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RESTRICTIONS OF CERTAIN FUNCTION SPACES TO
CLOSED SUBGROUPS OF LOCALLY

COMPACT GROUPS

MICHAEL COWLING AND PAUL RODWAY

Let G be a locally compact group, and E(G) either the
space CU(G) of bounded left and right uniformly continuous
functions on G, the space W(G) of weakly almost periodic
functions on G, or the Fourier-Stieltjes algebra B(G) of G.
Let E(G) \H be the space of restrictions of i7(G)-f unctions to
the closed subgroup H of G. A necessary and sufficient
condition is given for an E{H)-function to belong to E(G)\H

when H is a normal subgroup of G. It is also shown that
E{G)\H is all of E(H) when H is any closed subgroup of a
[SIN]-group. The techniques employed here can be used to
deal with other function spaces.

Let C(G) be the space of bounded continuous complex-valued
functions on G with the uniform norm, || 1 ,̂ and β(G) be the Stone-
Cech compactification of G, i.e., the maximal ideal space of C(G), to
which C(G)-functions extend naturally, via the Gelfand transform.
The left translation operator is denoted λ:

[Hg)u](g') - uig-'g') g, g'G, u e C(G) .

The reader will recall that u in C(G) is called weakly almost periodic
if the set X(G)u of left translates of u is relatively compact in the
weak topology of C(G). Equivalently, one may require that for any
sequence {g,} of elements of G there is a subsequence {g)} such that
X{g))u converges weakly in C(G), or such that X(g'j)u converges
pointwise on β(G). This and other results on weakly almost periodic
functions are summarized in [1]. The space W(G) of weakly almost
periodic functions in C(G) is given the uniform norm.

The Fourier-Stieltjes algebra B(G) of G is the algebra of coordinate
functions

u: g > (π(g)ξ, η) ζ, η e 3ίfv

of continuous unitary representations π of G on Hubert spaces Sίf^
B(G) is normed thus:

\\u\\B =

The basic fpcts about B(G) can be found in [4]. We recall from [1]
that
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B(G) QW(G) Q CU(G) .

The spaces B(G), W{G), and CU(G) have many similar properties.
For example, both left and right translations act continuously and
isometrically on each space, their functorial properties are similar,
and they are all stable under continuous automorphisms of G ([1, 1.8],
[4, 2.20], [8, 34.48]). We shall find more examples below.

We let E(G) denote one of CU(G), W(G) or B(G). If H is a closed
subgroup of G, then the space of restrictions E{G)\H is a subspace
of E(H). We are interested in knowing which E(H)-ίunctions have
extensions in E(G). It is known that E(G)\H = E{H) when G is
abelian ([1, 3.16], [8, 34.48]), but this is generally false for nonabelian
G. A. Douady observed that if H is a closed normal abelian subgroup
of a locally compact group G and χ is a continuous character of H
such that, for any neighborhood ^ of the identity e in G, there
are s in ^ and h in H such that χ{s~1hs) Φ χ(h), then χ cannot be
extended to a function u in JB(G) (quoted in [5, p. 204]; see also [8,
34.28]). Applying this observation to the semidirect product group
G — T yζsC, where the torus T acts on the complex numbers C by
multiplication, we conclude that B(G)\C Φ B(C). Ching Chou [2, p.
192] showed that W(G) \c Φ W(C); his example shows also that CU(G)\C Φ
CU(C).

For an arbitrary locally compact group G and closed subgroup
H it is known that B(G) \H = B(H) if H is open or compact or the
connected component of the identity GQ of G or the center of G
([10, Prop. 1.1], [11, %2]);W(G)\M =W(H) if H is open ([1, 3.14]—
normality is not needed) or compact or Go (analogous to the B(G)-
proof); CU(G)\H = CU(H) if H is open or compact or Go.

In this paper the space E(G) \ H is characterized when H is a
closed normal subgroup of G. Further, it is shown that E{G)\H = E(H)
for any closed subgroup of a [SINJ-group G, but that this is false
if G belongs to the larger class of [IN]-groups.

1* The extension theorems* Let N be a closed normal subgroup
of G. We write h9 for the conjugate g~γhg{g, heG). Functions on
G will be denoted by u, v, and w, and those on N by x, y, and z.
Given such functions u and x, we define u9 and x9 by the formulae:

ug{h) = u(h9) g,heG

x\n) = x(ng) geG,neN.

The maps u->u9 and x —> x9 are isometries of E(G) and E(N).

