{*}$, and $\left(f E_{2}\right)^{\sigma}=f^{*} E^{*}$. As $I\left(t^{*} E^{*}\right)=t^{* E^{*}}$, we may assume that $t^{\sigma}=t^{*}$. Replacing f by $f^{*^{\sigma-1}}$, we may also assume that $f^{\sigma}=f^{*}$. Thus f is an involution of C normalizing $P=C_{s}(t)$.

Now let $X=C(t f), \quad Y=C_{L}(f)$, and $M=C_{L_{2}}(t f)$. As $C(f) \cap$ $N_{L}\left(A_{2}\right)=C(f) \cap C(t) \cap L_{2} \cong C\left(f^{*}\right) \cap C\left(t^{*}\right) \cap L^{*} E^{*}, C(f) \cap N_{L}\left(A_{2}\right)$ is an extension of E_{8} by $S L(2,2)$. Thus f acts on L as a field automorphism by Lemma (2 K)(4), hence $Y \cong S p(4,2)$. Also, $M \cong C_{L^{*} E^{*}}\left(t^{*} f^{*}\right)$ is isomorphic to the commutator subgroup of a maximal parabolic subgroup of $S p(4,4)$, and as $x^{t}=x^{f}$ for $x \in M$, the action of t on M is induced by a field automorphism of $S p(4,4)$. As C is a semidirect product of $\langle L, t, f\rangle$ and $O(C)$, we have

$$
C_{X}(t)=C(f) \cap C(t)=\left\langle Y, t, f, C_{o(0)}(f)\right\rangle .
$$

We argue that $t \nsim f$. Indeed, $C_{L_{2}}(f)\langle f\rangle \cong C_{L^{*} E^{*}}\left(f^{*}\right)\left\langle f^{*}\right\rangle$ is an extension of an elementary abelian group of order 32 by $S L(2,2) \times$ $S L(2,2)$, while C does not contain such a group by Lemma (3J). Let bars denote images in $X /\langle t f\rangle$. Then $\bar{t} \in I(\bar{X})$ and since $t \nsim f$,

$$
C_{\bar{X}}(\bar{t})=\overline{N_{X}(\langle t, t f\rangle)}=\overline{C_{X}(t)} .
$$

Therefore,

$$
C_{\bar{X}}(\bar{t})=\bar{Y} \times\langle\bar{t}\rangle \times O\left(C_{\bar{X}}(\bar{t})\right)
$$

with $\bar{Y} \cong S p(4,2)$. We can now apply Lemma (1P) to conclude that $E(\bar{X}) \cong S p(4,4)$ and $C_{\bar{X}}(E(\bar{X}))=O(\bar{X})$. Consequently, $|X|_{2} \leqq 2^{11}$. As the Schur multiplier of $S p(4,4)$ is trivial, it follows that $E(X) \cong$ $S p(4,4)$ and $C_{X}(E(X))=\langle t f, O(X)\rangle$. Thus $E(X)$ is a standard subgroup of G and $C\left(E(X)\right.$) has a cyclic S_{2}-subgroup. Also, as $|G: X|$ is even, $t f \notin Z^{*}(G)$ and so $E(X) O(G) \nexists G$ by Lemma (1H). Appealing to [11], we conclude that $\left\langle E(X)^{G}\right\rangle \cong \operatorname{PSU}(4,4), \operatorname{PSU}(5,4)$, $P S L(4,4), \quad P S L(5,4), \quad P S p(4,16)$ or $S p(4,4) \times S p(4,4)$. Since $C(t)$ has a component of type $\operatorname{PSU}(4,2)$, we must have that $\left\langle E(X)^{f}\right\rangle \cong$ $P S L(4,4)$ (see [3, §19]). Thus by Lemma (1H), $\left\langle L^{G}\right\rangle \cong P S L(4,4)$. The proof is complete.

In view of Lemma (6J), we now study the following situation.
Hypothesis (6.3). $\quad C_{E_{2}}\left(M_{2}\right) \neq 1$.

Lemma (6K). $L_{2}=N_{2} \times N_{2}^{t}$, where N_{2} is isomorphic to the semidirect product of the natural A_{5}-module by A_{5}.

