A RADON-NIKODYM THEOREM FOR *-ALGEBRAS

STANLEY P. GUDDER

A noncommutative Radon-Nikodym theorem is developed in the context of *-algebras. Previous results in this direction have assumed a dominance condition which results in a bounded "Radon-Nikodym derivative". The present result achieves complete generality by only assuming absolute continuity and in this case the "Radon-Nikodym derivative" may be unbounded. A Lebesgue decomposition theorem is established in the Banach *-algebra case.

1. Definitions and Examples. Although there is a considerable literature on noncommutative Radon-Nikodym theorems, all previous results have needed a dominance, normality or other restriction [1-4, 7, 8, 12, 15-18]. Moreover, most of these results are phrased in a von Neumann algebra context. In this paper, we will obtain a general theorem on a *-algebra with no additional assumptions.

Let \mathscr{A} be a *-algebra with identity *I*. A *-*representation* of \mathscr{A} on a Hilbert space *H* is a map π from \mathscr{A} to a set of linear operators defined on a common dense invariant domain $D(\pi) \subseteq H$ which satisfies:

(a) $\pi(I) = I;$

(b) $\pi(AB)x = \pi(A)\pi(B)x$ for all $x \in D(\pi)$ and $A, B \in \mathcal{M}$;

(c) $\pi(\alpha A + \beta B)x = \alpha \pi(A)x + \beta \pi(B)x$ for all $x \in D(\pi)$, $\alpha, \beta \in C$ and $A, B \in \mathscr{A}$;

(d) $\pi(A^*) \subset \pi(A)^*$ for all $A \in \mathscr{A}$.

The induced topology on $D(\pi)$ is the weakest topology for which all the operations $\{\pi(A): A \in \mathscr{M}\}\$ are continuous [13]. A *-representation π is closed if $D(\pi)$ is complete in the induced topology. A *-representation π is strongly cyclic if there exists a vector x_0 such that $\pi(\mathscr{M})x_0 = \{\pi(A)x_0: A \in \mathscr{M}\}\$ is dense in $D(\pi)$ in the induced topology [13]. We then call x_0 a strongly cyclic vector. Denoting the set of bounded linear operators on H by $\mathscr{L}(H)$, the commutant $\pi(\mathscr{M})'$ of π is

$$\pi(\mathscr{M})' = \{ T \in \mathscr{L}(H) \colon \langle T\pi(A)x, y \rangle = \langle Tx, \pi(A^*)y \rangle A \in \mathscr{M}, x, y \in D(\pi) \} .$$

Let v and w be positive linear functionals on \mathcal{N} . A sequence $A_i \in \mathcal{N}$ is called a (v, w) sequence if

$$\lim_{i o\infty} v(A_i^*A_i) = \lim_{i,j o\infty} w[(A_i-A_j)^*(A_i-A_j)] = 0$$
 .

We now generalize various forms and strengthened forms of the classical concept of absolute continuity.

(i) w is v-dominated if there exists an M > 0 such that $w(A^*A) \leq Mv(A^*A)$ for all $A \in \mathscr{M}$.

(ii) w is strongly v-absolutely continuous if for any (v, w) sequence $A_i \in \mathscr{M}$ we have $\lim_{i \to \infty} w(A_i^*A_i) = 0$.

(iii) w is v-absolutely continuous if $v(A^*A) = 0$ implies that $w(A^*A) = 0$.

It is clear that $(i) \Rightarrow (ii) \Rightarrow (iii)$. The following examples show that the reverse implications need not hold.

EXAMPLE 1. Let (Ω, Σ) be a measurable space and let \mathscr{N} be the C *-algebra of bounded measurable functions on (Ω, Σ) with $||f||_{\infty} =$ sup { $|f(\omega)|: \omega \in \Omega$ }. Let v_1 and w_1 be probability measures on (Ω, Σ) and define the states $v(f) = \int f dv_1$ and $w(f) = \int f dw_1$ on \mathscr{M} . It is easy to see that w is v-absolutely continuous if and only if $w_1 \ll v_1$ (i.e., w_1 is absolutely continuous relative v_1). Now let $H = L^2(\Omega, \Sigma, v_1)$ and let $\pi: \mathscr{M} \to \mathscr{L}(H)$ be the *-representation with $D(\pi) = H$ defined by $[\pi(f)g](\omega) = f(\omega)g(\omega)$. Clearly, π is closed and strongly cyclic with strongly cyclic vector 1.