THEOREM 1. Let N be a closed normal subgroup of the locally
compact group G. Then
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= {xeE(N):\\xβ-x\\x >0 as g >e),

and, if xe E(G) \N, then

\\x\\E = ird{\\u\\E:ueE(G)9 n\N = x) .

Proof. We have already remarked that E(G)\N ς^E{N)\ it is
further true that

INJΓIU ^ \\u\\E.

If u is in E(G), so is u9, and as g tends to e in G,

\\u9 -u\\E >0 .

Consequently

E(G)\NΩ{xeE(N):\\x°-x\\E >0 as g > e} .

We remark at this point that if χ is a continuous character of N
and belongs to E(G)\N there must be a neighborhood ^ of g in G
such that, if g belongs to ^ , then

It then follows easily that χg = χ for g in ^ . This is a proof of
Douady's observation quoted in the introduction.

To complete the proof of the theorem is less trivial. As in the
proof of the open mapping theorem, it suffices to show that, for any
x in E(N) satisfying \\x9 — x\\E->0 as g->e, and for any small
positive ε, there is some u in E(G) for which

\\U\\E = \\X\\E

and

II^U - x\\is< e .

Given such an x and e, we can find neighborhoods ^ of e in
G and <%f of e in N such that

( 1 ) \\x9 -x\\B< e/2

( 2 ) Wxίn-^x - x\\E < e/2

Let f1 be a compact neighborhood of e in G such that

(3) TQ^

(4) S^-1.^ ΠiV£ <%? .

Take a nonnegative continuous function v on G such that
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( 5 ) supp O) Q T

1 = \ dg\\ dnv(gn)
JG/N LJN J

= 1 dg\ dn'v(gn') 1 dnv(gn)
f n x JG/N JN JN
(6)

= I d# I dnfv(gn') \ dnv(gn'ri)
J G/2V J iV J iV

= 1 dflr 1 dnv(g)v(gn)

here we have assumed that the Haar measure dg, dg, and dn of G,
G/N and N are normalized so that

1 dg \ dnw(gn) = \ dgw{g) , w e CC(G)
J G/N JN JG

(CC(G) the space of compactly supported functions) ([8, 28.54]). We

now define the function u on G by the formula

dg \ dnv(g'g)v(gn)x(n) , g* eG .
G JN

This is a variation of a device of H. Reiter [13], who considered
functions w of the form

w(g') = 1 dnv(g*n)x{n~x) , g' eG .
JN

W e s h a l l c h e c k l a t e r t h a t u b e l o n g s t o E(G) a n d t h a t \\u\\E ^ \\x\\E

F o r t h e m o m e n t w e o b t a i n a n e x p r e s s i o n f o r u\N a n d e s t i m a t e
\ \ u \ N - x \ \ E .

For any n' in N,

u(n') r=\ dg\ dnv(g)v(n'~ιgn)x(ri)
JG JN

( 7 ) = \ dg \
JG JN

= \ dg \
JG JN

The map from G x N to E(N) defined by the rule

(9, n)

is continuous and compactly supported, so the vector-valued Riemann
integral

( 8 ) ( dg \
JG JN
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exists, and, by the pointwise equality (7), is equal to u\N. We note
from (6) that

x = \ dg\ dnv(g)v(gn)x ,
JG JN

so that

S r
dg\ dnv(g)v(gri)\\[X{n-ι)x\9n - x\\E

G 3N

dnv(g)v{gri){\\[k{n-ι)x\™ - xsn\\E + \\x°n - x\\β)
N

= \dg\ dnv(g)v(gn)(\\X(n-ι)x - x\\E + \\xgn - x\\E) .
JG JN

If v(g)-v(gn) is nonzero, then from (5), g and gn are in Y1; from (1)
and (3), \\x9n - x\\E < e/2 and from (2) and (4), Wxin'^x - x\\E < e/2.
By applying (6) again, we conclude that

\\U\N - » I U ^ e .