Proof. By Lemma (6H)(5) and Gaschütz's theorem, E_{2} has a complement N in $L_{2}\langle t\rangle$. As in the proof of Lemma (6J), E_{2} and N satisfy Hypothesis (1.1) and $C_{E_{2}}\left(S_{2} S_{2}^{t}\right)=W$. Also, $C_{E_{2}}\left(M_{2}\right) \neq 1$ by our hypothesis. As $W \cap W^{s_{2}}=1$ by Lemma (6 H)(4), the assertion follows from Lemma (1M).

Definition (6.8). Let $R=S \cap N_{2}, \quad F_{2}=O_{2}\left(N_{2}\right)$, and $U=Z(R)$. Let F_{1} / U be an element of $\mathscr{E}^{*}(R / U)$ different from F_{2} / U.

Remark. $\quad N_{2} \cong K_{2} A_{2}$ and $R \in \operatorname{Syl}_{2}\left(N_{2}\right)$, hence $R \cong P$. Thus $\mathscr{E}^{*}(R / U)=\left\{F_{1} / U, F_{2} / U\right\}$ and F_{1} is extra-special of order 32. Also, $W=U \times U^{t}$ by Lemma (6I).

Lemma (6L). For $i \in\{1,2\}$, the following holds.
(1) $E_{i}=F_{i} \times F_{i}^{t}$.
(2) $s_{\imath} \in N\left(F_{i}\right)$.

Proof. For $i=2$, the assertion is obvious, so consider the case $i=1$. As $S / W=R W / W \times R^{t} W / W$ and $R W / W \cong R / U$, we have

$$
\mathscr{C}^{*}(S / W)=\left\{F_{1} F_{1}^{t} / W, F_{2} F_{2}^{t} / W, F_{1} F_{2}^{t} / W, F_{1}^{t} F_{2} / W\right\}
$$

Therefore, $F_{1} F_{1}^{t} / W$ is the only member of $\mathscr{E}^{*}(S / W)$ of order greater than or equal to 2^{8}. As E_{1} / W is elementary of order 2^{8} by Lemma (6H), (1) holds.

Now $s_{1} \in C(W) \leqq C(U)$ by Lemma (6C)(8), and hence s_{1} acts on $Z\left(E_{1} / U\right)=U^{t} F_{1} / U$. Now $K_{2} A_{2}=C_{L_{2}}(t)=\left\{x x^{t} \mid x \in N_{2}\right\}$ and H is a complement for $P=C_{S}(t)$ in $N_{K_{2} A_{2}}(P)$, so $H=\left\{x x^{t} \mid x \in H^{*}\right\}$ for some complement H^{*} for R in $N_{N_{2}}(R)$. As H^{*} acts fixed-point-freely on F_{1} / U by the structure of N_{2}, so also does H. Hence it follows that [$U^{t} F_{1} / U, H$] $=F_{1} / U$ since H centralizes U^{t} by Lemma (6C)(8). Therefore, $s_{1} \in N\left(F_{1}\right)$.

Definition (6.9). Let $L_{1}=\left\langle S, S^{s_{1}}\right\rangle, N_{1}=\left\langle R, R^{s_{1}}\right\rangle, G_{0}=\left\langle L_{1}, L_{2}\right\rangle$, and $G_{1}=\left\langle N_{1}, N_{2}\right\rangle$. Notice that $N_{2}=\left\langle R, R^{s_{2}}\right\rangle$.

Lemma (6M). G_{0} is a central product of G_{1} and G_{1}^{t}.
Proof. It is clear that $G_{0}=\left\langle G_{1}, G_{1}^{t}\right\rangle$, so we shall prove $\left[G_{1}, G_{1}^{t}\right]=$ 1. The structure of $N\left(E_{2}\right) / E_{2}$ shows $S \cap S^{s_{2}}=E_{2}$ (see Lemma (6I)). In particular, $E_{1} \cap E_{1}^{s_{2}} \leqq E_{2}$ so ($\left.E_{1} \cap E_{1}^{s_{2}}\right)^{s_{1}}$ is a complement for E_{2}
in S by Lemma $(6 \mathrm{H})(5)$. Thus

$$
S=E_{2}\left(E_{1} \cap E_{1}^{s_{2}}\right)^{s_{1}}
$$

Now, $E_{1}^{s_{1}}=F_{1}^{s_{1}} F_{1}^{s_{1} t}$ and $E_{1}^{s_{2} s_{1}}=F_{1}^{s_{2} s_{1}} F_{1}^{s_{2} s_{1} t}$ by Lemma (6L). As $F_{1}^{s_{1}}$, $F_{1}^{s_{2} s_{1}} \leqq N_{2}^{s_{1}}$ and $L_{2}^{s_{1}}=N_{2}^{s_{1}} \times N_{2}^{s_{1} t}$, we have that

$$
\left(E_{1} \cap E_{1}^{s_{2}}\right)^{s_{1}}=\left(F_{1} \cap F_{1}^{s_{2}}\right)^{s_{1}} \times\left(F_{1} \cap F_{1}^{s_{2}}\right)^{s_{1} t} .
$$

