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ON THE STRUCTURE OF FINITELY GENERATED
SPLITTING RINGS

JOHN FUELBERTH AND JAMES KUZMANOVICH

In this paper the structure of finitely generated splitting
rings for the Goldie theory is studied. First, right non-
singular finitely generated splitting rings with essential socle
which either are right finite dimensional or are right orders
in a semiprimary ring are characterized. This characteri-
zation is in terms of an explicit triangular matrix structure
for R. Then right nonsingular finitely generated splitting
rings with zero socle are shown to be right finite dimension-
al if and only if they are right orders in a semiprimary
ring. An explicit triangular structure is given for this
class of rings as well. For certain classes of right non-
singular right finite dimensional finitely generated splitting
rings with zero socle, the structure theorem can be simpli-
fied somewhat. Then right nonsingular right finite dimen-
sional finitely generated splitting rings are characterized as
a certain essential product of a ring with essential socle
and one with zero socle. Right nonsingular finitely gene-
rated splitting rings which are right orders in a semipri-
mary ring are shown to be a direct product of a ring with
essential socle and a ring with zero socle. Finally, some
comments are made showing how some of these results can
be applied to bounded splitting rings and splitting rings.

1. Preliminaries. In this paper all rings R are associative
with identity and all R-modules are unital. Unless indicated other-
wise, all modules are right modules. A left or right R-module M
will be denoted by ,M or M, respectively. The socle of an R-
module M will be denoted by soc (M); the socle of R will always
mean the socle of R, unless indicated otherwise.

If M is a right R-module and X < M, then the right annihilator
of X is denoted by 7,X) or »(X) if there is no ambiguity. Simi-
larly for a left R-module M and X & M, [,(X) is the left annihilator
of X.

A submodule K of an R-module M is an essential submodule of
M if KN L = 0 for all nonzero submodules L of M. A right (left)
ideal I of R is essential in R if I is essential in R (zR). Let
.9“(R) denote the family of all essential right ideals of R. For any
right R-module M, Z(M) = {x € M: r(x) € .&"(R)} is called the singular
submodule of M. The singular submodule of a left R-module is
defined similarly. An R-module M is singular if Z(M) = M; M is
nonsingular if Z(M) =0. A ring R is right (left)-nonsingular if
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Ry (zR) is a nonsingular module.

A submodule A of a module B is closed in B provided that B/A
is nonsingular, and we let L*(B) denote the collection of all closed
submodules of B. For any submodule A of B, there is a smallest
closed submodule C in B which contains A, called the closure of A
in B. The closure of a two-sided ideal of R is a two-sided ideal
of R. By a “two-sided ideal of L*(R)” we will mean a two-sided
ideal of R belonging to L*(R). We use S° to stand for the locali-
zation functor associated with a right nonsingular ring: S°R is the
maximal right quotient ring and S°R is a regular self-injective ring.

The R-module M is of finite (Goldie) dimension over R if every
direct sum of nonzero submodules of M contains only a finite
number of summands. We say that R has right finite (Goldie)
dimension if R, has finite (Goldie) dimension. If R is a right non-
singular right finite dimensional ring, then S°R is semisimple Artinian
and S°R is left flat by [26].

Any hereditary torsion theory (.7, % ) corresponds to an idem-
potent kernel functor o. (See [12], [16] or [30] for the appropriate
definitions and details.) If R is right nonsingular, then the class
of all singular right R-modules forms the torsion class of a torsion
theory which is usually known as the Goldie theory. A right non-
singular ring R is said to have the splitting property (SP), if Z(M)
is a direct summand of M for every right R-module M. A ring R
is said to have the finitely generated splitting property (FGSP), if
Z(M) is a direct summand of M for every finitely generated right
R-module M.

If R is a ring, the Jacobson radical of R will be denoted by
J(R). The prime radical of a ring R is denoted by N(R). A ring
is semiprimary if R/J(R) is semisimple Artinian and J(R) is nilpo-
tent. In this case, N(R) = J(R).

A nonzero element of a ring R is a left (right) regular element
if it has zero left (right) annihilator. A regular element is a left
and right regular element. A ring Q is said to be a classical right
quotient ring of R (R is called a right order in Q) if (i) RS Q,
(ii) every element of @ has the form ac™ when a, ce R with ¢ a
regular element in R, and (iii) every regular element of R has an
inverse in . Classical left quotient rings are defined similarly.

An R-module M is almost finitely gemerated (AFG) if M/soc (M)
is finitely generated. An R-module M is almost finitely related
(AFR) if there exists an exact sequence of R-modules

00— K— F— M—0

where F' is a finitely generated free R-module and K is AFG. We
refer the reader to [11] or [16] for further details.
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Formal triangular matrix rings will play a central role in this
paper. For a more detailed discussion of such rings see [15] or
[17]). The following proposition is due to Goodearl [17, Proposition
3 and Proposition 4] or [15, Propositions 4.2 and 4.4].

PROPOSITION 1.1. Let R = [g g} where B is o C— A bimodule

and B is faithful. Then the following statements hold:
(a) A right ideal I of R belongs to S (R) if and only if it

contains a right ideal of the form [‘II( 8] where Je . F(A) and K,

18 essential in B,.

(b) Ry is nmonsingular if and only if A, and B, are both non-
singular.

(e) soc (Rz) :l::gg Eg:)) 8:| .

@) If Ryis nonsingular, then s"R:[gog ’ﬂ where X—=THom (B,

S°A) and C is a unital subring of T = End,(S°B).

2. Rings with essential socle and FGSP. In this section a
characterization is given of right nonsingular rings R with essential
right socle having FGSP which either are right finite dimensional
or possess a semiprimary classical right quotient ring. We will use
the methods of [8] to give a matrix representation of such rings
which will be quite explicit if R is right finite dimensional and has
a semiprimary classical right quotient ring.

The following result due to Goodearl [16, Theorem 4.9] specialized
to the case when R has essential right socle is the starting point
of our investigation.

THEOREM 2.1. Let R be a right nonsingular ring with essential
right socle. Then R has FGSP if and only if

(a) {reR:axrecdA}l is AFG for any xe SR and any finitely
generated submodule A of (S°R)p.

(b) If I is any left ideal of R containing soc (Ry), then I is
flat and Tor, *(S°R, R/I) = 0.

If R is right nonsingular with essential right socle which either
is right finite dimensional or possesses a semiprimary classical right

quotient ring, then soc (R;) = Re for ¢ = ¢ by Gordon [20, Theorem
1.2]. Let f=1—e. Then R is isomorphic to [j%i f(}if]: ’_g 8‘}
where A a semisimple Artinian, B, is a C — A-bimodule faithful
as a C-module. By Proposition 1.1 S°R is isomorphic to [g )é]

where X = Hom, (B, A) and T = End(B) = f(S°R)f. We will use
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this notation throughout this section.
We proceed with a sequence of lemmas, the first of which is
[8, Lemma 38.4] included here for completeness.

LEMMA 2.2. Tor*(S°R, R/I) = 0 for all left ideals I of R con-
tained in C = Rf if and only if T is a right C-flat overring of
C.

LEMMA 2.3. Let S be a semihereditary ring and suppose that
S is embedded in a left finite dimensional ring U such that U 1is
right S-flat. Then S possesses a left Artinian classical left quoti-
ent ring.

Proof. By Gordon and Small [21], it is sufficient to show that
S is left finite dimensional. Since Us is S-flat, U(LNK)=ULN UK
for left ideals K and L of S by [3, Lemma 1.10]. From this it
follows that if I, --- P I, is a direct sum of left ideals of S,
then UL @ --- @ UI, is a direct sum of left ideals of U. Since U
is left finite dimensional, then S is left finite dimensional.

REMARK. Semihereditary rings with semiprimary classical left
quotient rings are characterized by [10, Theorem 3.7].

Using the notation that has been prescribed, we have the
following lemma.

LEMMA 2.4. If T 1is right C-flat and C possesses a classical
left quotient ring Q', then Q < T.

Proof. First we show that a regular element d of C is a
regular element of 7. Since T is semisimple Artinian, it suffices
to show that the left annihilator of d in T is zero. For let td =0
for te T. Since T is right C-flat, by [2, Problem 5, p. 122] there
exists {t;} S T, {\;} & C such that ¢t = 3, ¢;n; and Md = 0 for all j.
Since d is a regular element of C, A; = 0 for all 5 and ¢ = 0.

Thus every regular element of C is invertible in T since T is
semisimple Artinian. Hence CZ Q' < T.