It remains to show that u belongs to E{G) and that \\n\\E ^ \\v\\E.
The easiest case is where E — Cu; we leave this verification to the
reader. Let us consider the case where E = B. Then x can be
written in the form

x{n) = (σ(n)ζ, φ , neN ,

where a is a unitary representation of N on a Hubert space £(?„ ζ
and η belong to £ίfa, and \\v\\B = | | ί | |^σ |l^ll^σ. Now, for any #' in G,

S r
dg \ dnv{g)v{g'-~ιgri)x{ri)

G JN

= I dg\ dn'\ dnv(gn')v(g'~ιgn'n)(σ(n)ξ, v)
JG/N JN JN

~ I dg \ dnf \dnv(gf~1gn)v(gn')(σ(n)ξ, σ(n')7]}
JG/N JN J

= I dg(\ dnv(g'-ιgn)σ(n)ξ, \ dn'v(gn')σ(nf)τλ ,
JG/N \JN JN I

which the reader will recognize as a coordinate function of the
representation π of G unitarily induced from σ (see [5, VI. 2]).
Further,

IMU <: 1 dnv(gn)σ(n)ζ 1 dnv(gn)σ(n)τ) \\ ,
I JN JVπ [ JN \Wπ

and

S /f Γ f ~]2\V2

dnv(gn)σ(n)ζ = [\ dg\ dnv{gn)σ(ri)ζ ) ^ | | ζ | | ^ σ
2V ,srπ \JG/N L JiV ^ σ J /
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from (6), whence \\u\\B ̂  \\x\\B.
The other case to consider is where E is W. By repeating the

argument used to deduce (8) from (7), we deduce that, for fixed g'
in G,

X(g')u\N = [ dg [
Jff JN

as a vector-valued integral, from which we see that X(g')u\N lies in
W(N) for each g' in G. The function u is uniformly continuous and
supported by T~XTN, where T'XT is a compact subset of G. It
is trivial to show that \\u\\n ^ ||#IL, so application of the following
lemma completes the proof of the theorem.

LEMMA. Suppose that u belongs to CU(G) and that
( i ) there is a compact subset K of G such that supp (u) £ KN,
(ii) X(g)u\N belongs to W(N) for all g in G. Then u is in W{G).

Proof. Let {g3-} be a sequence of elements of G. We want to
show that {X(g3)u} has a weakly convergent subsequence in C(G).
We let p:G—> G/N be the canonical projection.

Case (a). {p(gj)} is unbounded in G/N.
In this case there is a subsequence {g'd} such that {p(g))} eventually

avoids any compact subset of G/N. Let s be a nonnegative compactly
supported function on G/N such that

\u{g)\ ̂  sop(g) , geG .

Then

Now {λ(p(flry))s} converges to zero point wise on β(G/N). The map
s —> s o p' injects C(G/N) into C(G), and so dually projects β(G) into
β(G/N). It follows that {λ(p(^ ))sop} converges to zero pointwise on
β(G); a fortiori {X(g'd)u} converges pointwise to zero on β(G), so
converges weakly to zero in C(G).

Case (b). {pigi)} is bounded in G/N.
There is a compact set K' in G such that each gά can be expressed,

not necessarily uniquely, as n3 kjf with ns in N and k3- in iΓ'. Since
Kf is compact, there is a subsequence {̂ } of {βr̂  } such that the
corresponding sequence {k's} has a limit point k0, say. Note that

\\X{nf

άk))u - λ«.fco)u|U - ||λ(fcy)u - λ(fco)u|L >0
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as j—>oo. Hence, to show that {X(g'd)u} has a weakly convergent
subsequence, it suffices to show that {X(n'jko)u} has one; it certainly
suffices to show that the set X(Nko)u is relatively weakly compact.

We write C°(G) for the subspace of CU(G) of functions vanishing
off K'KN. The Hahn-Banach theorem implies that the weak topology
of C°(Gr) coincides with its relative weak topology as a subspace of
C(G). The function u lies in C°(G), as do the translates X(n'όkQ)u.

Next we denote by C(K'K;CU(N)) the space of Cu(N)-γ*lueά
continuous functions on K'K, and observe that σ: C°(G) -»C(K'K;
CU(N)), defined by setting

[σw(k)](ri) = w(nk) ke K'K, neN ,

is an isometric embedding of C\G) into C(K'K; CU(N)); the weak
topology on C°(G) and the relative weak topology on σ(C\G)) there-
fore coincide. Further, if w satisfies the hypotheses of the lemma,
then w is in C(K'K; W(N)). We denote by A the strongly continuous
isometric representation of N on C(K'K; CU(N)) by the formula

[Λ(n)t](k)(n') = t(k)(n-ιn') ke K'K, n,n'eN.

Then

[Λ{n)σw](k){n') •= awikXn^n')

= w{n~lrnfk)

— X(n)w(nfk)

= [σX(n)w](k)(n') ,

so that, to prove the lemma, it will suffice to establish the following
claim.

CLAIM. If t is in C(K'K; W{N))y then the set A(N)t is relatively
weakly compact.