Also, $E_{2}=F_{2} \times F_{2}^{t}$. As $F_{2},\left(F_{1} \cap F_{1}^{s_{2}}\right)^{s_{1}} \leqq R$, the above factorization of S yields that

$$
R=F_{2}\left(F_{1} \cap F_{1}^{s_{2}}\right)^{s_{1}}
$$

This shows that $R=F_{2} F_{1}$ and $R^{s_{2}}=F_{2}\left(F_{1} \cap F_{1}^{s_{2}}\right)^{s_{1} s_{2}}$ as $s_{i} \in N\left(F_{i}\right)$ by Lemma (6L). Hence if $X=\left\langle F_{1},\left(F_{1} \cap F_{1}^{s_{2}}\right)^{s_{1} s_{2}}\right\rangle$, then $N_{2}=F_{2} X$ and so $F_{2} \cap F_{1} \leqq F_{2} \cap X \triangleleft N_{2}$. As N_{2} acts irreducibly on $F_{2}, F_{2} \cap X=F_{2}$. Thus

$$
N_{2}=\left\langle F_{1},\left(F_{1} \cap F_{1}^{s_{2}}\right)^{s_{1} s_{2}}\right\rangle .
$$

Now

$$
\left[F_{1}, F_{1}^{t}\right] \leqq\left[N_{2}, N_{2}^{t}\right]=1
$$

Since $s_{1} \in N\left(F_{1}\right)$,

$$
\left[F_{1},\left(F_{1} \cap F_{1}^{s_{2}}\right)^{s_{1} s_{2} t}\right] \leqq\left[F_{1}, F_{1}^{s_{2} t}\right] \leqq\left[N_{2}, N_{2}^{t}\right]=1
$$

Conjugating this by $s_{1} t$, we have

$$
\left[\left(F_{1} \cap F_{1}^{s_{2}}\right)^{s_{1} s_{2} s_{1}}, F_{1}^{t}\right]=1 .
$$

Also, since $\left(s_{2} s_{1}\right)^{2}=\left(s_{1} s_{2}\right)^{2}$,

$$
\begin{aligned}
& {\left[\left(F_{1} \cap\right.\right.}\left.\left.\cap F_{1}^{s_{2}}\right)_{1}^{s_{1} s_{2} s_{1}},\left(F_{1} \cap F_{1}^{s_{2}}\right)^{s_{1} s_{2} t}\right] \\
& \leqq\left[F_{1}^{s_{2} s_{1} s_{2} s_{1}}, F_{1}^{s_{2} s_{1} s_{1} t}\right] \\
&=\left[F_{1}^{s_{2} s_{1} s_{2}}, F_{12}^{s_{2} s_{1} s_{2} t}\right] \\
& \quad=\left[F_{1}, F_{1}^{t}\right]^{s_{2} s_{1} s_{2}}=1
\end{aligned}
$$

Since $N_{2}^{s_{1}}=\left\langle F_{1},\left(F_{1} \cap F_{1}^{s_{2}}\right)^{s_{1} s_{2} s_{1}}\right\rangle$ and $N_{2}^{t}=\left\langle F_{1}^{t},\left(F_{1} \cap F_{1}^{\left.s_{2}\right)^{s_{1} s_{2} t}}\right\rangle\right.$, we conclude that

$$
\begin{equation*}
\left[N_{2}^{s_{1}}, N_{2}^{t}\right]=1 . \tag{1}
\end{equation*}
$$