Now suppose that w is v-absolutely continuous and let W be the positive self-adjoint operator on H with domain

$$D(W)=\left\{g\in H{:}\left(rac{dw_1}{dv_1}
ight)^{\!\!1/2}\!\!g\in H
ight\}$$

and defined by $Wg(\omega) = (dw_1/dv_1)^{1/2}(\omega)g(\omega)$, $g \in D(W)$. Notice that $\mathscr{H} \subseteq D(W)$ since $(dw_1/dv_1) \in L^1(\Omega, \Sigma, v_1)$. Moreover,

(1.1)
$$w(f) = \int f dw_1 = \int \frac{dw_1}{dv_1} f dv_1 = \langle W\pi(f)\mathbf{1}, W\mathbf{1} \rangle$$

for all $f \in \mathscr{M}$. The expression $w(f) = \langle W\pi(f)1, W1 \rangle$ is equivalent to the Radon-Nikodym theorem. It is this expression which we shall generalize to the noncommutative case. We now show that w is strongly v-absolutely continuous. Suppose $f_i \in \mathscr{M}$ is a (v, w) sequence. Then $f_i \to 0$ in H and from (1.1) we have

$$egin{aligned} \lim_{i,j o\infty} || \mathit{W} f_i - \mathit{W} f_j ||^2 &= \lim_{i,j o\infty} ig< W(f_i - f_j), \ \mathit{W}(f_i - f_j) ig> \ &= \lim_{i,j o\infty} ig< W \pi[(f_i - f_j)^*(f_i - f_j)]\mathbf{1}, \ \mathit{W} \mathbf{1} ig> \ &= \lim_{i,j o\infty} w[(f_i - f_j)^*(f_i - f_j)] = \mathbf{0} \ . \end{aligned}$$

Hence, Wf_i converges and since W is closed, we conclude that $Wf_i \rightarrow 0$ in H. It follows from (1.1) that $w(f_i^*f_i) \rightarrow 0$. We thus see that (ii) and (iii) are equivalent in this case.

Finally, suppose w is v-dominated. Then there exists an M > 0 such that

$$\int_{A} \frac{dw_{\scriptscriptstyle 1}}{dv_{\scriptscriptstyle 1}} dv_{\scriptscriptstyle 1} = w_{\scriptscriptstyle 1}(A) = w(\chi_{\scriptscriptstyle A}^*\chi_{\scriptscriptstyle A}) \leq Mv(\chi_{\scriptscriptstyle A}^*\chi_{\scriptscriptstyle A}) = Mv_{\scriptscriptstyle 1}(A) = \int_{A} Mdv_{\scriptscriptstyle 1}$$

for every $A \in \Sigma$. Hence $dw_1/dv_1 \leq M$ almost everywhere. Since the converse easily holds, we see that w is *v*-dominated if and only if $w_1 \ll v_1$ and dw_1/dv_1 is bounded. In this case we have $W \in \pi(\mathscr{M})'$. This shows that (ii) need not imply (i) and (iii) need not imply (i).

Our results in §§2 and 3 will generalize the above considerations.

EXAMPLE 2. Let \mathscr{A} be the C^* -algebra of continuous functions on the unit interval [0, 1] with the supremum norm and let μ be Lebesque measure on [0, 1]. Let v and w be the states on \mathscr{A} defined by $v(f) = \int f d\mu$ and w(f) = f(0). Clearly, w is v-absolutely continuous. We now show that w is not strongly v-absolutely continuous. Let $f_n \in \mathscr{A}$ be the function $f_n(x) = 1 - nx$ for $x \in [0, 1/n]$ and $f_n(x) = 0$ for $x \in [1/n, 1]$. Then

$$\lim_{n\to\infty}v(f_n^*f_n)=\lim_{n\to\infty}\frac{1}{3n}=0$$

and $w[(f_n - f_m)^*(f_n - f_m)] = 0$. Hence, f_n is a (v, w) sequence. But $w(f_n^*f_n) = 1$, so $\lim w(f_n^*f_n) \neq 0$. Thus (iii) need not imply (ii).

2. A Radon-Nikodym Theorem. If v is a positive linear functional on a *-algebra \mathcal{M} , then the GNS construction [10, 13] provides a unique (to within unitary equivalence) closed *-representation π_v of \mathcal{M} on a Hilbert space H_v with a strongly cyclic vector $x_0 \in H_v$ such that $v(A) = \langle \pi_v(A) x_0, x_0 \rangle$ for all $A \in \mathcal{M}$. We now give our main result.