To prove the claim, we consider first functions of the form w®y:

w (x) y: (&, n) > w(k)y(n) . ke K'K, neN ,

where w and y are in C{K'K) and W{N) respectively. Clearly

Λ(n)w (x) y = w (x) X(n)y .

Now suppose that Φ is a functional on C(KfK; CU(N)). Then Φ gives
rise to a functional Φw on CU(N) by the formula

<Φ«, V> = (Φ,w<g)y) .

Since y is in W(N), any sequence {X{nό)y} has a weakly convergent
subsequence {X(n'j)y}; thus the sequence {A(rij)w (g) y) has a weakly
convergent subsequence [A(n'j)w (x) y). We conclude that Λ(N)w (x) y
is relatively weakly compact.
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Now because K'K is compact, any function in C(K'K; W(N)) can
be approximated in norm by finite sums of functions of the form
just considered. The set of functions t in C(K'K; W(N)) for which
the set Λ(N)t is relatively weakly compact is a closed linear subspace
of C{K'K) W(N)) (c.f., the proof that W(G) is a closed subspace of
CU(G)[1, 1.6]). This establishes the claim and completes the proof
of the lemma.

A locally compact group G is said to have small invariant neigh-

borhoods (written G e [SIN]) when there is a basis of neighbor-

hoods of e in G-invariant under inner automorphisms. A function

v on G is called central if v{gg') = v(g'g) for all g and g' in G. A

[SIN]-group has nonnegative continuous central functions v with

arbitrarily small supports. Note that

v{gfg)dg = \v(gg')dg = A(g') \v{g)dg ,

so [SIN]-groups are unimodular. A convenient reference for results
on [SIN]-groups is the monograph of S. Grosser and M. Moskovitz [6].

THEOREM 2. Suppose that H is a closed subgroup of the [SIN]-
group G. Then

and, if x is in E(H),

\\x\\E = inf {\\u\\E:ueE(G), u\π = x] .

Proof. As before, it suffice to show that, for any x in E(H)
and small positive ε, there exists u in E{G) such that

\\U\\E ^ \\X\\E

IWfi ~ X\\E < 6

Since G has small invariant neighborhoods, so does H. Then
both G and H are unimodular, so there exists a G-invariant measure
dg on the quotient space G/H (see [8, 15.24]); we assume that the
Haar measures of G and H are adjusted so that

\ dgw(g) = \ dg 1 dhw(gh) w e CJfi) .
JG J G/H J H

Let V be a compact neighborhood of e in G so that

(9) WMh'^x -x\\E<ε he V~ιV(λH,
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and let v be a nonnegative continuous central function on G such that

(10) supp (v) C V

(11) ( dg \ dhv(gh)2 - 1 .
J Gill JII

We define the function u on G by the formula

u(gf) = \dg\ dhv(gfg)v(gh)x(h) g'eG .
JG JII

For any h' in Ht

u(h') = \dg[ dhv{g)v(h'-ιgh)x{h)
iσ hi

= [ dg \ dhv(g)v(gW-ι)x(h)
iθ ill

= [dg\ dhvigMgh^Mh-^xW) ,
JG ill

since v is central and H is unimodular. This pointwise equality is
very similar to the equality (7) of Theorem 1. By repeating the
argument of Theorem 1, and using (9), (10), and (11), we deduce that

\\u\H - x\\E < e .

The proof that u is in E(G) if E is Cu is easy, and if E is B,
is identical to the corresponding part of the proof of Theorem 1.
We shall therefore examine the ]̂ F-case only. We define v(x) by the
rule

v(x)(g) - \ dhv(g~ιh)x(h) geG;
hi

since u = v*v(x) and W(G) is closed under convolutions by Lι(G)-
functions, it suffices to show that v(x) is in W(G).

Suppose then that x is in W{H) and that {gό} is a sequence of
points of G. As before, we let p: G —> G/H be the canonical projections
and examine two cases.

Case (a). {p(g/)} is unbounded in G/H.
We claim that if {p(g))} is a subsequence tending to infinity, then

{Mg'j)v(x)} converges weakly to zero. First, let 1 be the function on
H taking the value one on H. Then

so it suffice to show that {λ(flrj)v(l)} converges to zero. Next, since
v is central,
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= ί dhv{g-'gόh)
JH

= \ dhvihg-'g,) .