Now we state the first main result of this section.

THEOREM 2.5. Let R be a right monsingular right finite dimen-~

stonal rimg which has an essential right socle and FGSP. Then

R 1is isomorphic to [é 8:] where

(i) A is a semisimple Artinian ring;
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(ii) B is a C — A bimodule finitely generated as an A module;

(iii) C 1is a semihereditary ring possessing a left Artinian
classical left quotient ring @ = T = End (B) such that T is a right
fat Q' -module.

Conversely, any such ring is a right nonsingular right finite
dimensional ring which has an essential right socle and FGSP.

Proof. Let R satisfy the hypothesis of the theorem. By the

remarks following Theorem 2.1 we may assume that R is isomorphic

to [g g] :[?}ge f(;? f] where A is semisimple Artinian, B is a

C — A bimodule and C< T = End,(B). Since R is right finite
dimensional, B is finitely generated as a right A-module.

Now we show that C is semihereditary and 7T is right C-flat.
Let I be a left ideal of C. Then I is a left ideal of R contained
in Rf; so by Theorem 2.1, ReP I is a flat left ideal of R. Hence
I is R-flat and by [9; Proposition 2.1] I is C-flat. Since R, is finite
dimensional, T = End,(B) is semisimple Artinian. As C is a unital
subring of T, by [23, Corollary 3.2] any finitely generated C-flat
module is C-projective. It then follows that C is left semiheredi-
tary; hence by Small |28, Theorem 3] C is semihereditary. By
Theorem 2.1 (b) we have that Tor ®(S°R, R/(Re @ I)) = 0 for all left
ideals I of C. Since R = Re@® Rf, R/I = Re® Rf/I; but Rf/I=
R/{(Re@® I). 1t follows that Tor*S°R, R/I) =0 since Re is left
R-projective. By Lemma 2.2, T is right C-flat.

By Lemma 2.3, C has a left Artinian classical left quotient
ring @ and by Lemma 2.4 @ Z T. Since Q' is a classical left
quotient ring of C, T is right @’-flat by [30, Proposition 3.11, p.
232].

Conversely, let B be as in the conclusion of the theorem. It
follows from the triangular structure of R that R is a right non-
singular right finite dimensional ring with essential right socle. In
order to show that R has FGSP we will show that R satisfies con-
ditions (a) and (b) of Theorem 2.1. To see (b) let I be a left ideal
of R containing soc (R;) = Re. Then I = Re@ If. Thus If is a left
ideal of C; so If is C-flat since C is semihereditary. Therefore If
is R-flat by [9, Proposition 2.1] and I is R-flat. Since Q' is a clas-
sical left quotient ring of C and T, is Q'-flat, it follows that T, is
C-flat. By Lemma 2.2, Torf(S'R, R/If) =0 and it follows that
Tor(S°R, R/I) = 0. Thus (b) holds.

To establish (a), by [16, Proposition 4.8] it is equivalent to
show that all finitely generated submodules M of (S°R), are AFR.
Furthermore, by the discussion of [16, p. 65] it is sufficient to
show that M/Me is C-finitely related. Now
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SR — [e(S°R)e e(S"R)f]
f(S°R)e f(S’R)f

and e(S°R)f is isomorphic to a direct sum of direct summands of
T = f(S'R)f as a right T-module. Since T is right C-flat, then
¢(S°R)f is right C-flat; hence (S’R)f is a right C-flat module. M/Me
is a finitely generated submodule of (S’R)f and hence is C-flat as C
is semihereditary. Therefore M/Me is C-projective since finitely
generated flat C-modules are C-projective by [23, Corollary 3.2].
Thus M/Me is finitely related as a C-module; so M is AFR.

REMARK. If R = [g g:‘ satisfies the conditions of the theorem,

then B is a left @'-module as Q' & T = End,(B). Hence[é QQ:\ is a
semiprimary ring with T, right Q'-flat. Thus by [8, Theorem 3.5],
[g QQ] is a splitting ring.

We now turn our attention to right nonsingular rings with
essential right socle which possess a semiprimary classical right
quotient ring. As we have observed earlier, Rz[g 8‘} = B-I;;e f(l)? f]

where A is a semisimple Artinian ring and ,B, is a bimodule faith-
ful as a C-module. In addition, finitely generated flat R(C)-modules
are R(C)-projective by [23, Corollary 8.2]. A result similar to
Theorem 2.5 holds in this case; however, we first need the follow-
ing lemma which will be useful later in this paper.

LEMMA 2.6. Let R be a right nonsingular ring isomorphic to

[A 0
B C
where A 1s a vight finite dimensional semiprime ring, B is a
C — A bimodule faithful as a left C-module and C has a semipri-

mary classical right quotient rimg Q' such that Q' = T = End,(S°B).
Then R has a semiprimary classical right quotient ring Q where

S'4A 0
Q:[SOB Q,}.

Proof. The hypothesis implies that @ is a semiprimary ring.

It remains to show that @ is a classical right quotient ring of R.
Let d = [g (C) be a regular element of B where ac 4, be B, and

ceC. Then a and ¢ are regular elements of A and C respectively;
so they have inverses x and ¥ in S°A and Q' respectively as S°4
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and Q' are classical right quotient rings of A and C. Since S°B is
a left Q'-module and ¢ is invertible in @', ¢S°B = S°B. Hence there
exists we S°B such that cw + bx = 0. Then

[a 0 [x 0 B [l OJ
b ellwy| |0 1
and it follows that d is invertible in Q.

Let z = [g 2] €Q where ¢eS°4,be8°B, and ceQ'. Since

B(S°A) = S°B and since A and C have classical right quotient rings
S°A and Q' respectively, ¢ = a,d;*, b = bd;', and ¢ = ¢, d;' where
a,€A,b,eB,ceC,d, and d, are regular elements in A while d, is a
regular element of C. Let d be a common left multiple of d;* and
d;'; i.e., di'd and d;'de A. Then

3 e
b ¢]|0 d,
d 0

Since d = [0 dj| is a regular element in R, » = rd* for d a regular
3.

element of R and some r ¢ R. Hence Q is the classical right quotient
ring of R.

We have the following analogue to Theorem 2.5.

PROPOSITION 2.7. Let R be a right nonsingular ring with essen-
tial right socle which possesses a semiprimary classical right quoti-

ent ring Q@ and FGSP. Then R is isomorphic to l:g 8:] where

(i) A is a semisimple Artinian ring;

(ii) B is a C — A bimodule;

(iii) C 1s a semihereditary ring possessing a SemiPrimMary
classical right quotient ring @ = T = End(B) and T is a flat right
C-module.

Conversely any such ring R is a right nonsingular ring with
essential right scole which possesses a semiprimary classical right
quotient ring and FGSP.

Proof. Let R satisfy the hypothesis of the theorem. Then the
techniques used in proving Theorem 2.5 can be used to show R
satisfies all of (i)-(iii) except that C possesses a semiprimary classi-
cal right quotient ring @ < T. But this follows from the fact that
C =fRf,Q < S°R and fQf is a semiprimary classical right quotient
ring of C by [18, Theorem Al.
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For the converse, again the techniques of Theorem 2.5 apply
to show that R is a right nonsingular ring with essential right socle
and FGSP. By Lemma 2.6, R possesses a semiprimary classical
right quotient ring.

Using the fact that a ring which possesses a classical left quo-
tient ring and a classical right quotient ring possesses a classical
two-sided quotient ring, Theorem 2.5 and Proposition 2.7 combine
to give the following.

THEOREM 2.8. Let R be a right nonsingular right finite dimen-
stonal ring with essential right socle and FGSP which possesses a
semiprimary classical right quotiemt ring. Then R 1s isomorphic
to [g 8] where

(i) A 1s a semisimple Artinian ring;

(ii) B is a C — A bimodule finitely generated as an A-module;

(iii) C 1is a semihereditary ring possessing a left Artinian
two-sided classical quotient ring Q = T = End (B) such that T is a
right Q'-flat.

Conversely any such ring R is a right nonsingular right finite
dimensional ring with essential right socle and FGSP which possesses
a semiprimary classical right quotient ring.

