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SEMIGROUPS OF CONTINUOUS TRANSFORMATIONS
AND GENERATING INVERSE LIMIT SEQUENCES

G. EDGAR PARKER

Suppose that T denotes a strongly continuous semigroup
of continuous transformations on a closed subset C of a
complete metric space. For arbitrary decreasing sequences
{<Un=i and {an}n=i of positive numbers converging to 0, the
inverse limit spaces generated by {T(δn)(C)t T(δn—δn+1)}~=1 and
{T(an)(C), T{an—an+1))Z^i are homeomorphic and contain a dense
one-to-one continuous image of C. Conversely, given an
inverse limit system with bonding maps {fn)Z=ι so that (i)
fn: C->C, (ii) if x is in C, \imn^fn(x) = x, and (iii) / n + 1 o/ n + 1 =
/«, conditions are given under which a semigroup,and con-
sequently a family of homeomorphic inverse limits, can be
recovered.

Examples are given which illustrate analytical applications
and topological implications.

1* Introduction* This paper deals with the generation of strongly
continuous semigroups of continuous transformations. Historically
the notion of generation of a strongly continuous semigroups has been
the identification of it with the differential equation its trajectories
satisfy. Work in [2] shows that for semigroups of nonlinear trans-
formations, this association is not always possible. Recent work by
Kobayashi [4], Kobayasi [5], and the author [6] has shown that under
various conditions, given the existence of a strongly continuous
semigroup, approximating semigroups which must be associated with
a differential equation can be constructed. The purpose of this paper
is to show that the problem of initial construction of a semigroup
(thus establishing the hypothesis in the work mentioned above) is
that of constructing a special sequence of functions which in turn
generates a family of homeomorphic inverse limit sequences.

Theorem 1 establishes a basic topological structure inherent in
semigroups and relates that structure to the set of initial conditions.
Theorem 2 is a partial converse to Theorem 1. From six conditions
(conditions (i) and (ii) reflect the inverse limit structure demonstrated
in Theorem 1; condition (iii) reflects the algebraic structure of semi-
groups; conditions (iv)-(vi) are not present in all semigroups but do
occur in many examples which have been studied) a strongly continuous
semigroup on [0, oo) is recovered from a sequence of functions. Four
lemmas provide the proof of Theorem 2.

2* Definitions and theorems*
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DEFINITION 1. Suppose that C is a subset of a topological space.
The statement that T is a strongly continuous semigroup of continuous
transformations on C means that T is a function with domain [0, oo)
and range in the continuous functions with domain C and range
contained in C so that

( i ) T(0) — /, the identity function on C;
(ii) if each of δ and a is a nonnegative number, T(δ + a) —

T(δ)oT(a); and
(iii) if x is in C, the trajectory of T from x, gx = {(β, T(β)(x)):

δ is a nonnegative number}, is a continuous function.

DEFINITION 2. Suppose that (Xlf ^7), (X2, ^ ) , is a sequence
of topologies and that C19 C29 is a sequence of point sets so that
Cn is a subset of Xn. Suppose also that fl9 f2, is a sequence of
continuous functions so that fn has domain Cn+ί and range Cn. The
statement that p is a point of X means that p is a sequence so that

( i ) p(n) is an element of Cn; and
(ii) (p(n + 1), p(n)) is an element of fn.

The statement that ϋ? is a region in ^ " means that there is a natural
number n and a region U in ,^^ so that R = {p in X: p(n) is in U}.
The statement that J is the inverse limit space determined by
{(£«,/Λ)}£U means that J is the topological space determined by X
and ^~.

