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SPECTRAL SYNTHESIS IN SEGAL ALGEBRAS
ON HYPERGROUPS

AJIT KAUR CHILANA AND AJAY KUMAR

Warner (1966), Hewitt and Ross (1970), Yap (1970), and
Yap (1971) extended the so-called Ditkin's condition for the
group algebra L\G) of a locally compact abelian group G
to the algebras Lι(G) Π L2(G), dense subalgebras of LX{G)
which are essential Banach LHO-modules, LKG) Π LP(G)(1 ^
p < co) and Segal algebras respectively. Chilana and Ross
(1978) proved that the algebra L^K) satisfies a stronger form
of Ditkin's condition at points of the center Z(K) of K, where
K is a commutative locally compact hypergroup such that
its dual K is also a hypergroup under point wise operations.
Topological hypergroups have been defined and studied by
Dunkl (1973), Spector (1973), and Jewett (1975) to begin with.
In this paper we define Segal algebras on K and prove that
they satisfy a stronger form of Ditkin's condition at the
points of Z(K). Examples include the analogues of some
Segal algebras on groups and their intersections.

1» Introduction* In this paper we define and study Segal
algebras on hypergroups with emphasis on spectral synthesis. A
good deal of Harmonic Analysis has recently been developed on locally
compact hypergroups by Dunkl [5], Spector [21], Jewett [9], and Ross
([17], [18]). Our basic reference will be Jewett [9]. Throughout
this paper K will denote a commutative locally compact hypergroup
('Convos' in [9]) such that its dual K is a hypergroup under pointwise
operations and notation and terminology for Harmonic Analysis on
K will be as in [4]. As proved in ([23], Appendix) K is first countable
if and only if it is metrizable. Being commutative, K admits a
Haar measure m, as shown by Spector [22]. The convolution algebra
L\m) — L\K) can be identified with the pointwise algebra A{K) of
Fourier transforms on K. Chilana and Ross [4] proved that A(K)
is a regular algebra of functions on K with a bounded approximate
unit and it satisfies a stronger form of Ditkin's condition at points in
the center Z(K) of K. They also gave examples to show that not
all points in K need be spectral sets. This is partially in contrast
with the situation in locally compact abelian groups where Ditkin's
condition is satisfied for L\G) at each point of G. Warner [24]
proved it for the algebra L\G)ΠL\G)f Hewitt and Ross ([7], 39.32)
showed that it is true for dense Banach modules ^ in L\G) such
that <%f*U(G) is dense in ^ . Also Yap [26] proved the same for
the algebra L\G) Π LP(G)(1 <̂  p < oo) and then extended it to Segal
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algebras in L\G) ([27], [28]), which turn out to be Banach !/((?)-
modules of ([7], 39.32). In §2 we define a Segal algebra S(K) on
K and prove that the algebra AS(K) of Fourier transforms of
functions in S(K) is a regular algebra of functions on K with an
approximate unit which is bounded in A(K). We then show that a
Banach algebra (2^, ]| Û  ) satisfying

{/ e L\K), f e C00(K)} c <2S c L\K)

is a Segal algebra if and only if it is a Banach I/(if)-module with
L\K)*^/ dense in (^, || |U) and most of the results in ([7], 39.32)
have their analogues for K. We then define locally convex Segal
algebras on K and extend the above results to them.

Various stronger forms of Ditkin's condition have been given
by Wik [25], Rosenthal [16] and Saeki [19] for the algebra L\G) of
a locally compact abelian group G and they all coincide when G is
σ-compact and metrizable. In §3 we give analogues of their definitions
for S(K) which coincide when K is σ-compact and first countable and
S(K) is a Banach algebra. We prove that the analogous conditions
for S(K) on special hypergroups K are satisfied at the points of the
center Z(K). We note that this is new even in the case of locally
compact abelian groups (compare ([7], 39.32) and [28]). We further
apply our results to study spectral synthesis in S(K). In the end
we indicate that some of the results can be proved for abstract Segal
algebras (also compare Burnham [2], [3]).

In §4 we give examples of Segal algebras on hypergroups; they
include analogues of some Segal algebras on groups such as BV(G),
AV(G), and A{p,g)(G) given by Yap [27], Larsen, Liu and Wang [11],
(see also Larsen [10]) and Yap [29] respectively.

2* Segal algebras on hypergroups* In this section we will
introduce the concept of Segal algebras on K. As stated in §1 we
assume throughout that K is a commutative hypergroup under point-
wise operations. The Plancherel measure on K will be denoted by
π and the Haar measure on K by m.