Suppose that R satisfies either Theorem 2.5 or Theorem 2.8 and
has homogeneous right socle. Then S°R is a finite dimensional
matrix ring over a division ring and it follows that 7T is also. Now
@' is a hereditary ring since C is semihereditary; also T is right
Q’-flat. Hence by [10, Theorem 2.1] Q" has a very explicit structure
in terms of matrix rings over division rings which in turn induces
an explicit structure on C by [10, Theorem 3.7 and Theorem 3.11].
Thus a quite explicit representation can be obtained if R has homo-
geneous socle. Now we will give an explicit subdirect representa-
tion of R in terms of rings with homogeneous socle.

If R is the subdirect product of R, and R, we define E, and
E, by the relations E, x 0 =RN(R, x0) and 0 X E, = RN (0XR,).
E, and E, are two-sided ideals of R, and R, respectively and R is
said to be a (right) split product of R, and R, if E, and E, are
direct summands of R, and R, respectively as right ideals. For
further details we refer the reader to [13].

Let R be a right finite dimensional right nonsingular ring with
essential right socle. Then there exists orthogonal idempotents
{e,, +-+, e} such that Re, @ .-+ @ Re, = soc (R;) and Re, is homogene-
ous for ¢ =1, ---,t. By Gordon [19, Theorem 2.2] R is a unique
subdirect product of rings R, ---, B, such that R, has essential
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homogeneous right socle isomorphic to Re, for 7 =1, ---,¢. The
minimal right ideals of R, are R-isomorphic to the minimal right
ideals of R by [19, p. 312]; hence each R; is a right nonsingular
right R-module. Now S°R = S°R, X --- X S°R, (ring direct product).
For any X {1, ---, t} let = denote the projection map of S°R onto
X;exS'R,. Let Ry =7x(R), e =¢,+ ++- +e¢ and f=1—e. Let
ex = Tx(e) and fy = wx(f). Letting T and C be as in Theorem 2.5,
set Ty = fxTfy and Cy = fyRfy. For a partition X and Y of
{1, ---,t}, R is a subdirect product of By and R, while C is a sub-
direct product of C; and C,. Let E, and E, be the two-sided
ideals of R, and R, respectively by defining E, x 0 = (Ry x )N R
and 0 x B, =(0 X Ry)NR. Let Ei = fyEyfy and E; = fiE.fr.
Using this notation, we have the following theorem.

THEOREM 2.9. Let R be a right nonsingular right finite dimen-
stonal ring with essential right socle. Then the following state-
ments are equivalent:

(i) R has FGSP;

(ii) For any partition X and Y of {1, ---, t}

(a) Ry and Ry are right nonsingular right finite dimensional
rings with essential right socle and FGSP;

(b) C s a right split product of Cy and C;.

If, in addition, R possesses a semiprimary classical right quoti-
ent ring, then R has FGSP if and only if, in addition, Ry and R,
both possess semiprimary classical right quotient rings.

Proof. (i) = (ii): It follows from the construction of R, and
R, that R, and R, are right nonsingular right finite dimensional
rings with essential socle. It follows from what we have observed
that the right socles of Ry and R, are R-nonsingular; so R, and
R, are R-nonsingular. Since R; and R, are homomorphic images
of R, Ry, and R, have FGSP by [16, Proposition 1.11].
Since S°R = S°R; x S°R,, it follows that T = Ty X Ty. Since
T is right C-flat and C is semihereditary by Theorem 2.5, then C is
a split product of C; and C, respectively as right ideals by |9,
Proposition 3.8].
(ii) = (i): To show that R has FGSP, it suffices to show that
C is semihereditary and T, is C-flat by Theorem 2.5. By (ii) (a)
and Theorem 2.5, C; and C, are semihereditary and 7'y and T, are
respectively right C; and C,-flat. Since C is a split product of C;
and Cy, Ey and Ey are direct summands of C, and C, respectively
as right ideals. By [9, Proposition 2.1] T is right C-flat since
+ =C/(0 x E}) and 0 X E; is a direct summand of C as a right
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ideal. Similarly T, is right C-flat. Hence T = T, x T, is C-flat.
By [9, Theorem 3.10] C is semihereditary and R has FGSP.

In order to show the last statement let, in addition, R have a
semiprimary classical right quotient ring @ and FGSP. By Lemma
2.6 to show that R; and R, have semiprimary classical right quoti-
ent rings it suffices to show that C, and C, have semiprimary
classical right quotient rings @, & Ty and @, & T,. By [18, Theo-
rem A] C has a semiprimary classical right quotient ring @ < T.
Since C is a split product of C; and C, by (ii), then C; and C,
have semiprimary classical right quotient rings @) and @ where
Q' is the split product of Q% and @} by [9, Theorem 3.17]. Hence
it follows that Q' & T and Q) < T, as desired.

Now assume that Ry, By, Cy, C,, satisfy the conditions of the
theorem and R, R, have semiprimary classical right quotient rings
@y and Q,. By Theorem 2.8, C; and C, have semiprimary classical
right quotient rings Q% & Ty and Qy & Ty respectively. C is a split
product of C; and Cy; so by [9, Theorem 3.17] C has a semiprimary
classical right quotient ring @' which is a split product of Q% and
Qy. Since T=T,x Ty, @ < T. Hence R has a semiprimary

classical right quotient ring by Lemma 2.6.

We conclude this section with some examples. The first is an
example which satisfies Theorem 2.7 but not Theorem 2.5. Let R
be the ring

e
R Z|°

Where @ is the rational numbers, R is the real numbers and Z is
the ring of integers. Then R has semiprimary classical right quo-

tient ring l:% 8] but is clearly not right finite dimensional. Note

that R has homogeneous right socle.

The second example is an example of a ring which satisfies the
conditions of Theorem 2.5 but does not have a semiprimary classical
right quotient ring. Let F be a field and x an indeterminate over
F. As usual F[z] is the ring of polynomials over F and F(x) the
quotient field of F|xz]. By [18, p. 42-43] the ring

Fx) 0 0
R=|Flx) F 0 )
F(x) Flx] F[x]

possesses a semiprimary classical left quotient ring but not a semi-

primary classical right quotient ring. The ring C =[§[m] Fo[x]]
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has a classical left quotient ring @'= g( 2) F(')( x)] and T= [553 ggg

is right Q’-flat. Hence R satisfies the conditions of Theorem 2.5.
Again R has homogeneous socle.

3. Rings with zero socle and FGSP. In this section the
structure of right nonsingular rings with zero socle and FGSP is
examined. It is shown that if R is a right nonsingular ring with
zero socle and FGSP, then R is right finite dimensional if and only
if R possesses a semiprimary classical right quotient ring. This is
contrary to the situation in the previous section. Then the structure
of right nonsingular right finite dimensional rings having zero socle
and FGSP is given as a certain triangular matrix ring and reduces
the problem of characterizing rings with zero socle and FGSP to
studying semiprime rings. Finally these results are applied to
certain classes of rings to obtain more explicit results. Many of
the ideas of this section were motivated by the ideas of Goodearl’s
paper [17].

We begin by studying the structure of right nonsingular rings
R which have FGSP, zero socle and a semiprimary eclassical right
quotient ring. We need the follwing technical lemma which is a
slight modification of {17, Lemma C].

LEMMA 3.1. Let R have zero socle and FGSP, and let M be a
two-sided ideal in L*(R) whose left annihilator H is an essential
right ideal of R. Then M is a direct summand . of R as a right
ideal.

Proof. Since M/(MNH)=M + H)/H is right singular and
R/M is right nonsingular, by FGSP the exact sequence

0O— M/ MNH)— R(MNH)— R/IM—0

splits. Then there exists an me M such that mR+ MNH =M
and m> —meM N H. Then it follows that m® — me M N H; so that
m* — m? = 0. Hence m* = ¢ is an idempotent of R. Now eR+M N
H=M+ MNH=M. Therefore eM = M* multiplying the previous
equation on the right by M. Hence eR = M? and M*® is a direct
summand of Rj.