THEOREM 1. Suppose that T is a strongly continuous semigroup
of continuous transformations on C and that each of {δjΓ=i crnd {<%JΓ=I

is a decreasing sequence of positive numbers converging to 0. Denote
by κJ% the inverse limit space determined by {(Rτ{δn), /J)}»=i where fn

is the restriction of T(δn — δn+1) to RT(<>n+l)\ &nd by Ia the corresponding
inverse limit space determined by {{Rτ{(Xn), T(an — ctn+1)}n=i. Then

( i ) if gx is a trajectory of T9 there is exactly one point p in
κ^δ so that {(δn, p(n))}n=i is a subset of gx;

(ii) Qδ = {p: there is x in C so that {(δn9 p(n))}™=ι(zgx} is dense
in .J?>; and

(iii) κJ% &nd J^a are homeomorphic.

DEFINITION 3. Suppose that C is a subset of a topological space
and < is a partial order on C. The statement that < agrees with
the topology on C means that if {OJJΓ=I &nd {Vi}ΐ=i &w sequences which
converge to x and {z^T=1 is a sequence so that xi < zt < yt for each
index ΐ, then {zJΓ=i converges to x.

A partial order such as that in Definition 3 is imposed by any
semigroup in which t > 0 implies T(t)(x) Φ x by defining x < y means
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there is s > 0 so that T(s)(x) = y. However, the motivation for its
inclusion in the hypothesis to the following theorem is that a pre-
existing order structure on C might facilitate selection of a sequence
of square roots which converges pointwise to the identity.

THEOREM 2* Suppose that < is a partial order on the closed
subset C of the complete metric space X which agrees with the topology
on C. Suppose further that flf f2, is a sequence of functions so
that if n is a natural number

( i ) fn is continuous with domain C and range contained in C;
(ii) if x is an element of C, fί(x)9f2(x)9 ••• converges to x;
(iii) Λ + 1 °Λ+i=Λ;
(iv) if x is in C, x <^ fn(x)',
(v) if x£y, fn(x) ^ fn(y); and
(vi) if x and y are in C, d(fn(x), fn(y)) ^ d{x, y).

Then there is a strongly continuous semigroup T of nonexpansive
tr an formations on G so that T(l/2n~1) — fn.

3* Proofs of the Theorems*

Proof of Theorem 1.
( i ) Suppose that gx is the trajectory of T from x and consider

px = {T(δJ(cc)}~=1. Since for a given natural number k,

- dk+1)(T(3k+1Xx)) = T(δk)(x) ,

px is an element of <J^. Hence, {(δΛ, px(n))}^=1c.gx. Suppose p is a
point of J^ so that {(dn, p(n))}^xczgβ. Then g.(δn) - p{n) - Γ(δJ(x)
and p = px. Since T is strongly continuous, if x Φ y, px Φ py.

(ii) Suppose p is a point of *Jζ and & is a region in C so that
pin) is an element of 0* Π Rτ{δn). Since p{n) is in Rnδn), there is a
point x of C so that T(δJ(x) = p(%). Thus {T(5/b)(̂ )}Γ=i is an element
of Q5 in the region of ^ determined by d7, and Qδ is dense in

(iii) Consider the sequence {/0»}?=i defined by ft = max ({δw}^=1 U
{an}n=i) and ^& = max ({δn}?=1 U {a»}^i) - ({^}n=ί) Associated with
{^}?=i is the inverse limit space ^ determined by {{Bτ{PtΛ)9 hn)}^=ι
where hn is the restriction of T(pn — pn+1) to i?Γ(|Ow+1). Let {^JΓ=I be
that sequence of indices so that pn.—δi and define F with domain ^
and range contained in J^h by ^({aU^i) = {α?Λ<}Π=i Note that since
Pni = δ o given {ccΛ}ϊ=i in ^ , that is having (xn+ί, xn) in T(pn - pn+ί)
implies that (xn.+1, xni) is in T(ρn. — ρni+1) = T(^ — δ<+1). This holds since
(* < +i, a?m<) is in T(p%i - ρni+ι)f , (xn.+ι, x*i+l-d is in T(pn.+ι_2 - pn.+ι)

and Γ(pΛ i-p i l < + 1)=π];<+i- <Γ(p1l<+/. ι--^1l<+f) by the semigroup property.
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Suppose that {xn}n=ι Φ {yn}n=i- Then there is an index k so that
xk Φ yk. Let j > 0 and consider xk+3 and yh+i.

k+J-i), (Vk+ifVk+i-i)} C T(pk+j^ - pk+j), ,

and thus by the considerations in the preceding argument,

i, Vk)} q T(pk - pk+s) .