DEFINITION 2.1. Let S(K) be a subalgebra of L\K) which is a
Banach algebra under a norm \\ \\s such that

S( i ) / e L\K) and feC0Q(K) imply that / e S(K),
S(ii) S(K) is translation invariant and for some ̂ >0 | | / x | | s ^^ | | / [ ! s

for each / e S(K) and x 6 K, and
S(iii) for each feS(K), the mapping x-+fx of K into S(K) is

continuous.

Then S(K) will be called a Segal algebra.
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REMARKS 2.2. (i) The Fourier transforms of the functions in
S(K) form a subalgebra AS(K) of A(K) with the norm carried over
from S(K).

Because of ([4], 2.6) S(i) gives that S(K) is || ||rdense in L\K).
For the group case this is the condition that is imposed on S(K)

rather than our S(i) and then S(i) is proved to be true (for instance,
cf. [14] VI, 2.2(iii)) (see Remark 3.1 also).

(ii) In view of ([4], 2.5) for each compact set E of K and
symmetric set V with compact closure such that π(V) > 0 there is
a function φ in Am{K) and thus in AS(K) such that 0 ^ ψ <̂  1,
φ = 1 on E and φ == 0 outside E* V* V. In particular, for each
compact set E in K there exists φ in AS(K) such that ψ = 1 on E.

(iii) In view of (ii) above AS(K) satisfies ([14], II, 1.1 (iii)) i.e.,
for any 7eK and any neighborhood U of 7 there is a function τ r

in A00(K) and thus in AS(K) such that τ r is 1 in a neighborhood of
7 and zero outside U. So by ([14], II, 1.3) localization lemma is
true for AS(K). This is the property which is used in proving some
results on closed ideals in S(K) which we shall discuss later.

The proofs of other results viz. (i), (ii), and (iv) in VI, 2.2 and
VI, 2.3 in [14] can be modified to give:

(iv) there exists a constant C such that

for each f e S(K)

(v) S(K) is an ideal in L\K) and \\h*f\\s ^ vW^Mflls for each
heU(K) and f e S(K);

(vi) for any compact subset F of K there is a constant CF such
that for each / e S{K) with / vanishing outside F we have

\\f\\s^cr\\f\\r,

(vii) given ε > 0, / e S(K) there exists a neighborhood U of the
identity e in K such that \\f*u — f\\s < e for u eL\K) with supp% c
U, u ^ 0 and

I u(x)dm(x) = 1

(where <N"? signifies involution in K);
(viii) it follows from (ii) and (v) that

AS(K) Z) AS(K) - A{K) =) AQQ(K) - A(Z') =) AJK) .

THEOREM 2.3. AS(K) is a regular, semi-simple Banach algebra
in CQ(K) which has an approximate unit {φa}a&Ώ such that φa belongs
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to C00(K) and ||φ«|L = 1 for all aeD. If K is first countable then
{φa} can be chosen as a sequence.

Proof. Regularity follows from Remark 2.2 (iii) and we shall
give the proof for existence of approximate unit for a more general
class of algebras in Theorem 2.8.

REMARKS 2.4. (i) It follows from the above theorem and Remark
2.2(ii), (v), and (viii) that S(K) is a dense subalgebra of L\K) such
that it is a Banach I/(i£)-module and &(K)*S{K) is dense in
(S(K), || \\s). As proved in ([7], 39.32) such modules are Segal algebras
when if is a group. Proofs can be modified to give that a subalgebra
%f of L\K) that is a Banach algebra with respect to its own norm
IHUr such that {/ eL\K), f eCQ0(K)} c ^ is a Banach L^φ-module
satisfying: U-(K)*'U is dense in (^, || ||^) if and only if it is a
Segal algebra.

(ii) The structure space of S(K) can be identified with ^%{K).
The proof follows on the lines of ([7], 39.32) or alternatively of [28].

Burnham [3] has defined locally convex Segal algebras; we impose
somewhat different conditions in order to have some interesting results
which are satisfied by (Banach) Segal algebras defined above.

REMARK 2.5. We first note a result; let B be a subalgebra of
L\K) which is a normed algebra under a norm || ||. The completion
A of B lies in &{K) if and only if there exists a constant C such
that 11/11,^ C | | / | | for all f in B and in that case \\f\\, £ C\\f\\
for all / in A. The proof is standard and for example can be
obtained by using ([14], II, 3.6).