From the second integral expression, we see that X(g'3)v(l)(gh) —
X(g'j)v(l)(g)(g in G, h in if), so that X(gr

3)v(l) is of the form [Λ(g'3)s\oVj

for some continuous function A(g'3)s on G/H. Again from the second
integral expression, we see that X(g'j)v(l)(g) is nonzero only if hg~~ιg3-
is in the support of v for some h in H, i.e., only if g is in
gj1 supp (v)"1!!. Thus {A(g'3 )s} is a sequence of compactly supported
functions on G/H. Finally, from the first integral expression, we
note that X(g'3)v(l)(g) is nonzero only if g'^jh lies in the support of
v for some h in H, i.e., only if g3 lies in the set g supp (v)H.
Since {p(g3)} tends to infinity, {λ(^Ml)(#)} converges to zero.

The sequence {Λ(g'ό)s} is therefore a sequence of compactly sup-
ported function on G/H which converges pointwise to zero. Then
{Λ{g'j)s} converges pointwise to zero on β(G/H), so that {[A{g'3)s\op]
converges pointwise to zero on β{G). In other words, {κ{g'3 )v(Y)}
converges weakly to zero.

Case (b). {p(gj)} is bounded in G/H.
In this case there is a compact set K in G such that each g3 can

be written in the form k3h3, with k3 in K and h3 in H. Note that,
for g in (?,

= I dhv(g xί
JH

)H

There is a subsequence g) of g3 such that {vihg^kβ)} converges to
vihg^ko), say, uniformly in g and h, and such that {X(h3)x} converges
weakly to y, say. It then follows that {X(g3)v(x)} converges to
{Hko)v(y)}: first,

:S ( dh\v(hg-%) - v(hg-%)\

hi

which converges to zero uniformly on G. Second,

X(kjrι3 )v{x) — X(ko)v(y) = X(ko)v(X(h3)x — y) .

Given a linear functional Φ on C(G), then Φf, defined
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<Φ', z) = <Φ, λ(fc0Ms)> . zeC(H)

is a linear functional on C(H). Since {<Φ', \{h/)x — ?/>} converges to
zero, {(Φ, X(kQ)v(X(hj)x — y))} does also, and {λ(fc0Mλ(/&ί )B--2/)} converges
weakly to zero.

2* Corollaries* Hereafter, K denotes a compact group. We
recall that the radical of a connected Lie group is the maximal
connected solvable normal subgroup.

COROLLARY 1. If G is a connected Lie group, the following
properties are equivalent:

( i ) for every closed normal subgroup N of G, E(G)\N = E{N).
(ii) the radical R of G is central.

Proof. (i)=>(ii). The following claim is the key to this step:
if A is a connected closed normal abelian subgroup of a connected
Lie group H and E(H)\A ~ E(A), then A is central in H.

To establish the claim, we note that A can be written in the
form Rb x T% T being the torus, that there exist 26 + c characters
χό of Rb x Tc such that

Π ker χd = {e}

and that there is an open set U in H such that

XAh-'ah) = χy(α) j = 1, , 26 + c

by Douady's observation, cited in the introduction. Since H is
connected we conclude that A is central, as claimed.

We now define inductively the solvable series of the radical R
of G:

Ro = R, Rj+1 = [Rjy Rj] j — 0, 1, .

This series terminates:

R - Ro > R1 > t> Λ*-i > Rk = {e}

Rj/Rj+1 is a nontrivial connected abelian Lie group and the Rό are
characteristic in G.

We suppose temporarily that k ̂  2, i.e., that iϋ is not abelian,
and derive a contradiction. The hypothesis (i) implies that E(G) |Λ f c - 1 =

k_^, so that #*._! is central in G. Further,

Rk_2
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where, for example, ERk_x{G) is the space of £r(G)-functions constant
on cosets of Rk_x in G. So Rk^\Rk_1 is central in G/Rk^. However,
jβfc-2 is not abelian, so contains a noncentral one-parameter subgroup
A. Since Rk^ is central, A g£ Rk-.19 and AR^JR^ is a one-parameter
subgroup of G/iϊfc-!. Since i2&_2/i2fc_1 is central in GjRh-l9 ARu-JR^
is certainly normal in G/Rk-ί9 whence A R ^ is normal in G. Finally,
iϋfc-i is central in G and A is abelian but not central, so that ARfc-i
is abelian but not central. We have just produced a noncentral
normal abelian subgroup of G, which, by the claim, contradicts
hypothesis (i). We conclude that &<;i, i.e., that R is abelian. Further,
E(G)\R = E(R), whence R is central by the claim.

