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ON CHARACTERIZATIONS OF EXPONENTIAL
POLYNOMIALS

PHILIP G. LAIRD

This paper considers some characterizations of ex-
ponential polynomials in C(G), the set of all continuous
complex valued functions on a ^-compact locally compact
Abelian group G. For fe C(G), Uf will denote the subspace
of C(G) obtained by taking finite linear combinations of
translates of /. It is known that / is an exponential poly-
nomial if and only if Uf is of finite dimension. Our main
result is to show that / is an exponential polynomial when
Uf is closed in C(G) if C(G) is given the topology of con-
vergence uniform on all compact subsets of G.

Further characterizations of exponential polynomials are
given when G is real Euclidean w-space, Rn.

A function b e C{G) is additive if b(x + y) = b(x) + b(y) for all
x, y eG and ge C(G) is an exponential if g(x + y) = g(x)g(y) for all
x,yeC(G). An exponential polynomial is a finite linear combination
of terms h = Mιbp blmg where bl9 b2, , bm are additive, qί9 #2, ,qm

are nonnegative integers and g is an exponential.
If / is an exponential polynomial, it is easy to see that Uf is

finite dimensional. For if h is as above, then Tah: x —• h(x — a) is
a finite linear combination of terms b{ιbl2 b^mg for each a e G
where rό = 0,1, , q, for j = 1, 2, , m. A result of Engert [5]
shows that if Uf is finite dimensional, then / is an exponential
polynomial. The proof of this result when G is any (7-compact
locally compact Abelian group is naturally more involved than when
G is merely R or Rn. Proofs for the case of C(R) may be found
in Anselone and Korevaar [1] and Loewner [8] who also refers to
C{Rn).

Throughout this paper, the only topology considered on C{G) is
that of convergence uniform on all compact subsets of G. With G
being σ-compact, let G be the countable union of compact sets Kp.
Let S,(f) = sup {|/(s)|: x e Kp} and d(f, g) = Σ?=i 2"* min (1, Sp(f - g))
for f,ge C(G). Then d is a metric for C(G) and C(G) is complete
in this metric.

With such a topology for C(G), if Uf is finite dimensional, it is
closed. The converse to this is shown here (Theorem 3) so that in
C(G),

f is an exponential polynomial <=> Uf is finite dimensional

<=> Uf is closed in C(G) .
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In showing that when Uf is closed, it is then finite dimensional,
the following notation shall be used throughout. As above, assume
that G = U?=i Kp where each Kp is compact. For a given function
/ in C(G), set

±
where \ak\ ^ p and βk^Kp for k = 1, 2, , pi .

It is clear that Uf — U?=i Sp. The method of proof is one suggested
by Edwards [4], pages 38-39 in establishing the result for functions
on the circle group.

LEMMA 1. Sp is poίntwise equicontinuous in C(G).

Proof. Let xeG and ε > 0. Let B denote the set of all neigh-
borhoods of 0 in G. It suffices to show that there is a UeB such
that

\f(x — a) — f(y — a ) \ < ε/p2 f o r a l l aeKp a n d a l l y w i t h y — xeB .

Then

\g(χ) -g(y)\

whenever y — xe U and g e Sp.
Set F = x — Kp so if a e Kp, β = x — a e F. For each β e F,

there exists Vβ c B such that |/(s) —f{β)\ < ε/2p2 whenever z — β e Vβ.
For this Vh there is a TF̂  e B such that TΓ, + Wβ c T .̂ With
{/3 + W/j: /3 e F} forming an open cover for the compact set F,
select a finite subcover {βd + Wβ.}f=1. Let W = Πi^i Ŵ ^ and ?7 =
TFΠ (- W) so UeB. If α e JSΓP and ίi - α e ί 7 , # - 6K 6 βx + TΓ/,Z say.
Then

y — a = y — x + x — aeU + x — α c f t l F ^

which also contains x — a. Hence fix — α) and f(y — α) differ from
f(βι) by amounts in modulus less than ε/2p2 and the result follows.

LEMMA 2. Sp is compact in C(G).

Proof. Use is made of the condition that in C(G), a closed
equicontinuous set S is compact if S[x] — {f(x):feS} is compact in
C (see, for example, [3], page 34 or [6], page 234). With / being
continuous and xeG, {f(x — β):βeKp} is compact whence Sp[x] is
compact in C. To show that Sp is closed, let {gq} be any Cauchy
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sequence in Sp with 0ff = ΣLiαί,*2\ > j f e /. Since \aqΛ\<.p for all positive
integers q, a convergent subsequence aq.Λ may be found with limit,
say alf and |αj ^ p. Continue in this manner to find convergent
subsequences {αr,fc}~=1 for & = 1, 2, •••, p with respective limits αfc

where |αfc| <̂  p. Now use {/3r,fc}~=1 c ifp for A; = 1, 2, •••, p and Kp is
compact to find convergent subsequences {βVfk}7L^ With αv>fc —> ak,
ak\ ^ p and /5v,fc -> /9/c e Kp as v —> oo for k = 1, 2, , p, it follows

that gv-> g for some # 6 Sp So gq —> # as g —• oo showing that Sp is
closed. Hence Sp is compact in C(G).

THEOREM 3. If Uf is closed in C(G), then Uf is finite dimen-
sional.