DEFINITION 2.6. Let {(Sσ(K), || | |σ); σ e Σ} be a collection of Banach
algebras with Sa(K)czL\K) for each σ. Let SQ(K) = f| {Sσ(K): σeΣ}
and S(K) be a subalgebra of S0(K) equipped with the topology given
by norms {|| ||σ: σ eΣ} restricted to S(K) which satisfies:

L(i) feL\K),feC00(K) imply that feS(K),
L(ii) S(K) is a translation invariant ideal in Lι(K) and for each

σeΣ there exists an ησ > 0 such that \\fx\\σ ^ ηa\\f\\σ for feS(K)
and x e K, and

L(iii) for each / e S(K) the mapping x—>fx of K into S(K) is
continuous.

Then S(K) will be called a locally convex Segal algebra.

REMARK 2.7. (i) The set AS(K) of Fourier transforms of func-
tions in S(K) is a subalgebra of A{K) with topology carried over
from that of S(K).
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(ii) Because of Remark 2.5, for every σ eΣ there exists Cσ such
that 11/11, <ς CJI/IU for all / in Sσ(K).

(iii) For / e S(K), h e L\K), σeΣ, the Bochner integral

ll llσ-ί Hy)fym(dy) exists in Sa(K). As in ([14], VI, 2.2(ii))

II \\Λ h{y)fym{dy) also exists in L\K) and it can be proved in

a similar manner that the integral is equal to /&*/•
Because of (ii) the two integrals are equal and thus

WΛlλ h{y)fym{dy)=h*f .
JK

So

^ ί \\h(y)fv\\am(dy)
JK

^\ \h(y)\\\f,\Umffly)

^ Vo\κ\h{y)\ \\f\\σm(dy) =

Since S(K) is an ideal h*feS(K).
(iv) To any compact subset F of K and σeΣ, there exists a

constant CF,σ such that for each feS(K) with / vanishing outside
F we have | | / | | σ ^ C^WfW,. In fact, GFtO can be chosen to be | | τ | | ,
where τ is a function as in Remark 2.2 (ii) which equals 1 on F.

(v) For a finite subset Σ' of Σ the set Π {Sσ(K): σeΣ'} with
II IU, = m a x { | | . | L * e r } is a Banch algebra and \\fx\\Σ, ^ Vi>\\f\U>
for / e S(K) where 7]Σ, = max {ησ: σ e Σ'}. So we can assume that Σ
is saturated with respect to suprema of finite subsets of Σ.

(vi) Given s > 0, /e£( !£), <*&Σ there exists a neighborhood U
of the identity e in K such that \\f*u-f\\σ<ε/2 for ueL\K) with
supp u c Uf u ^ 0 and

THEOREM 2.8. AS(K) is a regular, semi-simple locally multipli-
catively convex algebra in CQ(K) which has an approximate unit
{φa:aeD} such that φa belongs to C0Q(K) and \\φa\\i = 1 for all a.
If K is first countable then {φσ} can be chosen as a sequence.

Proof. Regularity follows from Remark 2.2 (iii). Let ^ be a
basis of compact symmetric neighborhoods of identity e in K. We
direct the net by
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where

a' = (U',n')^ (U,n) =a

if and only if U' aUy n' >̂ n.
For Ue^/ let fσ = {m{U)Yιζϋ9 for neN use ([4], 2.6) to select

va in S(K) with va in C0Q(K) such that

I I Λ - ^ I L < - .
n

Define ua = llvJIr1^ and φa = ί&α; then routine estimates using
Remark 2.7 (iii) give

I!^*/-/IL<|-^II/IL + HΛ*/-/H,

for each σ<=Σ,fe S(K) .

Let ε > 0, / e S(ϋΓ), σ G I' be arbitrary.
Let neN be such that y]σ\\f\\σ < nε/i and ί/e <?/. Using Remark

2.7 (vi), we have for a' ^ a = (U, n),

\\Ua,*f ~ f \ \ σ £ Λ ^ H / H σ + Wfu>*f - f\\a
n

n

< 6/2 + 6/2 = 6.

Thus {uα: α e ΰ } is an approximate unit for S(K) so that {φa: ae D)
is an approximate unit for AS(K).

REMARK 2.9. If {Sσ(K): σeΣ} is a collection of Segal algebras
then S0(K) = f\{Sσ(K): σ eΣ} with the topology given by norms
{|| \\σ: σeΣ} is a sequentially complete locally convex Segal algebra.
Also if {feL\K)JeCQ0(K)}^S(K)^S0(K) and S(K) is a translation
invariant ideal then S(K) is a Segal algebra. In fact, all locally
convex Segal algebras are essentially of this type as we show below.