THEOREM 1. If v and w are positive linear functionals on a *-algebra \mathcal{N} , then there exists a positive self-adjoint operator W on H_v and a (v, w) sequence $A_i \in \mathcal{N}$ such that

$$w(A) = \langle W\pi_v(A)x_0, Wx_0 \rangle + \lim w(A_i^*A) \rangle$$

for every $A \in \mathscr{A}$.

(a) w is v-absolutely continuous if and only if $v(A^*A) = 0$ implies $w(A_i^*A^*A) = 0$ for every $i = 1, 2, \cdots$.

(b) w is strongly v-absolutely continuous if and only if $w(A) = \langle W\pi_v(A)x_v, Wx_v \rangle$ and

$$(2.1) \quad \langle W\pi_v(A)x, Wy \rangle = \langle Wx, W\pi_v(A^*)y \rangle$$

for every $A \in \mathscr{A}$ and $x, y \in \pi(\mathscr{A})x_0$.

(c) w is v-dominated if and only if $w(A) = \langle W\pi_v(A)x_0, Wx_0 \rangle$ for every $A \in \mathscr{A}$, and $W^2 \in \pi(\mathscr{A})'$.

143

STANLEY P. GUDDER

Proof. Let $H = H_v$, $\pi = \pi_v$, x_0 and K_1 , π_1 , x_1 be the Hilbert spaces, closed *-representations and strongly cyclic vectors of the GNS constructions corresponding to the positive linear functionals v and v + w on \mathscr{N} , respectively. Let J be the unique contractive linear map from K_1 into H satisfying $J\pi_1(A)x_1 = \pi(A)x_0$ for every $A \in \mathscr{M}$. Let P be the projection from K_1 onto $K = (\ker J)^{\perp}$. Let $T: H \to H$ be the positive self-adjoint operator defined by $T = JJ^*$. Then ker $T = (\operatorname{range} J)^{\perp} = \{0\}$ and hence $S = T^{-1}$ exists as a positive selfadjoint operator on H. Since J is contractive, $J \leq I$ and hence $S \geq I$. Let $W = (S - I)^{1/2}$. Then

$$D(W) = D(S^{\scriptscriptstyle 1/2}) = T^{\scriptscriptstyle 1/2} H = J K$$
 .

(The first and second equality follows by the spectral theorem and the third equality follows by the polar decomposition theorem.) By the polar decomposition theorem, $(S^{1/2}J)^*S^{1/2}J = P$ and hence $P - J^*J = (WJ)^*(WJ)$. Therefore,

$$(2.2) \begin{array}{l} w(A) = \langle \pi_1(A)x_1, \, x_1 \rangle - \langle \pi(A)x_0, \, x_0 \rangle \\ = \langle \pi_1(A)x_1, \, (I-P)x_1 \rangle + \langle \pi_1(A)x_1, \, Px_1 \rangle - \langle J\pi_1(A)x_1, \, Jx_1 \rangle \\ = \langle \pi_1(A)x_1, \, (I-P)x_1 \rangle + \langle WJ\pi_1(A)x_1, \, WJx_1 \rangle \\ = \langle \pi_1(A)x_1, \, (I-P)x_1 \rangle + \langle W\pi(A)x_0, \, Wx_0 \rangle \ . \end{array}$$

Since $\{\pi_i(A)x_1: A \in \mathscr{A}\}$ is dense in K_i , there exists a sequene $A_i \in \mathscr{A}$ such that $\pi_i(A_i)x_1 \to (I - P)x_1$. Hence,

$$\pi(A_i)x_{\scriptscriptstyle 0}=J\pi_{\scriptscriptstyle 1}(A_i)x_{\scriptscriptstyle 1} {\begin{subarray}{c} \longrightarrow \end{subarray}} J(I-P)x_{\scriptscriptstyle 1}=0$$

and

$$v(A_i^*A_i) = \langle \pi(A_i) x_{\scriptscriptstyle 0}, \, \pi(A_i) x_{\scriptscriptstyle 0}
angle \longrightarrow 0$$

Since $\pi_1(A_i)x_1$ is Cauchy in K_1 we have

(2.3)
$$\begin{split} \mathbb{W}[(A_i - A_j)^*(A_i - A_j)] &= ||\pi_1(A_i)x_1 - \pi_1(A_j)x_1||^2 \\ &- ||\pi(A_i)x_0 - \pi(A_j)x_0||^2 \longrightarrow 0 \;. \end{split}$$