If M® s+ M, by [17, Lemma B] M, must have a proper essential
submodule K which contains M® It follows that M/K = Z(R/K)
and M/K is a direct summand of R/K. Thus there is a right ideal
J of R such that M + J =R and MNJ = K. Since M = M*+ JM,
we have that M & J. But this implies that M = K, a contradiction.
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Let R be a right nonsingular ring with zero socle having
FGSP and suppose that R possesses a semiprimary classical right
quotient ring @. Then @ is a right nonsingular ring and soc(Q,)=
Qe for an idempotent ¢ of @. If f =1 — e, then @ is isomorphic to

[eQe 0
fQe fQf "

Let M=RnN fQ. fQ is a two-sided ideal of @; so M is a two-
sided ideal of R. Qe & l4(fQ); so RN Qe & Ix(M). Hence H=I1,M)
is essential as a right ideal of B. Furthermore R/M = R/(R N fQ)=
(R + fQ)/fQ; so R/M is a right nonsingular R-module. Hence by
Lemma 8.1, M = f'R for f' an idempotent element of R. Since M,
is essential in f@, it follows that fQ = f'Q. Let ¢ =1 — f'. Now
Q =eQDfQ; so eQ =¢Q. Since ¢Qf' S 'Qf'Q =eQfQ =0, Q=
e%ee, f’%) I Since eQ = ¢'Q, then ¢'Qe¢ = eQe. Since [fQe =
(fQ)(eQe) = (f'Q)(€'Qe’) = f'Qe’, then Qe = eQe + fQe =e'Qe’ + f'Qe’ =
Qe'. It follows that we can take the idempotents ¢ and f of @ to
be idempotent elements of R as well and that

R__heRe 0 J_[A Oﬂ'
—LfRe fRf] |BC|’
Since fQe is a faithful fQjf-module, it follows that B is a

faithful left C-module. Hence by Proposition 1.1 we have
S'A X

SR =

SB T

where T = End,(S°B) and C is a unital subring of 7. Since @ is
the classical right quotient ring of R, we may assume that RCQC

S°R and

S°A 0

°=[s5 o)

S°B @
where Q' = fQf < T. We will assume that R, Q, f, e and S°R are
as described and that R has FGSP for Lemmas 3.2 through 3.4.

Applying the proof of [17, Lemma D] to the idempotent f and

noting that the proof of [17, Lemma D] only uses FGSP, we have
the following.

LEmMMmaA 3.2. S°C =T.

LEMMA 3.3. C is semthereditary and T is the two-sided maxi-
mal quotient ring of C.
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Proof. C has a semiprimary classical right quotient ring by
[18, Theorem A] and hence finitely generated flat left and right
C-modules are C-projective. Since Re is essential in R, it follows
from [16, Proposition 4.2] that C is semihereditary. It also follows
from Lemma 2.2 that T is right C-flat. Since T is the maximal
right quotient ring of C by Lemma 3.2, every finitely generated
nonsingular right C-module can be embedded in a finite direct sum
of copies of T. Hence any finitely generated nonsingular right C-
module is C-projective. Therefore by [4, Theorem 2.3] Z(T ® ,T)=
0; 50 T® T = T. Thus by [5, Proposition 2.2], T is a left quotient
ring of C.

Let U be the maximal left quotient ring of C chosen so that
CST<U. Then U is a left flat C-module by [3, Theorem 2.1];
so again by the argument used in the previous paragraph, every
finitely generated nonsingular left C-module is C-projective. Thus
by [4, Theorem 2.3] Z(U® ,U) =0 and by [5, Proposition 2.2] U
is a right quotient ring of C. Therefore it follows that UZS T or
U=T.

LEMMA 3.4. T is semisimple Artinian and C has a two-sided
Artinian classical two-sided quotient ring Q'.

Proof. Since S°R is a direct product of full linear rings being
the maximal quotient ring of the semiprimary ring @, T is the
direct product of full linear rings as well. By Lemma 8.3, T is
two-sided self-injective and 7T is semisimple Artinian by Osofsky
[24]. Hence the classical right quotient ring @' of C exists and is
a two-sided classical quotient ring as well as two-sided Artinian by
Lemma 2.3.

REMARK. Theorem 3.14 of [10] gives a complete characterization
of C and Q'.

We now show that for right nonsingular rings R with zero
socle and FGSP, R, is finite dimensional if and only if R possesses
a semiprimary classical right quotient ring.

PROPOSITION 3.5. Let R be a right nonsingular ring with zero
socle and FGSP. Then R, is finite dimensional if and only if R
possesses a semiprimary classical right quotient ring.

Proof. Suppose that R has a semiprimary classical right quoti-

ent ring . Then we know that R = [?Ige f(l)e = [é 8] where
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Qe = soc (Q,). Since @ is semiprimary, eQe = S°A is semisimple
Artinian. Now 7T 1is semisimple Artinian by Lemma 3.4; so it
follows that S°R is semisimple Artinian. Consequently R, is finite
dimensional by |26, Theorem 1.6].

Conversely let R, be finite dimensional. Let .2/ be the set of
two-sided ideals in L*(R) whose left annihilator is essential as a
right ideal. Since R, is finite dimensional, L*(R) has ACC; hence
.2~ has a maximal element, say M. R/M is a semiprime ring by
the proof of Theorem 2 in [17].

By Lemma 3.1, M = fR for an idempotent f. Set ¢ =1 — f.

Then Re is the left annihilator of Mso}R is isomorphic to [?%e f%f} =
[é 8] where A is semiprime and B is faithful. Thus by Proposi-

tion 1.1, C is a unital subring of 7 = End,(S°B). The proofs of
Lemmas 3.3 and 3.4 still apply to show that T is the two-sided
maximal quotient ring of the semihereditary ring C and 7T is semi-
simple Artinian. Hence by Lemma 2.3, C has a two-sided Artinian
two-sided classical quotient ring Q’. Therefore R possesses a semi-
primary classical right quotient ring by Lemma 2.5.

REMARK. We have actually shown that the classical right
quotient ring of R is right Artinian.

If R= é 8 is a formal triangular matrix ring, for conveni-
ence we label the following two-sided ideals of R:

A 0 0 0
R, = B 0; and R,, = B Cv‘ .

The following theorem is the main result of this section.

THEOREM 3.6. Let R be a right nomsingular right finite di-
mensional ring with zero socle and FGSP. Then R 1s isomorphic
to

where

(1) A is a right nonsingular right finite dimensional semi-
prime ring with zero socle and FGSP;

(ii) B is a C — A bimodule such that B, is monsingular and
finite dimensional;

(iii)) C s a semihereditary ring possessing a two-sided Artinian
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two-sided classical quotient ring Q' such that Q < T = End,(S°B)
and T is the two-sided maximal quotient ring of C;
(iv) ExtL(Z(N/NR,), W) = 0 where N is any finitely generated
nonsingular right R-module and W is any singular A-module.
Conversely, any such matric ring is a right nonsingular right
finite dimensional ring with zero socle and PGSP.

Proof. Let R have FGSP. Since A = R/R,, A, is right non-
singular. Hence the singular submodule of any right A-module is
the same whether considered as an A-module or an R-module.
Hence it follows that A has FGSP. The remainder of the conditions
of (i)-(ii) follow from Proposition 1.1, Lemma 3.1 and the fact that
R, is finite dimensional. Condition (iii) is a consequence of Lemmas
3.3 and 3.4.

To see condition (iv), let N be any finitely generated right
nonsingular R-module and W a singular A-module. Then W is R-
singular; so by FGSP the exact sequence

0 w X N 0

splits. Since tensoring preserves direct sums, we have the follow-
ing split exact sequence of A-modules,

0— W— X/XR,,— N/NR,, —0 .

Since A has FGSP, N/NR,, = Z(N/NR,) & U. Hence we have 0 =
Ext (N/NRy, W) = Ext\ (Z(N/NR,;), W).

The proof of the converse will require a sequence of lemmas.
For Lemmas 3.7 through 3.10, we will assume that R=[‘§ 81 which

satisfies (i)-(iv) of Theorem 3.6.

LEMMA 3.7. B is flat and R, is flat.

Proof. First we will show that B is nonsingular. S°B is a
left T-module and since T is semisimple Artinian, S°B is T-non-
singular. T is the maximal left quotient ring of C; so S°B is
C-nonsingular as well. Hence ,B is nonsingular.

Since T is the two-sided maximal quotient ring of C, any finitely
generated nonsingular left C-module can be embedded into a finite
direct sum of copies of 7. Since C is semihereditary, by [3, Theo-
rem 2.1] ,T is flat. Therefore any finitely generated nonsingular
left C-module is flat. By a direct limit argument, any nonsingular
left C-module is flat; hence B is flat.

Since B = zB, B is a flat R-module by [9, Proposition 2.1]. C
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is a direct summand of ;R; so RC is flat. As left R-modules, R,, =
B@C; so R, is left R-flat.

The next lemma is motivated by [17, Lemma S].

LEMMA 3.8. Let KeL*(B*) and J={xeC 2B < K}. Then
JB = K where n 1s a positive integer.