THEOREM 2.10. Let S(K) be as in Definition 2.6. Then there
exists a collection {Ta{K):σeΣ} of Segal algebras such that S(K) is
a dense subset of TQ(K) = f| {Tσ(K):σeΣ}.

Proof. Let Tσ(K) be the completion of S(K) in Sσ(K). Then
Tσ(K) is a Banach L^iΓί-module. Also in view of Theorem 2.3 and
Remark 2.2 (ii), (v), and (viii) Tσ(K)*L\K) is dense in {Ta(K)t || ||σ)
So by Remark 2.4 (i) Ta{K) is a Segal algebra. Since S(K) is dense
in each (Tσ(K), || | |σ), we have that S(K) is dense in T0(K).
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REMARK 2.11. It follows from the above theorem and Remark
2.4 (ii) that the structure space of S(K) is

The following result shows that the ideal theory of S(K) is same
as that of L\K).

THEOREM 2.12. There exists a bijective correspondence between
the family of all closed ideals of S(K) and the family of all closed
ideals of L\K) in the sense that every closed ideal Is of S(K) is of
the form IΠ S(K) where I is a (unique) closed ideal in L\K). In
fact I is the closure of Is in U(K). In particular Is and I have
the same zero sets.

The proof for the Banach algebra case follows from Burnham
[2] and also from obvious modification of ([7], 39.32 (u)) which can
further be adapted to locally convex case in view of Theorem 2.10
above. For the locally convex Frechet algebra case the result has
also been noted in ([3], p. 49).

COROLLARY 2.13. A subset I of S(K) is a closed ideal if and
only if it is a closed translation-invariant subspace.

Proof. It is enough to show that a closed translation-invariant
subspace / of S(K) is an ideal in S(K). Let fel and heL\K).
Then as in Remark 2.7 (iii) for each σ e Σ h*f is in the closure of
I in Sσ(K). Also h*f is in S(K). So h*f is in the closure T of I
in S(K) and hence in I.

3* Spectral synthesis in Segal algebras* We assume in this
section that K = <^fb(K) so that K is the structure space of S(K)
where S(K) is as in Definition 2.6. This assumption is not needed
in some of the results proved below.1

For a closed subset E of K let

I{E) = {feS(K):f = 0 on E) ,

JQQ(E) — {feS(K):f is zero on an open neighborhoood of

E in K and has compact support} ,

and

J(E) = J00(E) .
1 For instance, the Wiener Tauberian Theorem is true if the extra condition that

S(K) is regular on ̂ b(K) is imposed. We take this opportunity to note that this con-
dition for L'{K) in ([4], Theorem 2.12) has been omitted by mistake.
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E will be called spectral for S(K) if J{E) = I{E) and Ditkin or
Calderon for S(K) if each / in I(E) is in the closure of f*J00(E) in
S(K).

REMARK 3.1. (i) The proof for the group case can be modified
to give that if φ e A(K) and φ(j) Φ 0 at a point 7 of K then there
is a ψ in AJJC) such that ψ(χ) = l/φ(χ) for each χ in some neigh-
borhood of 7. In view of Theorem 2.8, AS(K) is a standard function
algebra ([14], II, 1.1) and in particular A(K) is a standard function
algebra. Further if ^ is a dense ideal in A(K) then by ([14], Π,
1.4 (iii)) Ajjί) c ^ and thus L(i) can be replaced by denseness of
S(K) in i/1(ΛΓ) just as in the group case.

(ii) Theorem 2.8 gives that E is Calderon if and only if each
/ in I(E) is in the closure of f*J(E). It also gives that the empty
set is Calderon; this fact is usually expressed by saying that Ditkin's
condition is satisfied at ooβ

(iii) In view of (ii) above and Corollary 2.13 we have Wiener-
Tauberian theorem: If / belongs to S(K) and if / vanishes nowhere
on K\ then the closed translation invariant subspace of S(K) generated
by / is S(K) itself.

(iv) E is spectral for S(K) if and only if it is so for L\K).
(v) If E is a Calderon set for L\K) then it is so for S(K). In

particular, points in Z(K) are Calderon for S(K) by ([4], 3.9).

REMARK 3.2. Because of Remark 2.2 (ii) a careful reading of
(39.24), (39.39), and (39.42) in [7] gives the following results.

( i ) Let Δ denote the set of 7 in I" such that S(K) satisfies
Ditkin's condition.