Therefore, A_i is a (v, w) sequence. Moreover, since $|v(A_i^*A_i)| \leq v(A_i^*A_i)^{1/2}v(A^*A)^{1/2}$ we have $\lim v(A_i^*A) = 0$ for all $A \in \mathscr{M}$. Hence,

$$egin{aligned} w(A) &= ig\langle W\pi(A)x_{\scriptscriptstyle 0}, \ Wx_{\scriptscriptstyle 0} ig
angle + \lim ig\langle \pi_{\scriptscriptstyle 1}(A)x_{\scriptscriptstyle 1}, \pi_{\scriptscriptstyle 1}(A_i)x_{\scriptscriptstyle 1} ig
angle \ &= ig\langle W\pi(A)x_{\scriptscriptstyle 0}, \ Wx_{\scriptscriptstyle 0} ig
angle + \lim w(A_i^*A) \;. \end{aligned}$$

(a) For sufficiency, if $v(A^*A) = 0$, then

$$||\pi(A)x_0||^2 = v(A^*A) = 0 \quad ext{and} \quad \lim w(A_i^*A^*A) = 0$$

and hence, $w(A^*A) = 0$. For necessity, if w is v-absolutely continuous and $v(A^*A) = 0$, then

$$|\mathit{W}(A_i^*A^*A)| \leq w[(AA_i)^*AA_i]^{1/2}w(A^*A)^{1/2} = 0$$
 .

(b) For sufficiency, let $A_i \in \mathscr{M}$ be a (v, w) sequence. Then $\pi(A_i)x_0 \to 0$ and hence,

$$egin{aligned} &\| W \pi(A_i) x_0 - W \pi(A_j) x_0 \| \|^2 \ &= \langle W \pi(A_i - A_j) x_0, \ W \pi(A_i - A_j) x_0
angle \ &= \langle W \pi[(A_i - A_j)^* (A_i - A_j)] x_0, \ W x_0
angle \ &= w[(A_i - A_j)^* (A_i - A_j)] \longrightarrow 0 \;. \end{aligned}$$

Hence, $W\pi(A_i)x_0$ is Cauchy and since W is closed, $W\pi(A_i)x_0 \to 0$. It follows that

$$w(A_i^*A_i) = \langle \, W\pi(A_i^*A_i)x_{\scriptscriptstyle 0}, \; Wx_{\scriptscriptstyle 0}
angle = || \, W\pi(A_i)x_{\scriptscriptstyle 0} ||^2 {\, \longrightarrow \, 0}$$

and w is strongly v-absolutely continuous.

For necessity, suppose w is strongly v-absolutely continuous. We first show that $J: K_1 \to H$ is injective. Suppose $x \in K_1$ and Jx = 0. Let $A_i \in \mathscr{M}$ be a sequence satisfying $\pi_1(A_i)x_1 \to x$. Then

$$\pi(A_i)x_{\scriptscriptstyle 0}=J\pi_{\scriptscriptstyle 1}(A_i)x_{\scriptscriptstyle 1} {\,\longrightarrow\,} Jx=0$$
 .

Hence, $v(A_i^*A_i) = ||\pi(A_i)x_0||^2 \to 0$. Since $\pi_1(A_i)x_1$ is Cauchy as in (2.3) we have $w[(A_i - A_j)^*(A_i - A_j)] \to 0$. Thus, A_i is a (v, w) sequence and $w(A_i^*A_i) \to 0$. Hence

$$||\pi_1(A_i)x_1||^2 = w(A_i^*A_i) + v(A_i^*A_i) \longrightarrow 0$$

so that $\pi_1(A_i)x_1 \to 0$ and x = 0. It follows that ker $J = \{0\}$ and hence, P = I. Applying (2.2) we obtain $w(A) = \langle W\pi(A)x_0, Wx_0 \rangle$. To prove (2.1), applying (2.2) we have

$$egin{aligned} &\langle W\pi(AB)x_{_0},\ Wx_{_0}
angle &= w(AB) \ &= \langle \pi_1(B)x_1,\ \pi_1(A^*)x_1
angle - \langle \pi(B)x_0,\ \pi(A^*)x_0
angle \ &= \langle (I-J^*J)\pi_1(B)x_1,\ \pi_1(A^*)x_1
angle \ &= \langle (WJ)^*(WJ)\pi_1(B)x_1,\ \pi_1(A^*)x_1
angle \ &= \langle W\pi(B)x_0,\ W\pi(A^*)x_0
angle \ . \end{aligned}$$