Proof. Let L ={xe T x(S°B) & S’K}. Any element of J or L
can be identified with an endomorphism of S°B”. Using this identi-
fication, we will show that J & L. Let x¢J. Since x maps B* into
K, x induces a homomorphism z: S°B"/B™ — S°B"/K. Now S°B"=S'K®{
M; so S°B"/K = S°K/K@ M. Since S°B"/B® is a singular module,
7(S°B*/B") =< S’K/K. Hence xz(S°B*) < S"K and x¢ L.

Thus the natural mapping »:C"/J — T"/L is a well defined
homomorphism. J and L are right C-modules, and we claim that
7 is a monomorphism of right C-modules. For lety(xz + J) = 0.
Then 2(S°B) & S°’K. But B < B"; so tBS B"NS°K. Now KZB"N
S°K and B* N S°K is an essential extension of K. But K is closed
in B*, so K=B"NSK and «B< K. Thus x¢J and % is a mono-
morphism.

C is semihereditary and T is the two-sided maximal quotient
ring of C; hence by [4, Theorem 2.3}, Z(T ® ,T) = 0. Therefore
by the proof of [5, Theorem 2.3], the mapping T® T — T is an
isomorphism. In addition, T is semisimple and 7, is flat. All of
this along with the fact that B is flat by Lemma 3.7 yield the
following sequence of monomorphisms.

(C")) & ¢B—— (T"/L) @ ¢B— (T"/L) ® ,T) @ B
— (T"/L) @ (T ® ¢B)
— (T"/L) @ (T & oS°B)
— (T"/L) @ o(T @ o T & +S°B))
— (T"/L) ® (T @ «T) ® +S"B)
— (T"/L) ® (T Q 8°B) — (T"/L) @ +S°B .

Now (C*/J) ® B is isomorphic to B"/JB while (T"/L) & ,S°B is
isomorphic to S°B*/L(S°B). By the monomorphism of (C"/J)X .B
into (T"/L) ® ,S°B established in the preceeding paragraph, we have
that there is a natural monomorphism « of B*/JB into S°B"/L(S°B).
Now the image of a is (B™ + L(S°B))/L(S°B) = B™/(B" (\ L(S°B)).
JB < B" N L(S°B); so it follows that JB = B™ N L(S°B).

Finally we show that JB = K. Since S°K is a direet summand
of S°B*, there is an idempotent » X m matrix p over T such that
p(S°B*y = S’K. For zeK, x =ub, + -+ + u,b, where u, € T", b, e
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S°B. Since pu,(S°B) < p(S°B™) = S°K, pu, e L. Now x = px; so x¢€
L(S'B)N B* = JB. Thus K < JB; so K = JB.

LEMMA 3.9. If N is a finitely generated nonsingular right R-
module, then N/NR,, 1s a projective right R/R,,-module.

Proof. Using the techniques of |17, Lemma R], N/NR, can be
embedded in a finite direct product of copies of (S°R)/(S'R)R,,. Now

’

(SR)/(S'R)R,, = [SOA X1 54 OJ

SB T| LS"B 0

so it suffices to show that X, and 7T, are right R-flat. We have
already observed that T, is flat using condition (iii). X, is isomor-
phic to direct sum of direct summands of Ty; so X, is flat as C is
semihereditary. Hence N/NR,, is C-flat as C is semihereditary and
hence N/NR,, is R/R ,-projective.

The following lemma is essentially [17, Lemma T]. We include
it here for completeness.

LeMMA 3.10. If N is a finitely generated momsingular right
R-module, then Torf(N, R/R,;) = 0.

Proof. We will show that the mapping N® R;— N is a
monomorphism. Since R,, is left R-flat by Lemma 8.7, the mapping
fi NRy;; @ zRy; — N Q R, is monic. Since R,, is idempotent, f is an
isomorphism and it suffices to show that NR,, ® R,, — NR,, is monic.

Since N is finitely generated right nonsingular, NR, = R%/H

for some He L*(Ry%) and for some positive integer m. Then it

follows that H — D’,{ f}] for some Ke L*(B") and J < G». Since H

is a submodule of Ry, JB< K. Given x€C” such that aB < K,

we see that [8 2]1212 € H. Since R,, is essential in R, \:g 2]@ H

and x€J. Therefore J ={xecC*: 2B < K} and by Lemma 3.8, JB=
K.

Now HR, = BB }] — H; hence the mapping H/HRy— Ry
(R%)R,, is monic. Since RE is right projective, Torf(R%/H, R/R,,) =

0; i.e., Torf(NR,, R/R;) = 0. Thus NR, ® R,, — NR,, is monic as
required.

We now can return to the proof of the converse of Theorem 3.6.

Proof. (Converse of Theorem 3.6.) By the triangular structure
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of R, R is a right nonsingular right finite dimensional ring with

zero socle.
In order to show that R has FGSP, we must show that Ext:(N,

W) =0 whenever N is a finitely generated right nonsingular R-
module and W is a right singular R-module by [6, Propositionl. 11].
Since it suffices to show that ExtL(N, W/WR,) =0 and Ext:(N,
WR,,) = 0, we may assume that either WR,, = 0 or WR,, = 0.

Case I. Let WR, = 0. Consider any short exact sequence
E)0Q— W—V— N——0
of right R-modules. Since R/R,, is left R-projective, we obtain a
second short exact sequence

E*:0 —> W— V/VR,,— N/NR,,—— 0.

By Lemma 3.9, N/NR,, is a projective right R/R,module; hence E*
splits and it follows that E splits.
Case II. Let WR, = 0. Consider any short exact sequence

E:0 w V— N—0

of right R-modules. By Lemma 3.10, Torf(N, R/R,) = 0; so we have
a second exact sequence

E*0— W— V/VR,—> N/NR,,— 0 .

Since R,; is a two-sided ideal of L*(R), any singular submodule of
any R/R,-module is the same whether considered as an R/R,-module
or as an R-module. Hence W is a singular R/R,-module. R/R,=
A has FGSP by hypothesis; so N/NR,, = Z(N/NR,;)® U where U
is a finitely generated nonsingular A-module. Hence by (iv) and the
fact that A has FGSP, we have

Extp(N/NR,y, W) = Extiy(N/NRy, W)
= Exty(Z(N/NRy), W)@ Exty(U, W) =0.

Therefore E* splits and it follows that E splits.

Certain conditions on R guarantee the fact that condition (iv)
of Theorem 3.6 is always satisfied. One of these conditions is that
B, is injective. For in this case, by the proof of [17, Lemma @],
NR,; is a direct summand of N for any finitely generated right
nonsingular R-module N. Hence N/NR,, is A-nonsingular; so condi-
tion (iv) always holds if A has FGSP. The following proposition
gives a necessary and sufficient condition for B, to be injective.
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We will assume in this proposition that R = [é (c)' and A4, B,C
satisfy the conditions (i)-(iii) of Theorem 3.6.

ProPOSITION 3.11. B, is injective if and only if B is a left
Q'-module.

Proof. If B, is injective, then since T = End,(S°B) = End,(B),
B is a left T-module. Hence B is a left Q’-module.

Let B be a left Q-module. Then by [16, Theorem 2.12] all
nonsingular right Q'-modules are projective. Thus the proofs of
Lemmas L, M, N and O of [17] can be modified to fit our situation
since A, is finite dimensional, and it follows that B, is injective.

The following theorem shows that a semihereditary condition
on R guarantees that B, is injective.

THEOREM 3.12. Let R be a 7ight finite dimensional semi-
hereditary ring with zero socle and FGSP. Then R is isomorphic

to
5 o
B C
where

(i) A is a right finite dimensional semihereditary semiprime
ring with FGSP;

(ii) C s a semihereditary ring with a two-sided Artinian
two-sided classical quotient ring Q such that @ & T = End(S°B)
and T is the two-sided maximal quotient ring of C;

(iii) B is a Q' — A bimodule such that B, is nonsingular.

Conversely, any such ring is a right finite dimensional semi-
hereditary ring with zero scole such that E has FGSP.

Proof. If R has FGSP, then conditions (i) and (ii) follow from
Theorem 3.6 and the fact that R is semihereditary. By [10, Lemma
3.4], B is a left Q-module since R has a right Artinian classical
right quotient ring by Gordon and Small [21].

Conversely, by the remarks made prior to Proposition 3.11 and
by Proposition 8.11, any ring satisfying the conditions of this
theorem has FGSP, is right finite dimensional and has zero socle.
Now by [10, Theorem 3.7] R is semihereditary since B is flat by
Lemma 3.7 and conditions (i) and (ii).