(a) If E is a closed subset of K such that the boundary dE c Δ
and E contains no nonvoid perfect sets then E is a Calderon set for
S(K).

(b) If E is a closed nonspectral subset of Δ then there exists
a continuum of closed ideals in S(K) with zero set E.

(ii) If E is a closed subset of K such that Ed Z{K) and 3E
contains no nonvoid perfect sets then E is a Calderon set for AS{K).

(iii) Suppose that K is discrete at points of K\Z(K). If E is
a closed set in K and E Π Z(K) contains no nonvoid perfect sets then
E is a Calderon set for AS(K). In particular if K\Z{K) is discrete
and Z(K) is countable then every closed subset of K is Calderon for
AS(K).

(iv) If E is a closed nonspectral set in Z(K) then there exists
a continuum of closed ideals in AS(K) with zero set E.

DEFINITION 3.3. Let E be a closed subset of K.
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(a) E will be called strong Dίtkin for S(K) if there exists a
net {fa: aeD} in S(K) such that

(i) for each a, fa — 0 in a neighborhood of E and has compact
support,

(ii) for each σ eΣ, sup {\\fa\\E,σ: aeD} < co where | | / α |L σ =
sup {||/β / | | α : / 6 J(JE?), | | / |U^1} and

(iii) for feI(E),f*f*-+f in S(K).
(b) E will be called ultra-strong Ditkin for S(J5L) if it satisfies

(i) and (iii) of (a) above and
(ii)' sup{| |/β | | 1:α6D}< - .
(c) E will be called sequentially strong Dίtkin for S(K) if there

exists a sequence {fn} in S(K) such that
( i ) for each n, fn = 0 in a neighborhood of £7 and has compact

support and
(ii) for each / e I(E), f*fn - / in S(K).

REMARKS 3.4. (i) If E is strong Ditkin or sequentially strong
Ditkin then it is clearly Calderon. Also by Remark 2.7 (iii) E is
ultra-strong Ditkin implies that it is strong Ditkin.

(ii) Wik [25] defined a closed subset E of G with G = Z to be
strong Ditkin for Lι(G) if there exists a sequence {vn} in I(i7) such
that vn*f -> / in !/((?) for each / in /(#).

(iii) ([16], 2.2 (a)) can be rewritten as;
E is strong Ditkin for LX(G) if and only if it is sequentially

strong Ditkin for Lι(G) if G is separable and metrizable. In fact as
argued in ([16], Theorem 1.3) we can apply the Banach Steinhaus
theorem and obtain that for a Banach Segal algebra S(K), a sequen-
tially strong Ditkin set for S(K) is strong Ditkin for S(JBL).

(iv) Because of Remark 2.2 (ii) RosenthaΓs proof of Theorem
2.4(b) [16] can be modified to give that if E is a closed subset of
K such that the boundary of E is sequentially strong Ditkin for
S(K) then E is sequentially strong Ditkin for S(K).2

(v) Theorem 2.8 gives that φ is ultra-strong Ditkin and it is
sequentially strong Ditkin in case K is first countable.

(vi) A finite union of strong Ditkin (ultra-strong Ditkin, sequen-
tially strong Ditkin) sets is strong Ditkin (respectively ultra-strong
Ditkin, sequentially strong Ditkin).

REMARK 3.5. As already noted in Remark 3.1 (iv) the points
in the center Z(K) of K are Calderon for S(K). Since 7 6 Z(K) and
/ e S(K) need not imply 7/ is in S(K), we cannot have an analogue
of Corollary 3.7 [4] straightaway. However points in Z(K) are

2 For related results on ultrastrong Ditkin sets see our forthcoming paper in Proc.
Amer. Math. Soc.
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ultra-strong Ditkin for S(K) and they are sequentially strong Ditkin
in case K is first countable and σ-compact as we show in Theorem
3.6 below. In fact we show in Remark 3.9 that if E is ultra-strong
Ditkin (respectively sequentially strong Ditkin) for L\K) then it is
so for S(K).

THEOREM 3.6. Let jeZ(K). Then there is a net {fa:aeΛ} in
S(K) such that

( i ) l l / « l l i < 3 for all a.

(ii) If f e S(K) and f(j) = 0 then for each σ e Σ

lim||/-/*/β||, = 0.
a

(iii) Each fa vanishes in a neighborhood of 7 in K and has
compact support.

If K is first countable and cr-compact then {fa} can be chosen as
a sequence.