If $x = \pi(B)x_0$, $y = \pi(C)x_0 \in \pi(\mathscr{M})x_0$ we obtain

$$egin{aligned} &\langle W\pi(A)x,\ Wy
angle &= \langle W\pi(AB)x_{\scriptscriptstyle 0},\ W\pi(C)x_{\scriptscriptstyle 0}
angle \ &= \langle W\pi(C^*AB)x_{\scriptscriptstyle 0},\ Wx_{\scriptscriptstyle 0}
angle &= \langle W\pi(B)x_{\scriptscriptstyle 0},\ W\pi(A^*C)x_{\scriptscriptstyle 0}
angle \ &= \langle Wx,\ W\pi(A^*)y
angle \ . \end{aligned}$$

(c) The following proves sufficiency

$$egin{aligned} w(A^*A) &= ig< W\pi(A^*A)x_{\scriptscriptstyle 0}, \; Wx_{\scriptscriptstyle 0}ig> &= ig< W\pi(A)x_{\scriptscriptstyle 0}, \; W\pi(A)x_{\scriptscriptstyle 0}ig> \ &= ||\,W\pi(A)x_{\scriptscriptstyle 0}||^2 &\le ||\,W||^2 ||\,\pi(A)x_{\scriptscriptstyle 0}||^2 &= ||\,W||^2 v(A^*A) \;. \end{aligned}$$

For necessity, suppose w is v-dominated. Then w is strongly v-absolutely continuous so (b) holds. Applying (2.1) there is an M > 0 such that

$$egin{aligned} ||W\pi(A)x_{_0}||^2&=ig\langle W\pi(A)x_{_0},\ W\pi(A)x_{_0}ig
angle\ &=ig\langle W\pi(A^*A)x_{_0},\ Wx_{_0}ig
angle&=w(A^*A)&\leq Mv(A^*A)\ &=M||\pi(A)x_{_0}||^2 \end{aligned}$$

for every $A \in \mathscr{A}$. Hence, W is bounded on $\pi(\mathscr{A})x_0$ and since W is self-adjoint, $W \in \mathscr{L}(H)$. It follows from (2.1) that

(2.4)
$$\langle W^2\pi(A)x, y \rangle = \langle W^2x, \pi(A^*)y \rangle$$

for all $A \in \mathscr{A}, x, y \in \pi(\mathscr{A})x_0$. Since $D(\pi)$ is the completion of $\pi(\mathscr{A})x_0$ in the induced topology [10], if $y \in D(\pi)$ there exists a net $y_{\alpha} \in \pi(\mathscr{A})x_0$ such that $y_{\alpha} \to y$ in the induced topology. Hence,

$$egin{aligned} &\langle W^2\pi(A)x,\,y
angle &= \limig< W^2\pi(A)x,\,y_lpha
angle \ &= \limig< W^2x,\,\pi(A^*)y_lpha
angle &= ig< W^2x,\,\pi(A^*)y
angle \end{aligned}$$

for every $y \in D(\pi)$, $x \in \pi(\mathscr{A})x_0$. Reasoning in a similar way for x, we conclude that (2.4) holds for all $x, y \in D(\pi)$. Hence, $W^2 \in \pi(\mathscr{A})'$.

3. Banach *-algebras. In this section we apply the material of §2 to obtain much stronger results on Banach *-algebras. When we speak of a *-representation π of a Banach *-algebra on a Hilbert space H we always mean a bounded representation; that is, $\pi: \mathscr{A} \to \mathscr{L}(H)$. The commutant of $\pi(\mathscr{A})$ now satisfies

$$\pi(\mathscr{A})' = \{T \in \mathscr{L}(H) \colon T\pi(A) = \pi(A)T \text{ for all } A \in \mathscr{A}\}.$$

If v and w are positive linear functionals on a *-algebra \mathscr{A} , we say that w is v-semisingular if there exists a (v, w) sequence $A_i \in \mathscr{A}$ such that $w(A) = \lim w(A_i^*A)$ for every $A \in \mathscr{A}$. Notice that if $A_i \in \mathscr{A}$ is a (v, w) sequence, then $\lim w(A_i^*A)$ automatically exists for every $A \in \mathscr{A}$.