This means that xk+j Φ yk+3 . But since {xni}ΐ=i is a subsequence of
{xX=1 and {y.jΓ-1 is a subsequence of {#X=1, F({#X=i) Φ F({yX^)
and F is 1 - 1.

Suppose that {wn}n=i is a point of ^ and that wi+] = nt + &ie

(%+ 1,^) is in T(βt-δt+ι) and Γ(5 4 - ί < + ι ) = π^Tip^^-pn.+j). Thus
the sequence Γ(ft - p^iwj, T(ρ2 - ρn)(wx), , ^ - = Γ ( ^ - ρnz)(w2),
T(ρni+1 - Pn2)(w2), '"., T(ρ%2^ - ^ ( ( w f ) , w2 = T(pn2 - ρn)(wz), . . . is a

point p of w*̂  so that F(p) = {^%}ϊ=i and F is onto J^.
Suppose that {xn}n=i is a point of ' ^ and that J? is a region in

^s containing F({xn}n=1) = {^JΓ=I Then there is an index nt and a
region i?' of C so that ϋ? is the set to which {wn}n=ι belongs provided
that wn. is in Rf. T(pn. — pni+ί) is continuous, thus there is a region
U of C so that if x is in U, then Γ(/On< — pΛi+ί)(x) is in J?'. Thus if
p is a point of <J^> so that ^(^i + 1) is in U, then p(nt) is in i2'; that
is, if {xn}ζ=ι is in the region of ^ determined by U f] RT(Pn.+1), then
F({xn}n=i) = {xni}ΐ=i is in the region of J^δ determined by Rr. Thus
F is continuous. For the continuity of F~ι note that the continuity
of T(pn.— pHi) guarantees that an argument similar to the one above
can be applied. Thus F is 1 — 1, onto, continuous, and reversibly
continuous, and ̂  and ̂  are homeomorphic by F.

Let. {ttfclfcU be that sequence of integers so that ak — p%k. By
defining G: ̂ P onto ^ by G({xk}k=1) = {ίcwj~=1, the arguments for F
can be applied to G. Hence FoG'1 is a homeomorphism of ^ onto
\

Proof of Theorem 2.

LEMMA 1. {/»}?ei is α commuting family.

Proof of Lemma 1. Suppose m and w are natural numbers. By

(Hi), Λ+i°/n+i =/»; SO fm°fm+n =/i+»°/»+ ^y«+»°/i+ =fm+n°fm-

LEMMA 2. //.a? is α powί o/ C αtid δ > 0, ί/^ere is α natural
number N so that if n19 n2, ' " i s an increasing sequence of natural

numbers so that .nx > N, then d(πk==1fnje(x), x) < d.
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Proof of Lemma 2. Suppose that x is in C. By (iv) in the
hypothesis, if n is a natural number, x^fjβή. For an increasing
sequence of natural numbers nlf n2, consider x and fnι(x). Since
x ^ fni(x), fn2(x) ^fni°fn2(x) by (v). But xSfn2(x), so x ^fni<>fn2(x).
By induction, x <; πT=ιfn]e(x). Consider, for a given m,

From above, x ^ ( π y ^ ^ K ^ o / ^ ^ ) . Hence fnJx)^fnί°(πiΦnk,k<1Λf.)o
fnjx), , Kk=ιfnk{x) ^ [πlvnjk)ofnm{χ). But from (iii), Λw°Λm =Λm-i,
and thus the righthand member of the inequality collapses to. /^-^αj).
Thus x ^ πUf^x) £ fni-,{x).