Proof. By Theorem 2.8 there exists an approximate unit {uβ}βeD
for S(K) such that Wuβlh = 1 and uβeAQQ(K) for all β. The net {/„}
will be directed by the set A — {(F, n, β): Fez incompact symmetric,
neN, βeD} where a' = (F\ n', β') ̂  {F, n, β) = a signifies F' z> F,
n' ^ n, β' ̂  β. Given a = (F, n, β) select gFtδ as in Lemma 3.2 [4]
so that gF,r> — 1 in a neighborhood Γ of 1 where δ = (XIn) and then
define

ha = Ύ(uβ — uβ*gF,δ) and / α = w^*^ .

Then haeL\K) and H^IL = J J ^ — U^QFA\I < 3 and therefore, fae
L\K) and | | / α | | i < 3 . Also fa — ̂ . Aα has compact support and
hence faeS(K). Now by ([4], 2.2)

K(χ) = (ŵ  - Uβ*gFtδy(χ^) = ύβ(l - gFtS)(χ*7).

Thus ha = 0 in the neighborhood 7*Γ of 7. So (i) and (iii) are
satisfied.

Now to check (ii) let / e S(K) be such that f(j) = 0. Let σ e Σ
and ε > 0 be arbitrary; then there exists β1 (depending upon /, ε, and
σ) such that

VoWf -f*uβ\\σ<-ϊ- for all β ̂  ft .

Then

%ll/*w,9 - / * W ί i | | β < - l for all /9 ̂  A .
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Now (/7)"(1) = 0, so from the proof of Theorem 3.3 [4] there exists
a! = (F1, n\ β1) (depending upon β19 f, ε, and σ and, therefore, on /, ε,
and σ) such that

\\Ίf ~(Ίfh(Ίha)\\i< „ „ S , f o r a^a'.

By Theorem 3.6 [4], (7./>(7/ϋ - 7(/*/ϋ and

= IIZ-Z*Mi-

Let β0 G D be such that βQ ;> &, βQ ^ /S' and put a0 = (Ff, n\ β0).
Then for a = (F, rc, /3) ^ α:0,

= 11/ - /*^i + / * ^ ! - f*uβ*ha + f*uβl*ha - f*uβ*ha\\σ

^ 11/ - /^JU + ίK*(/ - /*WIU

< ε/8 + ε/8 + ε/4 3 = ε .

REMARK 3.7. A direct proof of the above theorem can also be
given along the following lines by first generalizing Lemma 3.2 [4].

(a) If 7 e Z(K), F is a compact symmetric subset of K, ΓQ is a
compact neighborhood of 1 in K and δ > 0 then there exists g e L\K)
such that

( i ) g — 1 on a neighborhood of 7,
(ii) g has compact support contained in Γ — ΓQ*Γ0*79

(iii) for each σ e Σ, \\g\\σ ^ 2CΓ,σ whereas ||flr||1<2 (where CΓ>σ

is as in Remark 2.7 (iv))
and

(iv) \\gi - τ(ί)flf||i < 3 for all « e F .
The function g is constructed as follows:

Let fli = {χeJf:|χ(3/)-7(2/)|<(3/12) for ?/eF}
and £Γa = {% e JK": Iχ(i/) — 11 < (5/12) for yeF}.

Then iϊx is a neighborhood of 7 and H2 is a neighborhood of 1
in K. So there exists an open symmetric neighborhood H of 1 with
HczΓ0 such that jar*7CJEΓ1 and i ί c ί ί 2 ([9], 3.2D).

Since π is a regular measure on K there exists a compact sym-
metric neighborhood Φ of 1 such that ΦaH and π(Φ) > (l/A)π(H).

By ([9], 3.2D) there exists a neighborhood Ψ of 7 such that

Φ*Ψ c iί*7 .

Since 7 6 Z(K), π(Φ*H*Ύ) - π(Φ*H) and τr(£Γ*7) - π(£Γ). There
exists glf g2 6 L\K) such that
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g1 — ξΦ a n d gt = ζB.r .

Let

then the rest of the proof involves computations similar to those in
Lemma 3.2 [4].

(b) Let {Uβ}βeD and Λ be as in Theorem 3.6 above.
Let fa = uβ— uβ*gF,δ where gF>δ is selected as in (a) above with

δ = 1/Λ. Then fa e S(K) and | |/ β | | i<"3, fa has compact support and
vanishes in a neighborhood of 7.