In particular, $\left[R^{s_{1}}, R^{t}\right]=1$, and since $\left[R, R^{t}\right]=1$ and $N_{1}=\left\langle R, R^{s_{1}}\right\rangle$, it follows that

$$
\begin{equation*}
\left[N_{1}, N_{1}^{t}\right]=1 \tag{2}
\end{equation*}
$$

Also, $\left[R^{s_{1} t}, N_{2}\right] \leqq\left[N_{2}^{s_{1}}, N_{2}^{t}\right]^{t}=1$. As $\left[R^{t}, N_{2}\right] \leqq\left[N_{2}^{t}, N_{2}\right]=1$, it follows that

$$
\begin{equation*}
\left[N_{1}^{t}, N_{2}\right]=1 \tag{3}
\end{equation*}
$$

The equations (1), (2), and (3) show $\left[G_{1}, G_{1}^{t}\right]=1$, as desired.
Lemma (6N). The following conditions hold.
(1) $\quad G_{1} \cong \operatorname{PSU}(4,2)$.
(2) $G_{0}=G_{1} \times G_{1}^{t}$.
(3) $L=C_{G_{0}}(t)=\left\{x x^{t} \mid x \in G_{1}\right\}$.
(4) $C\left(G_{0}\right)=O\left(N\left(G_{0}\right)\right)$.
(5) $R \in \operatorname{Syl}_{2}\left(G_{1}\right)$.

Proof. By Lemma (6K), N_{2} is perfect. Therefore, $R \leqq N_{2} \leqq G_{1}^{\prime}$ and then $R^{s_{1}} \leqq\left(G_{1}^{\prime}\right)^{s_{1}}=G_{1}^{\prime}$ as $s_{1} \in G_{0} \leqq N\left(G_{1}\right)$. Thus $N_{1}=\left\langle R, R^{s_{1}}\right\rangle \leqq$ G_{1}^{\prime} and $G_{1}=G_{1}^{\prime}$.

Let $L_{0}=\left\{x x^{t} \mid x \in G_{1}\right\}$ and $Z_{0}=G_{1} \cap G_{1}^{t}$. Then, as $G_{0}=G_{1} * G_{1}^{t}$ by Lemma (6 M), it follows that $C_{G_{0}}(t)=L_{0} C_{Z_{0}}(t)$. By the same reason, the mapping $x \rightarrow x x^{t}$ is a homomorphism from G_{1} onto L_{0} with the kernel contained in $Z\left(G_{1}\right)$. In particular, L_{0} is perfect by the first paragraph and so $C_{G_{0}}(t)^{\prime}=C_{G_{0}}(t)^{\infty}=L_{0}$. On the other hand, $L=$ $\left\langle P, s_{1}, s_{2}\right\rangle \leqq C_{G_{0}}(t)$ and so $C_{G_{0}}(t)^{\infty}=L$ as $C^{\infty}=L$. Thus $L=L_{0}$, and consequently $G_{1} / Z\left(G_{1}\right) \cong \operatorname{PSU}(4,2)$.

Now $C\left(G_{0}\right) \triangleleft C(L) \cap N\left(G_{0}\right)$ as $L \leqq G_{0}$. Since $\langle t\rangle \in \operatorname{Syl}_{2}(C(L) \cap$ $\left.N\left(G_{0}\right)\right)$ and $t \notin C\left(G_{0}\right)$, it follows that $C\left(G_{0}\right)$ has odd order. This proves (4) as G_{0} is semisimple. Now $Z\left(G_{1}\right)$ has odd order, so as the Schur multiplier of $\operatorname{PSU}(4,2)$ has order 2 , we have that $Z\left(G_{1}\right)=$ 1. Hence (1), (2), and (3) follow. Finally, (5) is obvious by (1).

Lemma (60). If $t \in N\left(G_{0}\right)^{g}$ for $g \in G$, then $g \in N\left(G_{0}\right)$.
Proof. We first show that $N(Q) \leqq N\left(G_{0}\right)$. By Lemma (3J), $N(Q) \leqq N\left(B_{1}\right)$, hence $N(Q)=D_{1} N_{C}(Q)=A_{1} W N_{C}(Q)$ (see Lemma (6C) and a remark after Definition (6.3)). $A_{1} W$ and $N_{L}(P) \leqq L_{2} \leqq G_{0}$, and $N_{c}(Q)=\left\langle N_{L}(P), t, O(C)\right\rangle$ or $\left\langle N_{L}(P), t, O(C), f\right\rangle$, where f is an element of C acting on L as a field automorphism. Thus it is enough to show $t, O(C)$, and $f \in N\left(G_{0}\right)$. Clearly, $t, O(C)$, and f normalize Q and centralize s_{1}, s_{2}. By Lemma (6 H$)(7), N(Q) \leqq N(S)$. Hence $t, O(C)$, and f normalize $L_{i}=\left\langle S, S^{s_{i}}\right\rangle$ for $i \in\{1,2\}$, and hence normalize $G_{0}=\left\langle L_{1}, L_{2}\right\rangle$. Thus $N(Q) \leqq N\left(G_{0}\right)$.