Suppose that there were <5 > 0 so that for each natural number
% > 2, there was an increasing sequence (O^ of natural numbers with
ωn(l) > n and a natural number mn so that d{πt^1fωn{k){x)f x) ^ <?.
From above, x <: rc^f^^x) ^ /^(D-XOE). But by hypothesis < agrees
with the topology on C, and since each of {/ωίt(D-i(̂ )}?=i and x, x, x,
converges to x, {π?»1/β>il(Jb)(α5)}ϊ=s8 converges to a?,. But this contradicts
that each term is at least distance d from x, and the lemma is es-
tablished.

LEMMA 3. If {nk}t=i is an increasing sequence of natural
numbers and x is in C, then {πΐ=ι fn]c(x)}Z=i converges.

Proof of Lemma 3. Suppose {nk}t=1 is an increasing sequence of
natural numbers, x is a point of C, and δ > 0. By Lemma 2, there
is a natural number N so that if j>N, d(π3

k=Nfnk(x), x)<δ. By (vi),
fk is nonexpansive for each index n. Hence, if

j, t >N, d(πUfnk(x), πUfnk(x)) ^ d{πΐl^lAt^iMMfnk{x\ x)< δ .

Thus {^l/ tWfci is- Cauchy and must have a sequential limit point
in the closed set C.

LEMMA 4. {πίΓ=fc/Λ+1(£)}~=fc converges to fk(x) for each point x of C.

Proof of Lemma 4. Let δ > 0.

d(f*(x), *Γ-*Λ+i(aO) = d((π^kfn+1)ofm+1(χ), π:=kfn+ι(x)) ^ d(fm+ι(x), x) .

By (ii), {fjx)}ϊ=ι converges to x so N can be chosen so that if m >
N, d(fm+1(x), x) < δ. Thus {π:=kfn+1(x)}^k converges to fk(x).

Let δ be a number in (0,1] and associate with δ the increasing
sequence of natural numbers n19 n2, ••• with the property that nx is
the least positive integer so that 1/2711"1 < δ and nk is the least
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positive integer so that 1/2**-1 < δ - Σ)z\ 1/2"'""1. (2T=1 l/2n*~ι will be
called the base 2 expansion for <?.) Define T(δ)(x) to be the sequential
limit point of {ττ?=1/„>)}£=!• If δ = 0, define T(δ)(x) = x. If <5 > 1
and n is the greatest integer in δ, define T(β)(x) = fΓ°T(δ — n)(x).

Let δ be a number in (0,1) and p be a natural number. Let
2T=i 1/2**-1 denote the base 2 expansion for <5. Let a > 0. For α/2,
there is JV so that if

m > N, d(fί°πΐ=ifnk(x), T(δ + p)(aj)) < α/2

and d(fΐoπΐ=1fnk(y)9 T(δ + p)(y)) < a/2. Thus if

m > N, d(T(δ + p)(a?), T(δ

< a/2 + d(x, y) + a/2 = a + d(x, y).

Thus T(δ + p) is a nonexpansive function.

Suppose that δ and α are numbers in [0, «>) and α? is a point of
C. Let α denote the greatest integer in δ, b denote the greatest
integer in a, and c denote the greatest integer in δ + a. Let
-ΣΊίUl/2**-1 denote the base 2 expansion for δ - a and Σΐ^lβ**-1 denote
the base 2 expansion for a — b. Then

δ + a = a + b\+ Σk=ιl/2%k-ι + Σΐ=1l/2ik-\ Note that in writing the base
2 expansion for δ + a — c, that a given term may be either 2 l/2Λfc~1

for some index nk or a term of exactly one of the base 2 expansions
for δ — α and α — 6. Since fnk°fnk = /»4-i, the terms of the sequence
which defines T(<5 + «)(&) can be rewritten so that (1) T(δ + a)(x) —
limm^oo/1