Another ring condition which forces B, to be injective is the
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commutativity of A.

COROLLARY 3.13. Let R =[g 8] be a formal matrix ring

satisfying (1)-(iii) of Theorem 8.6. If A is commutative and if R
has FGSP, then R is semihereditary.

Proof. By Theorem 3.12, we need to show that B is a left
Q'-module. It suffices to show that ¢B = B for all regular elements
¢ of C. If ¢B +# B, then there exists 8¢ B such that ¢'8¢ B. Since
S°A is the classical quotient ring of A, there exists /e B and b a
regular element in A such that ¢™'g = £'07"; hence Bb — ¢S’ = 0.

Thus [g, _OC] [% 8] —0.

Let H be the right annihilator of = = [0/5’ _(_)c} in R. H is a
closed right ideal of R. For if »e R is in the closure of H in R,
then rL € H for some essential right ideal L of R. Thus arL = 0;

so xre€ Z(R;) = 0. Hence re¢ H and H is closed.
Let K = ‘:I,Z?’b 8]12 Since [%, 8]61-1, we have KC H. Consider

R/K. H/K+0 as [g 8] ¢ H — K. To see this, suppose D)? 8] -

Bb 0|y =z
ment of A. Hence b is a unit in 4; so ¢™'g8 = Bb~*e B, a contradic-

tion.
Now

[bz O] [90 O]e K. Then b = b*x; so 1 =bx as b is a regular ele-

fb 0

‘ K> Ke Z(R/K) < H/K .
<L 80 _! + ,/ (R/K) /
The second inclusion follows since H is closed in RB. The first con-
tainment follows since bA is essential in A4; so [%, 8][1)3‘4 8];1{ and
BBA 8] is an essential right ideal of E.

We now show that Z(R/K) is not a direct summand of R/K.
For if Z(R/K) is a direct summand of R/K, then there exists

B}‘ 8:\€H and Bj g]eR such that

[1 OW ' [b’a OJ_PL OW_HFx Oﬁ{
01 1gba0l |v 0 |y 2z

It is immediate that z = 1. Also 2 is not in H' where H’ is the
projection of H in A. For if xe H', then 1€ H'; so there is an

ae B such that Br 8]eH. Then
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0 071 0 0 0 0
Ls —c} La 0] - [B—ca 0} -
so ¢'8 = a € B, a contradiction.
Now we show that (bA + b*A)/b*A is essential in A/b*A. Since
A is a finite direct produect of Priifer domains, the ideal lattice of
A is distributive by [22] or [1]. Hence if a€ 4 is such that (b*°A+
ad) NbA = b*A, then (*ANDA) + (A + bA) = b*A by distributivity.
But 0’ANbA = b°4; so b*A + (aANbA) =04 and ad NbA C b*A.
Thus ba = b’ for o’ € A; so a = ba’. Hence a4 < bA. Consequently
(bA + b*A)/b*A is essential in A/b*A.
Since = + b°A ¢ (bA + b*A)/b*A, there is a regular element d of
A such that xd + *A is a nonzero element of (bA + b*A)/b*A. As

z = 1, there exists [Z) 8] such that [z 2:\ fv g] € Eg,, 8} R/K.

Thus <[Z g] + K )R has nonzero intersection with Z(R/K) which
contradicts the assumption that Z(R/K) is a direct summand of

R/K. Thus we conclude that if R has FGSP, B is a left Q"-module.

If R satisfies Theorem 3.6, B, need not be injective, for let A
be a two-sided Noetherian prime ring with zero socle such that
every singular right A-module is injective; that is, A is a SI-ring
in the sense of Goodearl [16]. Then A has a two-sided classical
(maximal) quotient ring and A is hereditary by Goodearl [16, Pro-

position 38.3]. Examples of such rings are given by Cozzens [7].

Then the ring l:i X] satisfies Theorem 3.6 but A, is not injective.

We now investigate the situation when R = [é 8] satisfies (i)-

(iii) of Theorem 3.6 and A is a two-sided hereditary Noetherian
prime (HNP) ring. Let o be an idempotent kernel functor for the
category of right A-modules such that A is o-torsion free; i.e.,
0(A) =0. Then ¢ has property T by Goldman [12, Theorem 4.4
and Theorem 4.5]. This means that if @, is the ring of quotients
of A relative to ¢ and Q,(M) is the module of quotients for an A-
module M, then Q,(M)=M®Q,. A right A-module E is c-injec-
tive if it has the property: if M is any right A-module and N is a
submodule of M such that M/N is o-torsion, then every A-homo-
morphism from N to E extends to a homomorphism of M to E.
Any @Q,module is o-injective by [12, Theorem 4.3]. For further
details see [12] or [30].

Let & ={S:S is a simple right A-module and Ext} = (S, S,) #
0 for some simple right A-module S,} and let ¢ be the torsion theory
generated by the family z°. With this notation, we have the follow-
ing proposition.
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PROPOSITION 3.14. Let B = [g g] satisfy conditions (i)-(iii) of

Theorem 3.6 and let A be a HNP ring. If R has FGSP, then
B = Q,(B).

Proof. We need to show that S°B/B is o-torsion free; that is,
S°B/B has no simple submodule isomorphic to S€#. For if S°B/B
contains such a simple submodule, then there exists a 8 € S°B/B such
that 8J < B for J a maximal right ideal of A such that A/J=Se
. JS{acA:Bac B} and {ac A: Ba € B} is a proper right ideal of
A; s0 J={aecA: BacB}.

Consider
H= {L“ O}ae,f}.
Ba 0

H is a closed right ideal of R. For suppose that [:f 12][% g:‘; H

where K, is essential in A, and L, is essential in B,. Then
wL = 0. Since L, is essential in B, and w <€ End,(S°B), w(S°B) = 0.

_ w O]J[K 0 .
Hence w = 0. Thus[v O][L O];H, S0

[ k k0

u 0 { 0 _[= cH

v 0]/0 O vk 0

for & a regular element of K. Thus Buk = vk; so Bu =v as k is

a regular element of K. Thus B‘ 8] = I}éu 8 e H.

Let N=R/H. Then N/NR, = A/J = S. Since R has FGSP,
0 = Exty(N/NR,, S, = Ext.(4/J, S,) for all simple right R-modules
S, by Theorem 3.6 (iv). This is a contradiction; so B = @,(B).

We have the following partial converse of Proposition 3.14.

LEMMA 3.15. Let R = g g] satisfy conditions (i)-(iii) of

Theorem 3.6 and A be a HNP ring. If B = Q,(B), then N/NR,, is
o-torsion free for any finitely generated momsingular right R-
module N.

Proof. If N/NR, is not o-torsion free, then there is a sub-
module N’ of N such that NR, & N' < N and N'/NR,= Sc7%.
Since R, is a direct summand of R, and N is finitely generated,
then NR,, is finitely generated. Therefore N’ can be chosen to be
finitely generated.
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Let N' = F/H where F' = R" for some positive integer » and
He L*F). H———l:g 9| where U< 4", V< B* and SO F/H

is nonsingular; so Fe/He is nonsingular where ¢ = [(1) 8] For if

[Z 8]L;He__<;_H where L essential in R,, then B‘ 8]eH ;SO

U

v g]eHe. Thus we may assume that H = [U O:l .

V o
Let Z = {[2 g [2 8]€H } Z is a closed submodule of F
since Z = HN FR, and both H and FR, are closed in F. Since
A~/U = S, pick ye A"/U and set J ={acA:uaec U}. Then A/J =
A"/U = S. For aeJ,define f(a) = v + Z where [za 8]6H By the
definition of Z, f is a well defined homomorphism of J into V/Z <
B"/Z. B™ is o-injective and B"/Z is o-torsion free since F/Z is
nonsingular. Hence by [12, Theorem 4.5], B*/Z is c-injective; so f
can be extended to A. Therefore f is given as a left multiplication
by an element xzeB"/Z. Thus for aclJ, f(a)=(x + Z)acV/Z.

Therefore([g 8] +Z)J S H/Z. yeUso [g 8] + ZeH/Z. But

0]
{y |+ Ze ZFIDIH D)
x 0

([Z g} - Z)[i g} < H/Z.

