ON CHARACTERIZATIONS OF EXPONENTIAL POLYNOMIALS

Philip G. Laird

Abstract

This paper considers some characterizations of exponential polynomials in $C(G)$, the set of all continuous complex valued functions on a σ-compact locally compact Abelian group G. For $f \in C(G), U_{f}$ will denote the subspace of $C(G)$ obtained by taking finite linear combinations of translates of f. It is known that f is an exponential polynomial if and only if U_{f} is of finite dimension. Our main result is to show that f is an exponential polynomial when U_{f} is closed in $C(G)$ if $C(G)$ is given the topology of convergence uniform on all compact subsets of G.

Further characterizations of exponential polynomials are given when G is real Euclidean n-space, R^{n}.

A function $b \in C(G)$ is additive if $b(x+y)=b(x)+b(y)$ for all $x, y \in G$ and $g \in C(G)$ is an exponential if $g(x+y)=g(x) g(y)$ for all $x, y \in C(G)$. An exponential polynomial is a finite linear combination of terms $h=b_{1}^{q_{1}} b_{2}^{q_{2}} \cdots b_{m}^{q_{m}} g$ where $b_{1}, b_{2}, \cdots, b_{m}$ are additive, $q_{1}, q_{2}, \cdots, q_{m}$ are nonnegative integers and g is an exponential.

If f is an exponential polynomial, it is easy to see that U_{f} is finite dimensional. For if h is as above, then $T_{\alpha} h: x \rightarrow h(x-\alpha)$ is a finite linear combination of terms $b_{1}^{r_{1}^{r}} b_{2}^{r_{2}} \cdots b_{m}^{r_{m} g}$ for each $\alpha \in G$ where $r_{j}=0,1, \cdots, q_{j}$ for $j=1,2, \cdots, m$. A result of Engert [5] shows that if U_{f} is finite dimensional, then f is an exponential polynomial. The proof of this result when G is any σ-compact locally compact Abelian group is naturally more involved than when G is merely R or R^{n}. Proofs for the case of $C(R)$ may be found in Anselone and Korevaar [1] and Loewner [8] who also refers to $C\left(R^{n}\right)$.

Throughout this paper, the only topology considered on $C(G)$ is that of convergence uniform on all compact subsets of G. With G being σ-compact, let G be the countable union of compact sets K_{p}. Let $S_{p}(f)=\sup \left\{|f(x)|: x \in K_{p}\right\}$ and $d(f, g)=\sum_{p=1}^{\infty} 2^{-p} \min \left(1, S_{p}(f-g)\right)$ for $f, g \in C(G)$. Then d is a metric for $C(G)$ and $C(G)$ is complete in this metric.

With such a topology for $C(G)$, if U_{f} is finite dimensional, it is closed. The converse to this is shown here (Theorem 3) so that in $C(G)$,
f is an exponential polynomial $\Longleftrightarrow U_{f}$ is finite dimensional
$\Longleftrightarrow U_{f}$ is closed in $C(G)$.

In showing that when U_{f} is closed, it is then finite dimensional, the following notation shall be used throughout. As above, assume that $G=\bigcup_{p=1}^{\infty} K_{p}$ where each K_{p} is compact. For a given function f in $C(G)$, set

$$
\begin{gathered}
S_{p}=\left\{g \in C(G): g=\sum_{k=1}^{p} a_{k} T_{\beta_{k}} f\right. \\
\text { where } \left.\left|a_{k}\right| \leqq p \text { and } \beta_{k} \in K_{p} \text { for } k=1,2, \cdots, p\right\}
\end{gathered}
$$

It is clear that $U_{f}=\bigcup_{p=1}^{\infty} S_{p}$. The method of proof is one suggested by Edwards [4], pages $38-39$ in establishing the result for functions on the circle group.