Let / e S(K) with /(T) = 0, σ e i? and ε > 0 be arbitrary; select
/30 such that β ^ β0 implies

There exists a compact symmetric set F o in K such that

Let nQ be such that 40^,^11/11! < noε.
Let α0 = (Fo, w0, /So). Then for a = (F, w, /S) ̂  α0,

11/ - Z ΛIU = 11/ - f*(uβ

Since /(T) = 0, for a ^ a0

11 / * ^ , ί IL ^ I \ I f(x) I i gFAy*%) ~ ^)QFΛV) i dm{x)dm{y)

£ \ \f(x)\-dm(x) + \ \f(x)\(\\(ffrM

-̂11/111 + 211 ,̂11^ \f(x)\dm(x)
n0 JK\F0

< — ^ — ί — + —1 = — - — .

So

11/-/*/«!!.<-I-+ 4 = e for α ^ .
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REMARKS 3.8. (i) The hypergroup K defined (cf. [4], 4.6) and
studied by Dunkl and Ramirez [6] is first countable and σ-compact.
Also K is discrete at points of K\Z{K) and Z(K) = {1}. Thus by
the above theorem and Remarks 3.5 (iv) and (v) every closed subset
of K is sequentially strong Ditkin and hence is also strong Ditkin
in case S(K) is a Banach algebra, we note that this result is new
even when S(K) = L\K) and is partially in contrast with the cor-
responding result for the group case where every nondiscrete locally
compact abelian group G contains nonspectral closed sets.

(ii) On the other hand, points in K need not even be spectral
sets for A(K) by ([4], §4) and therefore, by Remark 3.1 (iv) for
AS(K).

REMARK 3.9. Theorem 3.6 can also be deduced from the following
discussion:

Let X be a locally compact Hausdorff space and A a regular
Banach algebra in C0(X) with structure space X. Let B be a sub-
algebra of A which is either a dense ideal or contains C00(X) Π A
equipped with a locally convex topology given by seminorms
{\\.\\σ:σeΣ} satisfying:
for some rja > 0,

\\φf\\σ ^ Vo\\φ\\Λ\\t\\σ for φeA,ψeB

such that φψeB.
Then B has separately continuous multiplication so that B is a

locally convex algebra. We further suppose that B has an approximate
unit {φβ: βeD} such that

p = aup{\\φβ\\A:βeD} < oo .

Let E be a closed subset of X. E will be said to be ultra-strong
Ditkin for A if there exists a net {ψa:ae A) in C00(X) n A such that

( i ) each ψa vanishes in a neighborhood of E,
(ii) X = sup{||^β |L ι:αeΛ} < oo

and (iii) for each φ in A that vanishes on E,

\\φψa-φ\\A >0.

We shall say that E is ultra-strong Ditkin for B if there exists
a net {wt:te T} in C0Q(X) Π B satisfying (i) and (ii) with φa replaced
by wt and A by T and (iii) with ψa replaced by wtf A by B and || \\A

b y H IU for each σ.
We shall now show that if E is ultra-strong Ditkin for A then

it is so for B.
Let T = {{a, β): a e Λ, β e D} and
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t, = (a19 &)/(α:2, β2) = U

if and only if

aλ ^ a2 , ft ^ ft .

For £ = (α, β), let wf = ̂ «φ^; then wt e C00(X) Π -B and vanishes in a
neighborhood of E.

Also

Let ε > 0, σ e Σ and φ e B vanishing on E be arbitrary; then there
exists β0 in D (depending upon a, ε, and φ) such that

TJaWφ — φφβ\\σ < for β ^ βQ

and

VσWφψβ ~ψψβ,\\o < S for β ^ β 0 .

Since \\φ — φψa\\A — > 0 there exists α0 (depending upon φ, ε, α, and ft
and therefore on 9, ε, σ) such that

Vσ\\φ - ^ f J L I i ^ o l l . < e/4 for a ^ a0 .

Now for ί = (a, β) ^ (α0, β0) = U

\\φ — φwtWσ = \\φ — φφ^

ψψβ.Wa + Vo\\<Pβ0\\σ\\<P - ψfa\\A +

β\\o\\φ«\\A

< ε/4 + ε/4 + ε/2 = ε „

The analogue for sequentially strong Ditkin sets in A and B is clear.

4* Examples*

4.1. In this section we shall give examples of Segal algebras.
We shall first recall Lorentz spaces introduced by Lorentz [12] and
further studied by Hunt [8], Blozinski [1], O'Neil [13] and Yap [26].

Let l < p < o o , l < : g < c o . Let p' be the conjugate of p i.e.,
p' = p/(p - 1).