But (F/Z)/(H/Z) = F/H is nonsingular, a contradiction. Thus
N/NR,, is o-torsion free.

since

Given a right ideal M in a ring T, the idealizer of M in T is
the largest subring of T which contains M as a two-sided ideal.
Let A be the idealizer of a HNP SI-ring A* relative to a semimaxi-
mal right ideal of A* (see [14] or [25] for details). By Goodearl
[14, Theorem 9] A is a splitting ring. It follows from [25, Corol-
lary 2.4] that if U is a simple right A-module, then there is a
maximal right ideal M of A* such that U is one of the following
three types: (I) U= A*/M; (II) U = A*)(A + M) or (III) U = (A +
M)M. Let X ={S:S is a simple right A-module of type I or III}.
Then A* = Q, where 7 is the idempotent kernel functor generated
by the cyclic modules of the form A/I where A/I has a composition
series with no composition factors isomorphic to Se X. For details
see [14].

It can be checked that the only nonsplit exact sequence of right
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A-modules

0 S, Y S—0

where S, and S are simple A-modules occurs where S, has type III
and S has type II. Hence a simple A-module Se % if and only if
S is z-torsion. We now have the following proposition.

ProprosITION 3.16. Let R = [g g] which satisfies conditions (i)-

(iii) of Theorem 3.6. If A is an idealizer of a HNP SI-ring A*
relative to a semimaximal right ideal of A*, then R has FGSP if
and only if B = Q(B).

Proof. If R has FGSP, then Q. (B) = B by Proposition 3.14.

Conversely, let Q,(B) = B. We need to show that the exact
sequence of right R-modules

E0— W—V—N—70

is split exact where V is finitely generated and W = Z(V,). As in
the proof of the converse of Theorem 3.6, we may assume WR,=0
or WR,, = 0. The proof of the case when WR,, = 0 is identical to
that given in the proof of Theorem 3.6. So assume that WR,, = 0.
Lemma 3.10 is still valid; hence we have a second short exact
sequence

E*: 00— W—— V/VR,;— N/NR,,— 0.

Since A = R/R,, is a HNP ring, W has a composition series. Hence
we can further assume that W is a simple singular A-module. By
Lemma 3.15, N/NR,, is o-torsion free; so by the remarks made
prior to this proposition, N/NR, is z-torsion free. Thus 0—
N/NR,;, — Q(N/NR,;,) is monic; hence Ext'(Q.(N/NR,,), W) — Ext,(N/
NR,, W)—0 is exact. Hence if ExtY (Q.(N/NR,), W) =0, then
Exty,(N/NR,, W) =0.

Since W is A-singular and Q.= A* is nonsingular, Ext'(4*, W)=
0 as A is a splitting ring. Hence by [2, Proposition 4.14, p. 118],
Ext'(Q.(N/NR,,), W) = Ext! *(Q.(N/NR,,), Hom,(A*, W)). Since all
the faithful simple A-modules are injective by [14, Theorem 9], we
can assume that W is bounded; say WI =0 for a nonzero ideal I
of A. As A is the idealizer of A*, we may assume that I is a
right ideal of A* and I* = I by [14, Lemma D]. Hom,(A4* W) is
a right A*-module via (fa)(x) = f(ax) for a,x€ A*. Thus for fe
Hom (A*, W), we have
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(fI)x) = fIx) S fU) = fI*) = fI)I=0.

Therefore Hom, (A*, W) is a bounded A*-module. But A* is a
simple ring; hence Hom (A*, W)=0. Thus it follows that Ext}(Q.(N/
NR,), W) = 0. But by the previous paragraph, Ext (N/NR,, W)=
0 and E* splits. Thus F is a split exact sequence and R has FGSP.

Letting A and A* be as in Proposition 3.16, where 4 =+ A* it
follows that l:i 2] does not have FGSP whereas [‘2* 2] has
FGSP.

4. Essential products of rings having FGSP. Given two right
nonsingular rings R, and R,, an essential product of R, and R, is
any subdirect product R of R, and R, which contains an essential
right ideal of R, X R,. Goodearl has shown [13, Theorem 3.10] that
any right nonsingular ring R is an essential product of nonsingular
rings R, and R, where R, has essential socle and R, has zero socle.
In this section we shall characterize right nonsingular rings R with
FGSP which either are right finite dimensional or possess a semi-
primary classical right quotient ring in terms of an essential product
of R, which has essential socle and R, which has zero socle.

Throughout this section we shall assume that the right non-
singular ring R is an essential product of right nonsingular rings
R, and R, where R, has essential socle and R, has zero socle. Then
S°R = S°R, x S°R, by [13, Proposition 2]; so let x;: S°’R — S°R; be
the natural projection maps for 4 = 1,2. Then 7,(R) = R, for 1=1,
2 and we set E, X 0=RN(R,x0) and 0 X B, =RNO X R,). E,
and E, are two-sided ideals of R, and R, respectively and they are
essential as right ideals. We begin with the following lemma.

LEMMA 4.1. R, and R, have FFGSP if R has FGSP.

Proof. R,= R/(0 X E,) and 0 x E, is a closed right ideal of R
by [13, Propositions 7 and 8]; hence by [16, Proposition 1.11], R,
has FGSP. Similarly R, has FGSP.

If R, is finite dimensional, then R, and R, are right finite
dimensional rings. If, in addition, R has FGSP, by Theorems 2.5
and 3.6 we have that

A 0 4. 0
R, = [Bl C’j and R, = [Bz CJ

where the A;’s, B/’s, and C;’s satisfy the conditions of the respective
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theorems. Let e¢; = B 8:] where 1 is the identity of A, for 7=1,2

and f; =[g (ﬂ where 1 is the identity of C, for ¢ =1,2. Then

R, = soc (R,) =soc (R) as R, has zero socle. Hence R, € E,; so
¢, € R. Thus we have

LEMMA 4.2. e, € R.

The following lemma and its proof is contained in [13, Theorem
12}.

LEMMA 4.3. Let R have FGSP. Then the following statements
hold.

(a) If L, is any essential right R;-submodule of E,, then E,/L,
18 a direct summand of R,/L,; for 1 =1, 2.

(b) E!=E, for i =1,2.

Let E! = f,E.f, for 1 =1, 2. Then we have the following lemma.

LEMMA 4.4. Let R have FGSP. Then E! is a direct summand
of C, as a right ideal and E, = C,.

Proof. Let e = (e, e,) and f = (f., f.)- Then e and f are idem-
potents of R, X R,. Since R,e, is essential in R, as a right ideal
and Ry, is essential in R, as a right ideal (R, Xx R,) ¢eN R is an
essential right ideal of R. Let M = RN f(R, X R,). Since ef =0,
it follows easily that M is a two-sided ideal of L*(R) whose left
annihilator is an essential right ideal of E. By the proof of Lemma
3.1, M?® = gR for g an idempotent element of R. Let 7,(g) = g, and
7(9) =¢,. Let E=FE X E, and E' = EN[f(R, X R)f]. (E')?=EK'
since E*=F by Lemma 4.3. E' S M; so B' =(E' S M* = gR.
Let E* = (¢g,Rg, X 0) N gRg = g.E/9, and E;* = (0 X ¢g,Rg,) N gRg =
9.E,9,. Since R, R,, and R, are finite dimensional rings, the techni-
ques used in the proof of Lemma 3.3 can be applied to show that
gRg, 9.R.g,, and g,R,g, are all sgmi}lereditary rings. Now gR is a
two-sided ideal of R; so R = [glqu gORg] when ¢’ =1 — ¢ and, in
addition, Rg’ is an essential right ideal of R. Thus by Lemma 2.2,
g(S’R)g is a right flat overring of gRg. Similarly ¢,(S°R)g, and
9.(S°R)g, are right flat overrings of ¢g,R,9, and g,R,9, respectively.
g(S°R)g = 9.(S°R)g, x 9,(S°R)g,; so by [9, Proposition 3.8], E* and
E¥ are direct summands of g,Rg, and g,Rg, respectively as right
ideals.

Let g; = f.9.f.- Since C, is a semihereditary ring with a semi-
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primary classical left quotient ring by Theorem 2.5, C, has a com-
plete set of orthogonal idempotents {h,, ---, h,} such that g¢iC, =
Sise B:C, by [9, Lemma 8.8]. This implies that {h,,, <+, k,} is a
complete set of orthogonal idempotents for g¢;C,g;. By a similar
argument E* = 3., h(9:C,9) where [ = k. Claim E/ = 3., hC,.
Let X =E/'Nh;,C, where j <1. Note the j >k since E/ < g.C,
Now X C h;N(C,) since E is a direct summand of ¢;C,g;. If X0,
then L = h;R.e, is a proper essential R,-submodule of hi;R, and
(X + L)/L is a direct summand of h;R,/L by Lemma 4.3. But this
is impossible as (X + L)/L < (h;N(C,) + L)/L. and (X + L)/L is a
small submodule of %;R,/L. Hence X =0 and E/ = >, hC..