Lemma 1. $\quad S_{p}$ is pointwise equicontinuous in $C(G)$.
Proof. Let $x \in G$ and $\varepsilon>0$. Let B denote the set of all neighborhoods of 0 in G. It suffices to show that there is a $U \in B$ such that
$|f(x-\alpha)-f(y-\alpha)|<\varepsilon / p^{2}$ for all $\alpha \in K_{p}$ and all y with $y-x \in B$.
Then

$$
|g(x)-g(y)|<\sum_{k=1}^{p}\left|a_{k}\right| \varepsilon / p^{2} \leqq \varepsilon
$$

whenever $y-x \in U$ and $g \in S_{p}$.
Set $F=x-K_{p}$ so if $\alpha \in K_{p}, \beta=x-\alpha \in F$. For each $\beta \in F$, there exists $V_{\beta} \subset B$ such that $|f(z)-f(\beta)|<\varepsilon / 2 p^{2}$ whenever $z-\beta \in V_{\beta}$. For this V_{β}, there is a $W_{\beta} \in B$ such that $W_{\beta}+W_{\beta} \subset V_{\beta}$. With $\left\{\beta+W_{\beta}: \beta \in F\right\}$ forming an open cover for the compact set F, select a finite subcover $\left\{\beta_{j}+W_{\beta_{j}}\right\}_{j=1}^{m}$. Let $W=\bigcap_{j=1}^{m} W_{\beta_{j}}$ and $U=$ $W \cap(-W)$ so $U \in B$. If $\alpha \in K_{p}$ and $x-\alpha \in F, x-\alpha \in \beta_{l}+W_{\beta_{l}}$ say. Then

$$
y-\alpha=y-x+x-\alpha \in U+x-\alpha \subset \beta_{l}+V_{\beta_{l}}
$$

which also contains $x-\alpha$. Hence $f(x-\alpha)$ and $f(y-\alpha)$ differ from $f\left(\beta_{l}\right)$ by amounts in modulus less than $\varepsilon / 2 p^{2}$ and the result follows.

Lemma 2. S_{p} is compact in $C(G)$.
Proof. Use is made of the condition that in $C(G)$, a closed equicontinuous set S is compact if $S[x]=\{f(x): f \in S\}$ is compact in C (see, for example, [3], page 34 or [6], page 234). With f being continuous and $x \in G,\left\{f(x-\beta): \beta \in K_{p}\right\}$ is compact whence $S_{p}[x]$ is compact in C. To show that S_{p} is closed, let $\left\{g_{q}\right\}$ be any Cauchy
sequence in S_{p} with $g_{q}=\sum_{k=1}^{p} a_{q, k} T_{\beta_{q, k}} f$. Since $\left|a_{q, 1}\right| \leqq p$ for all positive integers q, a convergent subsequence $\alpha_{q^{\prime}, 1}$ may be found with limit, say a_{1}, and $\left|a_{1}\right| \leqq p$. Continue in this manner to find convergent subsequences $\left\{a_{r, k}\right\}_{r=1}^{\infty}$ for $k=1,2, \cdots, p$ with respective limits a_{k} where $\left|a_{k}\right| \leqq p$. Now use $\left\{\beta_{r, k}\right\}_{r=1}^{\infty} \subset K_{p}$ for $k=1,2, \cdots, p$ and K_{p} is compact to find convergent subsequences $\left\{\beta_{v, k}\right\}_{v=1}^{\infty}$. With $a_{v, k} \rightarrow a_{k}$, $\left|a_{k}\right| \leqq p$ and $\beta_{v, k} \rightarrow \beta_{k} \in K_{p}$ as $v \rightarrow \infty$ for $k=1,2, \cdots, p$, it follows that $g_{v} \rightarrow g$ for some $g \in S_{p}$ So $g_{q} \rightarrow g$ as $q \rightarrow \infty$ showing that S_{p} is closed. Hence S_{p} is compact in $C(G)$.

Theorem 3. If U_{f} is closed in $C(G)$, then U_{f} is finite dimensional.

Proof. Since $U_{f}=\bigcup_{p=1}^{\infty} S_{p}$ is closed in the metric space $C(G)$, it follows by Baire's category theorem applied to U_{f} that there must be as S_{p} that is not nowhere dense. As this S_{p} is closed, it must have a nonvoid interior. Hence U_{f} contains a compact neighbourhood of zero. So, by Riesz's theorem (see, for example [3], page 65) U_{f} is finite dimensional.

The remainder of this article, concerns exponential polynomials in $C\left(R^{n}\right)$. These functions in $C\left(R^{n}\right)$ are finite linear combinations of terms $\quad x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{n}^{p_{n}} \exp \left(a_{1} x_{q}+a_{2} x_{2}+\cdots+a_{n} x_{n}\right) \quad$ where $\quad x=$ $\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in R^{n}, \quad p_{1}, p_{2}, \cdots, p_{n}$ are nonnegative integers and $a_{1}, a_{2}, \cdots, a_{n}$ are complex numbers. In restricting G to be R^{n}, little economy of the proof of Theorem 3 is gained except for Lemma 1. However, it is considerably easier to show for $C\left(R^{n}\right)$ compared with $C(G)$ that if U_{f} is finite dimensional, then f is an exponential polynomial. A new and simple proof is as follows.