Now assume that $t \in N\left(G_{0}\right)^{g}$. Then t acts, by conjugation, on the set $\left\{G_{1}^{g}, G_{1}^{t g}\right\}$. Suppose that t normalizes G_{1}^{g} and $G_{1}^{t g}$. Then both $G_{1}^{g} \cap C(t)$ and $G_{1}^{t g} \cap C(t)$ have 2 -rank at least 3 by Lemmas (2E) and $(2 \mathrm{~K})$, so $m\left(G_{0}^{g} \cap C(t)\right) \geqq 6$. This is a contradiction because $m(C)=5$ by Lemma (3J). Therefore, t interchanges G_{1}^{g} and $G_{1}^{t g}$. As a consequence, we have $L=G_{0}^{g} \cap C(t)=\left\{x x^{t} \mid x \in G_{1}^{g}\right\}$ since $G_{0}^{g}=G_{1}^{g} \times G_{1}^{t g}$.

Hence if $Y \in \operatorname{Syl}_{2}\left(G_{1}^{q}\right)$, then $\hat{P}=\left\{y y^{t} \mid y \in Y\right\}$ is an S_{2}-subgroup of L. As Q and $\langle\hat{P}, t\rangle$ are conjugate by an element of $L \leqq G_{0}, N(\langle\hat{P}, t\rangle) \leqq$ $N\left(G_{0}\right)$ by the first paragraph. Let $z \in Z(Y)^{\sharp}$. Then as $z^{2}=1, z^{-1} t z=$ $z t z t \cdot t \in \hat{P} t$, so that $z \in N(\langle\hat{P}, t\rangle)$. As $z \notin L$, we conclude that $L<$ $N\left(G_{0}\right) \cap G_{0}^{g}$. Then [1, Lemma 2.5] shows that $G_{o}^{g} \leqq N\left(G_{0}\right)$, hence $G_{0}^{g}=N\left(G_{0}\right)^{\infty}=G_{0}$. The proof is complete.

Definition (6.10). Let $T \leqq S_{1} \in \operatorname{Syl}_{2}\left(N\left(G_{0}\right)\right), \quad S_{0}=N_{S_{1}}\left(G_{1}\right)$, and $R_{0}=C_{s_{0}}\left(G_{1}^{t}\right)$. Notice that $S_{0}=N_{s_{1}}\left(G_{1}^{t}\right)$ by Lemma (6 N), and that $R \leqq R_{0}$ and $S \leqq S_{0}$.

Lemma (6P). $S_{1} \in \operatorname{Syl}_{2}(G)$.
Proof. Let $g \in N\left(S_{1}\right)$. Then $t^{g} \in S_{1} \leqq N\left(G_{0}\right)$, so that $g \in N\left(G_{0}\right)$ by Lemma (60). Thus $N\left(\mathrm{~S}_{1}\right) \leqq N\left(G_{0}\right)$, and the assertion follows.

Lemma (6Q). $S \in \operatorname{Syl}_{2}\left(G^{\infty}\right)$.
Proof. There are three cases to consider:

1. $R_{0} \neq R$.
2. $R_{0}=R$ but $S_{0} \neq S$.
3. $R_{0}=R$ and $S_{0}=S$.

Let $N=N\left(G_{0}\right)$. Then Lemma (6 N)(4) shows that $R_{0} \cap R_{0}^{t}=1$ and that $C_{N}\left(G_{1}^{t}\right) / O(N) \hookrightarrow$ Aut $\left(G_{1}\right)$. Hence $R_{0} S \cap R_{0}^{t} S=S$ and $\left|R_{0} S / S\right|=$ $\left|R_{0} / R\right| \leqq 2$ as $S \cap R_{0}=R$. Also, $N_{N}\left(G_{1}\right) / G_{N}\left(G_{1}\right) \hookrightarrow$ Aut $\left(G_{1}\right)$, hence $\left|S_{0} / R_{0}^{t} S\right| \leqq 2$. Therefore in Case 1, $\left|R_{0} S / S\right|=\left|R_{0} / R\right|=2$ and $S_{0} / S=$ $R_{0} S / S \times R_{0}^{t} S / S$. Similarly, $\left|S_{0}: S\right|=2$ in Case 2.