COROLLARY 2. If v and w are positive linear functionals on a Banach *-algebra \mathscr{A} with identity then there exists a positive self-adjoint operator W on H_v which is affiliated with $\pi_v(\mathscr{A})'$ and a (v, w) sequence $A_i \in \mathscr{A}$ such that

$$w(A) = \langle \pi_v(A) W x_0, W x_0 \rangle + \lim w(A_i^*A)$$

for every $A \in \mathcal{M}$.

(a) w is v-absolutely continuous if and only if the positive linear functional $A \mapsto \lim w(A_i^*A)$ is v-absolutely continuous.

(b) w is strongly v-absolutely continuous if and only if $w(A) = \langle \pi_v(A) W x_0, W x_0 \rangle$ for every $A \in \mathscr{A}$.

(c) w is v-dominated if and only if $w(A) = \langle \pi_v(A) W x_0, W x_0 \rangle$ and W is bounded.

Proof. For the first statement of the theorem we need only prove that W is affiliated with $\pi_{v}(\mathscr{M})'$ and apply Theorem 1. From the proof of Theorem 1, J intertwines the representations π_{1} and π and hence $T \in \pi(\mathscr{M})'$. Since $W = (T^{-1} - I)^{1/2}$, it follows that W is affiliated with $\pi(\mathscr{M})'$. Parts (a), (b), and (c) are a straightforward application of Theorem 1.

Corollary 2 (c) is a classical result [5, 9, 11]. We next prove a noncommutative analogue of the Lebesque decomposition theorem.

COROLLARY 3. Let v and w be positive linear functionals on a Banach *-algebra \mathscr{A} with identity. Then w admits a decomposition $w = w_a + w_s$ where w_a is strongly v-absolutely continuous and w_s is v-semisingular. Moreover, w is v-absolutely continuous if and only if w_s is v-absolutely continuous.

Proof. Let $w_a(A) = \langle \pi_v(A) W x_0, W x_0 \rangle$ and $w_s(A) = \lim w(A_i^*A)$ for all $A \in \mathscr{A}$ as in Corollary 2. Then w_a and w_s are positive linear functionals and $w = w_a + w_s$. It follows from Corollary 2 (b) that w_a is strongly v-absolutely continuous. We now show that w_s is v-semisingular. Since $A_i \in \mathscr{A}$ is a (v, w) sequence and $w_a, w_s \leq w$, we conclude that A_i is both a (v, w_a) and (v, w_s) sequence. Since w_a is strongly v-absolutely continuous we have

$$|w_a(A_i^*A)| \leq w_a(A_i^*A_i)^{1/2}w_a(A^*A)^{1/2} \longrightarrow 0$$

for all $A \in \mathcal{M}$. Hence

$$w_s(A_i^*A) = w(A_i^*A) - w_a(A_i^*A) \longrightarrow w_s(A)$$

for all $A \in \mathscr{A}$ so w_s is v-semisingular.

We have not been able to prove uniqueness for the above decomposition. However, if $w = w_1 + w_2$ where w_1 is strongly v-absolutely continuous, w_2 is v-semisingular and w_2 has the same "support" as w_s (that is, $w_2(A) = \lim w_2(A_i^*A)$ for all $A \in \mathscr{M}$), then $w_1 = w_a$, $w_2 = w_s$. Indeed, then A_i is a (v, w) sequence and hence, $w_1(A_i^*A) \to 0$ for all $A \in \mathscr{M}$. Therefore,

$$w_{2}(A) = \lim w_{2}(A_{i}^{*}A) = \lim w(A_{i}^{*}A) = w_{s}(A)$$

STANLEY P. GUDDER

for all $A \in \mathscr{A}$. Thus, $w_2 = w_s$ and $w_1 = w - w_2 = w - w_s = w_a$.

The v-semisingular functional $w_s(A) = \lim w(A_i^*A)$ in Corollary 2 can be put in the form $w_s(A) = \lim w(A_i^*AA_i)$ which exhibits its positivity directly. The reason for this is that $\pi_1(A)$: ker $J \to \ker J$ in the notation of Theorem 1. Indeed, suppose Jy = 0 and let $B_i \in$ \mathscr{A} satisfy $\pi_1(B_i)x_1 \to y$. Then

$$\pi(B_i)x_0 = J\pi_1(B_i)x_1 \longrightarrow Jy = 0$$
 .