Suppose that U_{f} has finite dimension m where $m>1$. (If $m=0$, $f=0$ and if $m=1$ a simpler version of the following suffices.) Let $g_{1}, g_{2}, \cdots, g_{m}$ be a basis of U_{f} and $g=\left(g_{1}, g_{2}, \cdots, g_{m}\right)$. Then $T_{\alpha} g=A(\alpha) g$ where $A(\alpha)$ is an $m \times m$ complex matrix. From $T_{\alpha+\beta}=T_{\alpha} T_{\beta}$, one finds that $A(\alpha+\beta)=A(\alpha) A(\beta)$ and $A(0)=I$, the unit matrix. Since $T_{\alpha} f \rightarrow T_{\beta} f$ as $\alpha \rightarrow \beta, A(\alpha)$ is continuous. So $z \in R^{n}$ near 0 may be chosen and fixed so that $A(z)$ is nonsingular. It is clear from

$$
A(x)=\left(\int_{x_{1}}^{x_{1}+z_{1}} \cdots \int_{x_{n}}^{x_{n}+z_{n}} A(y) d y\right)(A(z))^{-1}
$$

that each partial derivative of A exists. Letting $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ be the standard basis for R^{n},

$$
D_{j} g=\lim _{h \rightarrow 0}\left(A\left(-h e_{j}\right)-A(0)\right) g!h=C_{j} g,
$$

where the matrix $C_{j}=D_{j} A(0)$. So $D_{j}\left(\exp \left(-C_{j} x_{j}\right) g\right)=0$ showing
that $g=\exp \left(C_{j} x_{j}\right) \phi_{j}$ where ϕ_{j} is independent of x_{j} for $j=1,2, \cdots, n$ and ϕ_{j} takes value in R^{m}.

From $\exp \left(C_{1} x_{1}\right) \phi_{1}=\exp \left(C_{2} x_{2}\right) \phi_{2} \quad$ with $\quad x_{1}=0 \quad \phi_{1}\left(x_{2}, x_{3}, \cdots, x_{n}\right)=$ $\exp \left(C_{2} x_{2}\right) \phi_{2}\left(0, x_{3}, x_{4}, \cdots, x_{n}\right)$. Successively equating $\exp \left(C_{j} x_{j}\right) \phi_{j}=$ $\exp \left(C_{j+1} x_{j+1}\right) \phi_{j+1}$ with $x_{j}=0$ for $j=1,2, \cdots, n-1$, we find

$$
g=\exp \left(C_{1} x_{1}\right) \exp \left(C_{2} x_{2}\right) \cdots \exp \left(C_{n} x_{n}\right) d
$$

where $d \in R^{n}$ is constant. As it is well known that the elements of $\exp (C x)$ are exponential polynomials in x ([2], page 46), it follows that the components of g are exponential polynomials. Hence f is an exponential polynomial in $C\left(R^{n}\right)$ when U_{f} is finite dimensional.

Other characterizations of exponential polynomials in $C\left(R^{n}\right)$ are now given. For $C(R)$, one such is that of the set of all solutions to all nontrivial linear ordinary differential equations with constant coefficients. For $C\left(R^{n}\right)$ with $n>1$, one cannot identify the set of all exponential polynomials with the set of all solutions to all nontrivial linear partial differential equations with constant coefficients. However, a necessary and sufficient condition that $f \in C\left(R^{n}\right)$ be an exponential polynomial is that there exists n nonzero linear differential operators $L_{j}=L_{j}\left(D_{j}\right)$ with constant coefficients where each L_{j} only involves the j th partial derivative D_{j} and $L_{j} f=0$ for $j=1,2, \cdots, n$. A proof of this given by Laird [7], page 816, is reproduced here for completeness. The necessity of the condition is obvious. Conversely, if $f \in C\left(R^{n}\right)$ and if $L_{1} f=0$, then f is a finite sum of terms $A\left(x_{2}, x_{3}, \cdots, x_{n}\right) x_{1}^{q_{1}} \exp a x_{1}$. With $L_{2} f=0, L_{2} A=0$ and so each A is a finite sum of terms $B\left(x_{3}, x_{4}, \cdots, x_{n}\right) x_{2}^{q_{2}} \exp b x_{2}$. Continuing in this manner, one finds that f is an exponential polynomial.