Suppose $t^{g} \in N_{N}\left(G_{1}\right)$. Then $t^{g} \in N$ and so $g \in N$ by Lemma (60). But then $t^{g} \notin N_{N}\left(G_{1}\right)$ as $N_{N}\left(G_{1}\right) \triangleleft N$, a contradiction. Therefore,

$$
t^{a} \cap S_{0}=\varnothing .
$$

In Case 3, $T=S_{1} \in \operatorname{Syl}_{2}(G)$ by Lemma (6 P) and $t^{a} \cap S=\varnothing$ by the above. Therefore, $t \notin G^{\prime}$ by Lemma (1E). Since

$$
S \leqq G_{0} \leqq G^{\infty},
$$

it follows that $S \in \operatorname{Syl}_{2}\left(G^{\infty}\right)$. Therefore, we assume that

$$
S<S_{0} .
$$

Then $S<N_{s_{0}}(T)$. Also, $N_{S_{0}}(T)=C_{s_{0}}(t) S$ as $I(T-S)=t^{s}$ by Lemma (1B). Thus $C_{S_{0}}(t)>C_{s}(t)=P$. As $t \notin C_{s_{0}}(t), C_{s_{0}}(t)$ is isomorphic to an S_{2}-subgroup of $\operatorname{Aut}(L)$. Therefore, we can choose an involution $a \in C_{S_{0}}(t)-S$.

We compute $\left|C_{S_{1}}(x)\right|$ for $x \in I\left(N_{S_{0}}(T)-S\right)$. In Case 1, $S_{0}=R_{0} \times$
R_{0}^{t}, so that $x=y z$ with $y \in I\left(R_{0}-R\right)$ and $z \in I\left(R_{0}^{t}-R^{t}\right)$. Hence $C_{S_{0}}(x)=C_{R_{0}}(y) \times C_{R_{0}}(z)$. As y induces an outer automorphism on $G_{1},\left|C_{R_{0}}(y)\right| \leqq 32$, and similarly $\left|C_{R_{0}}(z)\right| \leqq 32$ (see Lemma (2 E)). Thus $\left|C_{S_{0}}(x)\right| \leqq 1024$ and $\left|C_{S_{1}}(x)\right| \leqq 2048$. In Case $2, x$ induces outer automorphisms on G_{1} and G_{1}^{t}, so $\left|C_{S_{0}}(x)\right| \leqq 512$ and $\left|C_{S_{1}}(x)\right| \leqq 1024$.

We show that

$$
a^{G} \cap\left(R_{0} S \cup R_{0}^{t} S\right)=\varnothing .
$$

Suppose that $a^{g} \in R_{0} S \cup R_{0}^{t} S$ for some $g \in G$. Choose a^{g} so that $\left|C_{S_{1}}\left(a^{g}\right)\right|$ is maximal. As $R_{0} S=R_{0} \times R^{t}$, we may write $a^{g}=u v$ with $u \in R_{0}$ and $v \in R^{t}$. Assume Case 1. Then conjugating in $N\left(G_{0}\right)$, we may assume that $\left|C_{R_{0}}(u)\right| \geqq 32$ and that $\left|C_{R_{0}}(v)\right| \geqq 64$ (see Lemmas (2E) and (2 K)), so $\left|C_{S_{0}}\left(a^{g}\right)\right| \geqq 2048$. Similarly in Case 2 , we may assume that $\left|C_{R}(u)\right|$ and $\left|C_{R^{t}}(v)\right| \geqq 32$, so that $\left|C_{S}\left(a^{g}\right)\right| \geqq 1024$. Thus in any case, we may assume that $\left|C_{S_{1}}\left(a^{g}\right)\right| \geqq\left|C_{S_{1}}(x)\right|$ for all $x \in$ $N_{S_{0}}(T)-S$. Also, if $w \in I\left(S_{1}-S_{0}\right)$, then w interchanges R_{0} and R_{0}^{t}, and so $\left|C_{S_{1}}(w)\right| \leqq 256<\left|C_{S_{1}}\left(a^{g}\right)\right|$. Thus we may assume that a^{g} is an extremal conjugate of a in S_{1}. Then we may also assume that $C_{S_{1}}(a)^{g} \leqq S_{1}$, since $S_{1} \in \operatorname{Syl}_{2}(G)$. Then $t^{g} \in S_{1} \leqq N$, and Lemma (60) yields that $g \in N$. But now $a \notin X=G_{1} C_{N}\left(G_{1}\right) \cup G_{1}^{t} C_{N}\left(G_{1}^{t}\right)$ and $a^{g} \in X$, which is a contradiction because X is a normal subset of $N\left(G_{0}\right)$. Thus we have proved that $a^{G} \cap\left(R_{0} S \cup R_{0}^{t} S\right)=\varnothing$.