Hence,

$$egin{aligned} &J\pi_{\scriptscriptstyle 1}(A)y\,=\,\lim J\pi_{\scriptscriptstyle 1}(AB_i)x_{\scriptscriptstyle 1}\,=\,\lim \pi(AB_i)x_{\scriptscriptstyle 0}\ &=\,\pi(A)\,\lim \pi(B_i)x_{\scriptscriptstyle 0}\,=\,0 \;. \end{aligned}$$

It follows that $P\pi_1(A) = \pi_1(A)P$ for all $A \in \mathscr{M}$. Applying (2.2) we have

$$w_s(A) = \langle \pi_{\scriptscriptstyle 1}(A)(I-P)x_{\scriptscriptstyle 1}, (I-P)x_{\scriptscriptstyle 1}
angle$$
 .

Hence,

$$w_s(A) = \lim \langle \pi_{\scriptscriptstyle 1}(A) \pi_{\scriptscriptstyle 1}(A_i) x_{\scriptscriptstyle 1}, \, \pi_{\scriptscriptstyle 1}(A_i) x_{\scriptscriptstyle 1}
angle = \lim w(A_i^*AA_i) \; .$$

Example 2 of §1 gives an illustration of Corollary 3. In this example, w is v-absolutely continuous. Even though w is v-absolutely continuous, w is quite singular relative to v. In fact, $w(f) = \int f d\mu_0$ where μ_0 is the probability measure concentrated at 0, and μ_0 and μ are mutually singular measures. We showed in Example 2 that f_i is a (v, w) sequence. Moreover, $w(f) = \lim w(f_i^*f)$ for all $f \in \mathscr{M}$. Hence, in this case $w = w_s$ and $w_a = 0$.

ACKNOWLEDGMENT. The author would like to thank John Bunce and the referee for their many valuable suggestions.

References

148

^{1.} H. Araki, Bures Distance function and a generalization of Sakai's non-commutative Radon-Nikodym theorem, Publ. RIMS, Kyoto Univ., 8 (1972), 335-362.

^{2.} _____, Some properties of the modular conjugation operator of von Neumann algebras and a non-commutative Radon-Nikodym theorem with a chain, Pacific J. Math., **50** (1974), 309-354.

^{3.} _____, One-parameter family of Radon-Nikodym theorem for states of a von Neumann algebra, Publ. RIMS, Kyoto Univ., 10 (1974), 1-10.

^{4.} A. Connes, Sur le theoreme de Radon-Nikodym pour les poids normaux fideles simifinis, Bull. Sci. Math., 97 (1974), 253-258.

^{5.} J. Dixmier, Les C*-Algebras et leurs Representations, Gauther-Villars, Paris (1964).

^{6.} N. Dunford and J. Schwartz, *Liner Operators, Part II*, Wiley-Interscience, New York (1963).

^{7.} H. Dye, The Radon-Nikodym theorem for finite rings of operators, Trans, Amer. Math Soc., **72** (1952), 243-280.

8. G. Elliott, On the Radon-Nikodym derivative with a chain rule in von Neumann algebras, Canad. Math. Bull., 18 (1975), 661-669.

9. G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory, Wiley-Interscience, New York (1972).

10. S. Gudder and W. Scruggs, Unbounded representations of *-algebras, Pacific J. Math., 70 (1977), 369-382.

11. M. Naimark, Normed Rings, Noordhoff, Groningen, The Netherlands (1964).

12. G. Pedersen and M. Takesaki, The Radon-Nikodym theorem for von Neumann algebras, Acta Math., 130 (1973), 53-88.

13. R. Powers, Self-adjoint algebras of unbounded operators, Commun. Math. Phys., 21 (1971), 85-124.

14. F. Riesz and B. Nagy, Functional Analysis, Frederick Ungar, New York (1955).

15. S. Sakai, A Radon-Nikodym theorem in W*-Algebras, Bull. Amer. Math. Soc., 71 (1965), 149-151.

16. I. Segal, A non-commutative extension of abstract integration, Ann. Math., 57 (1953), 401-457.

17. M. Takesaki, Tomita's Theory of Modular Hilbert Algebras and its Applications, Springer-Verlag, Berlin (1970).

18. A. van Daele, A Radon-Nikodym theorem for weights on von Neumann algebras, Pacific J. Math., 61 (1975), 527-542.

Received February 24, 1978 and in revised form July 13, 1978.

UNIVERSITY OF DENVER DENVER, CO 80208