The following is an extension of the above result.

Theorem 4. Let $f \in C\left(R^{n}\right)$ and let $A=\left(a_{j_{k}}\right)$ be a real nonsingular $n \times n$ real matrix. Then a necessary and sufficient condition that f be an exponential polynomial is that there exist n nonzero polynomials $P_{1}, P_{2}, \cdots, P_{n}$, each of one variable, such that

$$
P_{j}\left(\alpha_{j_{1}} D_{1}+a_{j_{2}} D_{2}+\cdots+a_{j_{n}} D_{n}\right) f=0
$$

for $j=1,2, \cdots, n$.
Proof. Let $u_{k}=\sum_{m=1}^{n} b_{k m} x_{m}$ for $k=1,2, \cdots, n$ and $f(x)=g(u)$. Then

$$
D_{m} f(x)=\sum_{k=1}^{n} \frac{\partial g}{\partial u_{k}} \frac{\partial u_{k}}{\partial x_{m}}
$$

so that

$$
\sum_{m=1}^{n} a_{j_{m}} D_{m} f=\frac{\partial g}{\partial u_{j}}
$$

when $B=\left(b_{k m}\right)$ is chosen so that $B^{v}=A^{-1}$. The given condition is then $P_{j}\left(D_{j}\right) g=0$ for $j=1,2, \cdots, n$ which is equivalent to g and so to f being an exponential polynomial.

Theorem 5. Let $a \in R^{n}, f \in C\left(R^{n}\right)$ and $U_{f}(a)$ denote the subspace in $C\left(R^{n}\right)$ obtained from finite linear combinations of terms $f(x-t a)$ for $t \in R$. A necessary and sufficient condition that f be an exponential is that $U_{f}\left(a_{j}\right)$ be finite dimensional for n linearly independent vectors $a_{1}, a_{2}, \cdots, a_{n}$ in R^{n}.

Proof. The necessity is easily seen from $U_{f}(a) \subset U_{f}$ for all $a \in R^{n}$, and if f is an exponential polynomial, then U_{f} is finite dimensional.

The converse, which has been recognized by Loewner [8] when $\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$ is the standard basis, may be shown directly, or as follows. Let $f_{j}(t)=f\left(t a_{j}\right)$ for all $t \in R$ and $j=1,2, \cdots, n$. If each $U_{f}\left(a_{j}\right)$ is finite dimensional in $C\left(R^{n}\right)$, then $U_{f_{j}}$ is finite dimensional in $C\left(R^{n}\right)$. So each f_{j} is an exponential polynomial and there is a nonzero polynomial P_{j} so that $P_{j}(D) f_{j}=0$. With $D f_{j}=a . \operatorname{grad} f$, the conditions of the sufficiency part of Theorem 4 are satisfied. Hence f is an exponential polynomial in $C\left(R^{n}\right)$.

Acknowledgments. The author would like to thank Dr. R. V. Nillsen of the University of Wollongong for several helpful discussions and also acknowledge the use of the Science Citation Indices.

References

1. P. M. Anselone and J. Korevaar, Translation invariant subspaces of finite dimension, Proc. Amer. Math. Soc., 15 (1964), 747-752.
2. W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, Heath, Boston, 1965.
3. R. E. Edwards, Functional Analysis: Theory and Applications, Holt, Rinehart and Winston, New York, 1965.
4. - Fourier Series, A Modern Introduction, Volume II, Holt, Rinehart and Winston, New York, 1967.
5. M. Engert, Finite dimensional translation invariant subspaces, Pacific J. Math., 32 (1970), 333-343.
6. J. L. Kelly, General Topology, Van Nostrand, Princeton, 1955.
7. P. G. Laird, Entire mean periodic functions, Canad. J. Math., 27 (1975), 805-818.
8. C. Loewner, On some transformations invariant under Euclidean or non-Euclidean isometries, J. Math. Mech., 8 (1959), 393-409.
Received January 4, 1977 and in revised form July 12, 1978.
University of Wollongong
Wollongong, N. S. W. 2500
Australia