Consider Case 1. Then $S_{1} / S \cong D_{8}$, and S_{0} / S and $\langle t, a, S\rangle / S$ are the fours subgroups of S_{1} / S. Since $S_{1} \in \operatorname{Syl}_{2}(G)$ and since $a^{G} \cap S_{0} \leqq$ $a S$ and $t^{G} \cap S_{0}=\varnothing$, Lemma (1G) shows that $S \in \operatorname{Syl}_{2}\left(G^{\infty}\right)$.

Therefore, assume that Case 2 holds. We show

$$
(t a)^{G} \cap S=\varnothing
$$

Suppose $b \in(t a)^{G} \cap S$. As before, we may choose b so that $\left|C_{S_{1}}(b)\right| \geqq$ 1024. Since $\left|C_{S_{1}}(x)\right| \leqq 1024$ for $x \in I\left(S_{0}-S\right)$ and since $\left|C_{S_{1}}(y)\right| \leqq 256$ for any $y \in I\left(S_{1}-S_{0}\right)$, we may assume that b is an extremal conjugate of $t a$ in S_{1}. Then we may assume $b=(t a)^{g}$ and $C_{S_{1}}(t a)^{g} \leqq S_{1}$ for some $g \in G$. But then Lemma (60) yields a contradiction just as before. Therefore, $(t a)^{G} \cap S=\varnothing$. Since $t^{G} \cap\langle a, S\rangle=\varnothing$ and $a^{G} \cap S=\varnothing$, Lemma (1F) shows that $S \in \operatorname{Syl}_{2}\left(G^{\infty}\right)$. The proof is complete.

Lemma (6R). $\left\langle L^{G}\right\rangle \cong P S U(4,2) \times P S U(4,2)$.
Proof. We argue that R is strongly involution closed in S with respect to G^{∞} (see [25]). By way of contradiction, let $x \in I(R)$ and assume $x^{g} \in S-R$ with $g \in G^{\infty}$. By conjugating in G_{0}, we may choose $x \in F_{2}$ and $x^{g} \in F_{2} \times F_{2}^{t}-F_{2}$. Since E_{2} is the unique E_{256} -
subgroup of S and $S \in \operatorname{Syl}_{2}\left(G^{\infty}\right)$ by Lemma (6Q), we may also choose $g \in N\left(E_{2}\right) \cap G^{\infty}$. Now $Y=N\left(E_{2}\right) \cap G^{\infty}$ acts, by conjugation, on $\left\{F_{2}\right.$, $\left.F_{2}^{t}\right\}$ since $F_{2}=O_{2}\left(N_{2}\right)$. Hence $\left|Y: N_{Y}\left(F_{2}\right)\right| \leqq 2$. Since $S \in \operatorname{Syl}_{2}(Y)$ by Lemma (6Q) and since $S \leqq N\left(F_{2}\right)$, it follows that $Y \leqq N\left(F_{2}\right)$. Thus $g \in N\left(F_{2}\right)$. But then $x^{g} \in F_{2}$, which is a contradiction proving the assertion.

We can now apply Corollary 2 of [25] to get that

$$
\left[\left\langle I(R)^{G^{\infty}}\right\rangle,\left\langle I\left(\dot{R}^{t}\right)^{G^{\infty}}\right\rangle\right] \leqq O\left(G^{\infty}\right) .
$$

Set $X=\left\langle I(R)^{G^{\infty}}\right\rangle$ and let bars denote images in $G / O(G)$. Then $\left[\bar{X}, \bar{X}^{t}\right]=1$ so $F^{*}(\bar{G})$ can not be simple. Thus Lemma (1H) shows $\left\langle L^{G}\right\rangle \cong P S U(4,2) \times \operatorname{PSU}(4,2)$.