Let / be a (complex valued) measurable function defined on a
measure space (X, μ). For y ^ 0, we define

m(f,y) = μ{xeX:\Ax)\>y}.
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For x ^ 0, let

f*(x) = inf {y: y > 0 and m(/, y) ^ a;}

= sup {y:y > 0 and m(/, 2/) > a} .

For x > 0, let

and let

then L(Plff,(-X") = {/: il/||(ί>,g) < °°} equipped with || ||(2>>ff) is called a
Lorentz space.

By [13], | | / | | p^ | | / lkp,^2>ΊI/ l lp so that LiPtP) = L». The following
fact is a special case of ([13], 2.6).

If p, r, 8 are real numbers such that 1 < r, s < oo? 1/r + 1/s > 1
and 1/p = 1/r + 1/s - 1 then

EXAMPLE 4.2. (a) Let 1 <: p < oo,

Then S(JSL) is a Segal algebra;
S( i ) Let / 6 L\K) with feCQQ(K).
Then feC0(K) by ([9], 12.2, 7.3) so f^L°°{K) n L 1 ^ ) and there-

fore, feL*(K).
S(ii) follows from ([9], 3.3B).
S(iii) follows from ([9], 5.4H, 2.2B).
We note that we can modify ([27], 2.4) to prove that BP(K)

has factorization property if and only if p = 1 (K is arbitrary) or JST
is discrete (1 <; p < oo).

(b) Let Λ c [1, oo); by Remark 2.9 S(Z") - ς\p*Λ BP(K) is a locally
convex Segal algebra with a generating family of norms given by
{sp: peΛ} where

Sptf) = ll/Hi+ 11/11, for feS(K).

EXAMPLE 4.3. (a) Let 1 <g p < oo and K be nondiscrete.
Let S(K) - (̂-BΓ) - {/: / e L\K)JzL%K)},

/ feS(K).
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Then S(K) is a Segal algebra;
S( i ) Let / e L\K) with / e CJK).

Then feL"(K), so feS(K).
S(ii) Let feS(K),xeK; then | | / . | | s ^ | | / | | s using ([4], 2.2).
S(iii) Let /(^0) e S(iί), x 6 K and ε > 0. Then ([4], 2.3) implies

that there is a neighborhood V of x such that

IIΛ-/.IL<e/2 for yeV.

Choose φeCm(K) such that

Let F = suppφ; then

L \?(7)\'dπ(y)< (εβ)> .
JK\F

Now N(F, x, ε) = {yeK: \j(y) - 7(x)\ < ε/A\\f\\p for all yeF} is a
neighborhood of x using ([9], 7.3, §12).

So W = Vf\N(F, x, ε) is a neighborhood of a; and y e W, we have
by ([4], 2.3)

nΛ - ΛII; = UΛcr)
JZv

= (j7(ίθ -7(3) |*J/c

= t |7(l/)-7(!B)|'|/(7)|
JF

\Ί{y) -
K\F

so

Thus |IΛ -ΛIU<e.
Hence the mapping y-+fy is continuous from if into S(K).
(b) Let Λ c [1, oo); by Remark 2.9 S(K) = Πpe^ Ap(iί) is a locally

convex Segal algebra with a generating family of norms given by
(V p e i } where,

β,(/) = ll/lli + Λ for feS(K).

As in [11], Ap(K)czAq(K) Ίί p £ q so iί the infimum p0 of yl is in Λ
then ΠpeΛ Ap(iΓ) = AP0(K) but still the topologies are different unless
A is finite.
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EXAMPLE 4.5. (a) Let l<p<oo and l<>q<oo; S(K) = A{p,q)(K) =
{f .feLXK) and feL{p,q)(K)} and for /eS(K), | | / | | β = ll/IL+ίl/IU).
Then S(K) is a Segal algebra;

S ( i ) Let feL\K) with feC00(K) then by [1] feLip,q)(K) so

S(ii) It is easy to verify that | | (Λ)Ί| ( P f ί ) ^ i l/ lko using
w((/.Γ, ») ^ m(/, v) for y^O.

S(iii) The proof of Yap ([29], 2.3) can be modified to prove that
the mapping %->fx is continuous from K into S(K).

(b) Let Λc(l, oo) χ [ l , oo),
Then by Remark 2.9 S(i£) = f}{p>q)eάA{Ptq)(K) is a locally convex

Segal algebra with a generating family of norms given by

{Sip,q): (p, q) e A]

where s(p,q)(f) = II/IL + I I / I U ) for feS(K).
The authors would like to thank Mr. Om Prakash for useful

discussions and Professor K. A. Ross for encouragement, useful
comments and suggestions.
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