αo/1

δo(τr^l/%;,)o(7z:^1/iA;)(^) where pm is the greatest integer so
that nPm <̂  m and gTO is the greatest integer so that j Q m ̂ m if
δ + α < \ or so that (2) T(β + α)(a?) = limm_Me/1

eo/1

&o/1o^«slflr<(aj) where
^ is the element of least index in {fnk}ΐ=1 so that g1 is in {/yA}?=1, ,
and βrw is the element of least index in {fnk}ΐ=i — {9i}i=ι so that gn is in
{/i,}?=i if δ + a^l. Thus to show here that T(δ)(T(a)(x)) = T(δ+a)(x),
what must be shown is that

T(p)(T(a)(x)) = limm-w/1

βo/1

6o7rJ*1Λibo^io/ijb(aj) when case 1 applies or
that T(δ)(T(a)(x)) = ]imm^f1

aofί

bofίoπ^1gh(x) when case 2 applies.
For case 1,

d(Γ(«)(Γ(α)(aj)) ,

d(T(ct)(x), fϊ°K~
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But {/iα-<:iΛJk(Γ(α)(x))}S=1 converges to Ί\δ)(T(μ)(x)) and {fίoπ^f^
(a?)}:-! converges to T(a)(x). Thus {fM^KlJ^AZM^))^ con-
verges to T(δ)(T(a)(x)). For case 2,

d(T(δ)(T(a)(x)), /^o/

^ d(Γ(δ)(Γ(α)(α?)),

For m large, the distance described in the first term is small by the
argument advanced in case 1; the second term is small by Lemma
4. Thus T(δ + α)(α?) = T(β)(T(a)(x)) and Γ is a semigroup of non-
expansive transformations on C so that fn = ΪXlβ*""1).

Suppose that α? is in C and {δJϊU converges to δ in [0,1). Let
Σΐ^xlβ**'1 denote the base 2 expansion for δ and JS u l β *"1 denote
the base 2 expansion for SΛ. By Lemmas 2 and 4, there is a number
ikf so that if nί9 nz, is an increasing sequence of natural numbers
so that % ^ M, then d(πp

k==Mfk(x)9 x) < α/3 and diπ^J^x), T(δ)(x)) <
α/3 for predetermined α > 0. Given this number M, there is a
natural number JV so that if n ^ N, and δn ^ § or δ is not an integral
power of 1/2, then the first M terms of the base 2 expansion for δn

are the same as the first M terms of the base 2 expansion for δ.
If δ is an integral power of 1/2, there is N so that if n ^ N and
<?„ > δ, then the second term of the base 2 expansion for δn is less
than 1/2*, and the first term is δ.

For

(aj)) ^ d(T(δn)(x), πϊXf^x))

φ fr)) + d(π^Jh(x), T(δ)(x))
^ d(T(δn)(x), π^fnk(x)) + d(π^+Jnk(x), x)

^fφ)f T(δ)(x)) < d(T(δn)(x), π^f

Since the choice of p is independent of the choice of M and N and
{^fi'/ *(̂ )}?«i converges to δn for each natural number n, this means
that d(T(δn)(x), T(δ)(x)) < α: for each natural number n> N. Thus
{T(δn)(x)}^=1 converges to T(δn)(x). The continuity on (k, k + ΐ) follows
from the continuity of /i and continuity at the integers from Lemmas
4 and 2. Thus T is strongly continuous.

4* Examples* Although the assumption of nonexpansiveness
is quite restrictive, the result of Theorem 2 suggests an alternative
approach to the generation of semigroups: describe those continuous
functions which have the property that they have continuous square
roots, 4th roots, which converge pointwise to the identity function.
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EXAMPLE 1. C = [0,1], fx(x) = x2. Purely algebraic considerations
suggest that fn be defined by fn(x) — xλ where λ is the real (2n — l)-th
root of 2. If 0 <Ξ x <; 1 and nίf n2, is an increasing sequence of
natural numbers, then limm_>ooττΓ=i/%fc(^) exists and for increasing
sequences nlf n2, and jlf jif , lim^*, π ^ i / ^ l i π w πl=1fh(x)) =
limm^coπnk<mfnkoπh<mfh(x). With the machinery of the proof of
Theorem 2 thus established, for 3 > 0, a semigroup is generated so
that T(δ) =f19 •••, T(δ/2n^) = /n, •••. In this case the square root
process gives rise to the family of infinitesimal generators {Aδ: Aδ(x) —
log2/δ-xΊogx if x is in (0, 1], Aδ(0) = 0}.