(ii) => (i). Let G be the universal covering group of G, and p
be the canonical projection of G onto G. Standard results of Lie
theory imply that G can be written as a direct product

S1x x Sn x A ,

where the Sy are simple (in the Lie algebra sense) and A is abelian
(see, for example, [7], [9]).

If N is a closed normal subgroup of G, then p~\N) is a closed
normal subgroup of G. Suppose that (sly , sw, α) is an element of
p~\N). Then (e, , e, £5 , e, , e, β) normalizes p~\N), so that

(«!, , s3 -l9 tj'Sjtj, sj+ί, - , sn, a) e p~\N)

whence (e, , e, s^H]ιsάtά, e, , e, e) e p~\N). It follows that s3- lies
in the discrete center of So or Sd is contained in p~\N).

Now let U be a small neighborhood of e in G of the form
U1 x xUn xUQ such that 3?, restricted to Z7, is a local isomorphism.
We define a continuous projection q oί U into £/ Π p~\N) by the rule

where ίj = ^ if S5 is contained in p~\N) and ίj = e otherwise. We
observe that, for (t19 , tn9 b) in U and (s19 , sΛ, a) in p~\N),

( t i , - m m , t n 9 b ) " \ 8 1 9 , s Λ , α ) ( ί i , • • • , < » , & )

, ίΛ, b) ,

since ίj is exactly t3- unless ss is central.
We now pass to the quotient group G, where we have a continuous

projection, again called q, of p{U) into p(U) Γ) N such that

g~ιng = qg~]nqg gep(U),neN .

If x is in ^(iSΓ) and g is in J>(Ϊ7), £3 = xq9. Thus
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| l / y . £ r Λ, II — \\/y*9B /y. 11

As g —> β in p(ί7), qg —> e in p(U) f] N, so 11#ff — E | ^ —> 0; by Theorem
1, E(N) = JE(G)U, as required.

COROLLARY 2. If G is a connected Lie group, the following
properties are equivalent:

( i ) for every closed subgroup H of G, E(G) \H = E(H).
(ii) G is of the form Rh x K.

Proof, (ii) => (i). A group of the form Rb x K has small invariant
neighborhoods, so Theorem 2 applies.

(i) => (ii). Assuming that (i) holds, the first condition of Corollary
1 is satisfied, so the radical R of G is central, and G/R is semisimple.
If G/R is noncompact, it has an Iwasawa decomposition KAN, where
K is compact, A is abelian, and N is nilpotent. The group A
normalizes but does not centralize N. For details, see [7, Chap. VI].

Let G' be the solvable subgroup of G such that G'/R = AN. If
if is a closed normal subgroup of G'', then

E(G')\S = E(G)\β,\H = E(G)\H - E{H) ,

so that G' is a solvable group satisfying the condition of Corollary
1, and therefore G' is abelian. But then the quotient group G'/R is
abelian, a contradiction. Thus G/R must be compact. Structure
theory of such Lie groups now implies the required result ([6, Th. 4.3]).

3* Examples* The following are examples of groups G with
normal abelian subgroups N for which E(N) Φ E(G)\N. All are
semidirect products of the form G = H X8N. To find an example
of an E(N)-ίunction with no extension in E(G), is suffices to find a
character χ of N such that χh Φ χ for small nonidentical h in H.
Alternatively, Chou's construction can be used to provide examples
of pr(iV)-functions with no uniformly continuous extensions.

EXAMPLE 1. The "ax + δ" group. Take G to be the semidirect
product RXXSR, where the multiplicative group of positive integers
acts on R by multiplication, and N to be R.

EXAMPLE 2. The Heisenberg group. Let G be R X8R\ where
R acts on R2 by the rule α(δ, c) = (δ, c + ab), and let N be R2.

EXAMPLE 3. Let G be TX8C, where the torus acts on C by
multiplication, and let N be C.
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EXAMPLE 4. If G is the Heisenberg group and D the central
discrete subgroup of elements (0, (0, n))(n e Z), then G/D is a connected
Lie group with compact neighborhoods of the identity invariant
under inner automorphisms, but is not a [SIN]-group. Extension
from the normal abelian subgroup R2/D is generally not possible.

We conclude with a rather different example.

EXAMPLE 5. SL(2, R). For the group SL(2, R), it can be shown
that any B-ίunction can be written as the sum of a constant function
and a function which vanishes at infinity (see [3]). The group
SL(2, jβ) contains many one-parameter subgroups H which are non-
compact; for such subgroups, the restriction space B{G)\H is much
smaller than B{H).
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