Lemma (6R) completes the proof of Theorem (6A). The main theorem follows from Lemmas (3H), (3G), Theorems (4A), (5A), and (6A).

Acknowledgment. Most of this work was done while the author stayed at the Department of Mathematics of the Ohio State University during 1976/77 academic year. Thanks are due to the department for giving me a visiting professorship, and to my colleagues in the department for helpful suggestions.

References

1. M. Aschbacher, On finite groups of component type, Illinois J. Math., 19 (1975), 87-115.
2. M. Aschbacher and G. Seitz, On groups with a standard component of known type, Osaka J, Math., 13 (1976), 439-482.
3. - Involutions in Chevalley groups over fields of even order, Nagoya Math., J., 63 (1976), 1-91.
4. R. Brauer, On simple groups of order $5 \cdot 3^{a} \cdot 2^{\text {b }}$, Bull. Amer. Math. Soc., 74 (1968), 900-903.
5. W. Feit, The current situation in the theory of finite simple groups, Actes, Congrès Intern. Math., 1 (1970), 55-93.
6. W. Feit and J. Thompson, Solvability of groups of odd order, Pacific J. Math., 13 (1963), 755-1027.
7. L. Finkelstein, Finite groups with a standard component isomorphic to M_{23}, J. Algebra, 40 (1976), 541-555.
8. P. Fong and G. Seitz, Groups with a (B, N)-pair of rank 2, Inventiones Math.,

21 (1973), 1-57; 24 (1974), 191-240.
9. R. Gilman and D. Gorenstein, Finite groups with Sylow 2-subgroups of class two, Trans. Amer. Math. Soc., 207 (1975), 1-126.
10. G. Glauberman, Central elements in core-free groups, J. Algebra, 4 (1966), 403420.
11. K. Gomi, Finite groups with a standard subgroup isomorphic to $S p\left(4,2^{n}\right)$, Japanese J. Math., 4 (1978), 1-76.
12. D. Gorenstein, Finite Groups, Harper and Row, New York, 1968.
13. D. Gorenstein and K. Harada, On finite groups with Sylow 2-subgroups of type $\hat{A}_{n}, n=8,9,10,11$, J. Algebra, 19 (1971), 185-227.
14. -, Finite Groups Whose 2-Subgroups are Generated by at Most 4 Elements, Memoir 147, American Mathematical Society, Providence, R. I., 1974.
15. D. Gorenstein and J. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, J. Algebra, 2 (1965), 88-151, 218-270, 354-393.
16. R. Griess, D. Mason, and G. Seitz, Bender groups as standard subgroups, Trans. Amer. Math. Soc., 238 (1978), 179-212.
17. K. Harada, On finite groups having self-centralizing 2-subgroups of small order, J. Algebra, 33 (1975), 144-160.
18. C. Hering, W. Kantor, and G. Seitz, Finite groups having a split BN-pair of rank 1, J. Algebra, 20 (1972), 435-475.
19. B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin Heidelberg, New York, 1967.
20. S. Lang, Algebraic groups over finite fields, Amer. J. Math., 18 (1956), 555-563.
21. D. Mason, Finite simple groups with Sylow 2-subgroups of type PSL(4, q), q odd, J. Algebra, 26 (1973), 75-97.
22. P. McBride, A classification of groups of type $A_{n}(q)$ for $n \geqq 3$ and $q=2^{k} \geqq 4$, Ph . D Thesis, University of Illinois at Chicago Circle, 1975.
23. I. Miyamoto, Finite groups with a standard subgroup isomorphic to $U_{4}\left(2^{n}\right)$, Japanese J. Math., to appear.
24. A. Prince, On 2-groups admitting A_{5} or A_{6} with an element of order 5 acting fixed point freely, J. Algebra, 49 (1977), 374-386.
25. E. Shult, Disjoint triangular sets, to appear.
26. G. Stroth, Endliche einfache Gruppen mit einer 2-lokalen Untergruppe $E_{16} \Sigma_{6}$, J. Algebra, 47 (1977), 455-479.
27. T. Yoshida, Character theoretic transfers, J. Algebra, 52 (1978), 1-38.

Received November 10, 1977 and in revised form May 8, 1978.
University of Tokyo
Komaba, Meguro
Tokyo, Japan