Proof. Since Uf — \JP=1 Sp is closed in the metric space C(G),
it follows by Baire's category theorem applied to Uf that there
must be as Sp that is not nowhere dense. As this Sp is closed, it
must have a nonvoid interior. Hence Uf contains a compact
neighbourhood of zero. So, by Riesz's theorem (see, for example
[3], page 65) Uf is finite dimensional.

The remainder of this article, concerns exponential polynomials
in C(Rn). These functions in C(Rn) are finite linear combinations
of terms xlιxψ xln exp {axxq + a2x2 + + anxn) where x —
(xu x2, , xn) e Rn, plf p2, , pn are nonnegative integers and
a19 a2, , an are complex numbers. In restricting G to be Rn, little
economy of the proof of Theorem 3 is gained except for Lemma 1.
However, it is considerably easier to show for C(Rn) compared with
C(G) that if Uf is finite dimensional, then / is an exponential poly-
nomial. A new and simple proof is as follows.

Suppose that Uf has finite dimension m where m > 1. (If m = 0,
/ = 0 and if m = 1 a simpler version of the following suffices.) Let
9if g*> , 9m be a basis of Uf and g = (glf g2, , gm). Then Tag=A(a)g
where A{ά) is an m x m complex matrix. From Ta+β = TaTβ, one
finds that A(a + β) = A{a)A{β) and A(0) = I, the unit matrix. Since
Taf —• Tβf as a-* β, A(a) is continuous. So z e Rn near 0 may be
chosen and fixed so that A(z) is nonsingular. It is clear from

A(y)dy)(A(z)rί ,

that each partial derivative of A exists. Letting {eί9 e2, * ,en) be
the standard basis for Rn,

D3g = lim (A( — hej) — A(O))g/h = C3g ,

where the matrix Cj = D3 A(0). So Dj(exp( — CjXj)g) = O showing
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that g = exp (CjX^φj where φ3- is independent of x3 for j = 1,2, , n
and φj takes value in Rm.

From exp (C.x^φ, = exp (C2x2)^2 with xί = 0 &(a;2, α8, , a?J =
exp (C2#2)02(O, a?3, cc4, , ajj. Successively equating exp (C3x3)φ3 =
exp (CJ +1α?ί +1)0i+1 with a?,- = 0 for j =1,2, , n — 1, we find

flr = exp (C^i) exp (C2x2) exp (Cnxn)d

where deRn is constant. As it is well known that the elements of
exp (Cx) are exponential polynomials in x ([2], page 46), it follows
that the components of g are exponential polynomials. Hence / is
an exponential polynomial in C(Rn) when Uf is finite dimensional.

Other characterizations of exponential polynomials in C(Rn) are
now given. For C(R), one such is that of the set of all solutions
to all nontrivial linear ordinary differential equations with constant
coefficients. For C(Rn) with n > 1, one cannot identify the set of
all exponential polynomials with the set of all solutions to all non-
trivial linear partial differential equations with constant coefficients.
However, a necessary and sufficient condition that / 6 C(R*) be an
exponential polynomial is that there exists n nonzero linear differential
operators Lj = Lj(Dό) with constant coefficients where each L3 only
involves the ith partial derivative D3 and LJ — 0 for j = 1,2, , n.
A proof of this given by Laird [7], page 816, is reproduced here for
completeness. The necessity of the condition is obvious. Conversely,
if / e C(Rn) and if LJ — 0, then / is a finite sum of terms
A(x2, x8, , x^xl1 exp axx. With LJ = 0, L2A = 0 and so each A is
a finite sum of terms B(x3, x4, •• , xn)xg

2

2 exip bx2. Continuing in this
manner, one finds that / is an exponential polynomial.

The following is an extension of the above result.

THEOREM 4. Let f e C(Rn) and let A — (a3 k) be a real nonsingular
n x n real matrix. Then a necessary and sufficient condition that
f be an exponential polynomial is that there exist n nonzero poly-
nomials Plf P2, •••, Pn, each of one variable, such that

+ <*ΛA + + aSnDJf - 0

for j = 1, 2, •••, w .

Proof. Let uk = Σ l = 1 bkmxm for k = 1,2, -- ,n and f(x) = g(u).

Then

so that
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f a- D f-M.

when B = (bkm) is chosen so that Bτ = A"1. The given condition is
then Pj(JDs)g — 0 for j — 1,2, - -, n which is equivalent to g and so
to / being an exponential polynomial.

THEOREM 5. Let a e Rn, f e C(Rn) and Uf(a) denote the subspace
in C(Rn) obtained from finite linear combinations of terms f(x — ta)
for teR. A necessary and sufficient condition that f be an ex-
ponential is that Uf{βj) be finite dimensional for n linearly in-
dependent vectors a19 a2, , an in Rn.

Proof. The necessity is easily seen from Uf(a) c Uf for all a e Rn,
and if / is an exponential polynomial, then Uf is finite dimensional.

The converse, which has been recognized by Loewner [8] when
{a19 a2, « , α j is the standard basis, may be shown directly, or as
follows. Let fj(t) = f{taό) for all teR and j = 1, 2, , n. If each
Uf(a,j) is finite dimensional in C(Rn), then Ufj is finite dimensional
in C(Rn). So each fά is an exponential polynomial and there is a
nonzero polynomial Pά so that Pi(D)fί = 0m With Dfό — a. grad/,
the conditions of the sufficiency part of Theorem 4 are satisfied.
Hence / is an exponential polynomial in C(Rn).
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