EXAMPLE 2. Let Γ^ *Ί be an element of j ^ ( ^ 2 , ^ 2 ) so that

a ^ 1 and 6 and c are positive. Computation shows that if A is a

member of j ^ ( ^ 2 , ^ 2 ) so that A2 = Γα 6 Ί , A is of the form \ w x\

Furthermore if be > 4a2, has no matrix square root. Hence,
\_C Qj_\

under these conditions, no semigroup of continuous linear transfor-

mations on ^? 2 can contain in its range. However, if \a

\_c a_j [_c 0/_\

has the property that (α + l/α2 — bc)/2 — be > 1, then a sequence of
continuous linear transformations fι — \a ,/2, can be constructed
satisfying (i), (ii), and (iii) of the hypothesis to Theorem 2. Consi-
derations in [3] indicate that/ x,/ 2, can be extended to a semigroup.

Brown [1] established that if [X, fn}%=1 and {X, gn}n=i are so that
X is compact and metric and gn and fn are near homeomorphisms
for each n, then the inverse limit spaces are homeomorphic. The
vehicle of the proof is to show that each is homeomorphic to X.
Topologically, consideration of Theorem 1 shows that the algebraic
properties of the semigroup replace the assumptions on the bonding
maps and the bonded sets. In particular, compactness is not an
issue.

EXAMPLE 3. Let C = {(x9 y): x > 0 and 0 ^ y <̂  1/x or x — 0 and

y ^ 0}. If (x, y) is in C, define, for δ > 0, T(δ) by

T(δ)((x9 y)) -

(x, y + δ) if x > 0 and y + δ < 1/x

(x + y + δ - (I/a), 1/(OJ + y + S - (I/a?))) if x > 0

and 2/ + d ^ 1/x

(a? + δ, l/(x + δ)) if y = 1/x

{(x, y + δ) if α = 0 .

In this example, notice that if {δn}n=ι is a decreasing sequence of
positive numbers converging to 0, then {(βn91/<?J}£U is a point of the
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inverse limit space determined by {(Rτ{δn), T(δn — δn+1))}™=ι so that
{(£»> (#», VK+i))}»=i is a subset of no trajectory of T. Also, in light
of the proof of Brown's theorem, one should note the apparent struc-
tural differences between Rnδ) and the inverse limit which must
contain a dense continuous one-to-one copy of G.

EXAMPLE 4. Let C = (0,1] x [0, 1] U {(0,1)}. Define T by

Ux, (δ + xy)/x) if x > 0 and δ + xy < x
T(δ)((x,y)) = ]

((a?, 1) if <5 + &# ̂  a; or a? = 0 .

In this example, the function pairing a point of C with the point in
the inverse limit which contains the trajectory from that point is
not a homeomorphism. In addition, for δ > 0, T(δ) extends con-
tinuously to C. However, the inverse limit built from T is compact.
Thus if points of C are thought of as elements of the inverse limit
space, this extension which produces a non strongly continuous semi-
group seems less natural.

5* Some questions* At least two problems are suggested by
the theorems in this paper. In Theorem 1 a map is established from
C into <J^ which is always one-to-one and continuous, but which by
Example 4 need not be a homeomorphism. What conditions on T can
force this map to be a homeomorphism? In Theorem 2, only con-
ditions (i)-(iϋ) reflect essential semigroup structure. Can conditions
(iv)-(vi) be replaced, weakened, or eliminated? An affirmative answer
to this second question would produce additional information toward
a generation theory for semigroups based on square root processes.
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