Now let g, = f,9,f,. By arguments similar to those given in
the previous paragraph, C, has a complete set of orthogonal idem-
potents {hi, ---, by} such that E, = 3., hiC,. Claim E, = C,. For
if E, # G, then h;¢ E, for some j <t. Since R, has zero socle,
h;E, contains a proper essential right submodule H by [16, Proposi-
tion 1.2]. Let L=e¢,E,PME,H--- Dh,  E,HHDI E,D---P
h.E, L is a proper essential submodule of E,. Thus E,/L is a
direct summand of R,/ by Lemma 4.3. However, E,/L is exactly
hiE.e,/H; hence h;E,e,/H is a direct summand of h;R,/H. But this is
impossible since h;F,e, & h;N(R,) which forces hjFE,e,/H to be a small

submodule of AR,/ H.

If R= [g 8] is a formal triangular matrix ring satisfying

Theorem 2.5, we shall say that R satisfies (@). If R = [g g] is a

formal triangular matrix ring satisfying Theorem 3.6, we shall say
that R satisfies (8). With this notation, we have the first main
result of this section.

THEOREM 4.5. Let R be a right nonsingular right finite dimen-
stonal ring with FGSP. Then R is a subdirect product of R, and
R, where

4 A, 0 0
0] | frrrrremrre
1) R, = = |
( ) |:B1 C1_l Au Azz 0
A31 A32 A33
A, 0 O
satisfies () and E, = [4,, 0 0 |;
Ay Ay Ay

(2) R, = é g.:| satisfies (B) and K, _Bf C] where X s

a two-sided zdempotent ideal of A, essential as a right ideal having
the property: if L is an essential submodule of the right A,-module
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X, then X/L is a direct summand of A,/L.

Conversely, any subdirect product of ring R, and R, satisfying
1) and (2) is a right nonsingular right finite dimensional ring with
FGSP.

Proof. If R has FGSP, then R, and R, satisfy (1) and (2) by
Lemmas 4.1, 4.2, 4.3, and 4.4.

To prove the converse we will need to prove some lemmas. We
shall assume that R is an essential product of R, and R, satisfying
(1) and (2) in Lemmas 4.6 and 4.7.

LEMMA 4.6. If N is a finitely generated nonsingular right R-
module, then there is an exact sequence of R-modules

0 N, N N,—0

where N, is a finitely generated nonsingular right R,-~module and
N, i3 a finitely generated nonsingular right R,-module.

Proof. Given any nonsingular R-module N, there is an exact
sequence of R-modules

0 N, N N, 0

where N, is R,nonsingular for 7 = 1, 2 by [13, Proposition 3]. Thus
if N is finitely generated as well, N, is a finitely generated non-
singular R,-module.

It remains to show that N, is finitely generated. First we
will show that N, is AFR as an R-module. Since N, is a finitely
generated nonsingular R,module and R, has FGSP, N, is AFR as
an R,-module by [11, Corollary 2]. Let H = soc (Rz) and S = R/H.
By [16, page 65] it is enough to show that N, is finitely related as
an S-module. Now E, = E, N f,R.f, is a direct summand of S as a
right ideal. Furthermore S/E,/ = R,. Since N, is AFR as a R,-
module and R, has zero socle, there is an exact sequence of R,-
modules

0 K R N, 0

where n is a positive integer and K is finitely generated. Then
there exists an exact sequence

0— K@ (E)— (R, D E)"— N,—0

and N, is finitely related as an S-module. Thus N, is AFR as an
R-module.
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By [16, Lemma 4.7(a)] N, is AFG as an R-module. Since N, is
a submodule of N and soc (Nj) is finitely generated, N, is finitely
generated.

The following lemma is due to Goodearl and using the fact that
N is finitely generated, the proof is virtually identical to the proof
of Case II of [13, Theorem 12, page 501].

LEMMA 4.7. Let N be a finitely generated right monsingular
Ri-module and W a singular right Rj;module for ¢+ j. Then
Exth(N, W) = 0.

We now return to the proof of the converse of Theorem 4.5.

Proof. (Converse of Theorem 4.5.) That R is right nonsingular
and right finite dimensional follows from the fact that R is an
essential product of R, and R,. To show that R has FGSP, it is
sufficient to show that any exact sequence of right R-modules

0 w Y N 0

is split exact where W is R-singular and N is finitely generated
nonsingular. By [13, Proposition 3] and Lemma 4.6 there are exact
sequences of R-modules

00— W, — W— W,— 0
0—> N,—> N—>N,—— 0

where W, is R,-singular for ¢+ = 1,2 and N, is finitely generated
R;-nonsingular for 2 =1, 2.

To show that ExtL(N, W) = 0 it suffices to show that Exti(N,,
W;)=0fori=1,2and j=1,2. Now Exti(N, W;) =0 for ¢+ J
by Lemma 4.7.

Consider an exact sequence

D: 0 W, Y—5N,—0

of R-modules. Since W, and N, are R,-modules and E;}=E,, D is
an exact sequence of R,-modules. Thus D splits as R,-modules since
R, has FGSP. From this it follows that the sequence splits as R-
modules so Exty(N,, W, = 0.

By a similar argument, Exti(N,, W,) = 0. Thus R has FGSP.

Goodearl has given an example in [13, Example 1, page 503]
which shows that the essential product given in Theorem 4.5 need
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not be a direct produect. In fact Theorem 4.5 shows that the
example given there is the “canonical” way to construct essential
products which are not direct products. In order to construct an
essential product as described in Theorem 4.5 it is necessary that
the ring A, have a two-sided idempotent ideal X essential as a right
ideal such that if L is an essential submodule of the right A4,-
module X, X/L must be a direct summand of A4,/L. Proposition
4.8 gives a class of rings possessing such an ideal.

A subring R of T is an iterated idealizer from T provided
there is a chain of subrings R, = RS R, & --- S R, = T such that
each R, is the idealizer of a semimaximal right ideal of R,,,.

PROPOSITION 4.8. Let A be a HNP ring which is an iterated
idealizer of a HNP SI-ring. Then A has a minimal two-sided ideal
M which s idempotent and has the property that i+f L 1is an
essential submodule of M,, M/L is a direct summand of A/L.

Proof. By [14, Lemma D] A possesses a minimal two-sided
ideal M which is idempotent. First we show that Ext,(4/M, S)=0
for all simple right A-modules S. By [14, Theorem 10], if S is a
faithful simple A-module, then A injective; so Exti(4/M, S) = 0. If
S is bounded, that is, if »,(S) = 0, and if Ext (4/M, S) # 0, then
there is an exact sequence

0 S X A/M 0

which is nonsplit and X can be taken to be cyclic. Since A/M and
S are both bounded, X is bounded as A is a prime ring. Thus
MX =0 as M is the minimal two-sided ideal of A. Therefore X is
a homomorphic image of A/M; so X has composition series length
less than or equal to that of A/M. But this is impossible; so
Exty(A/M, S) = 0. 1t follows that Ext,(4/M, W) = 0 for all finitely
generated singular 4-modules W.

Hence if L is an essential submodule of M,, then Ext.i(4/M,
M/L) = 0; so that M/L is a direct summand of A/L.

We now turn to studying rings R with FGSP which possess
a semiprimary classical right quotient ring Q. Let R, R,, 7, 7,, E,,
and E, be as defined in the beginning of this section. Since R
is right nonsingular, @ is right nonsingular and soc(Q,) = Qe where
¢ is an idempotent element of Q. Set 7,(Q) = Q,, w(e) = e, and
7l —e) = f; for 1 =1,2. Then

Q, = [eiQiei 0
T fiQqe; szzf'LJ
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for 1 =1,2. By Lemma 4.2, ¢,c B as R, has essential socle and
R, has zero socle. Thus it follows that f,e€ R,. Furthermore, we
have the following lemma in terms of this notation.

LEMMA 4.9. Let R have FGSP and possess a semiprimary
classical right quotient ring Q. Then f,€ R,; so e, € R,.

Proof. Let M = R,N f,Q.. Then it follows from Lemma 3.1
and the remarks following the lemma that M = f,R, where f,c R,.

LeEMMA 4.10. Let R have FGSP and possess a semiprimary
classical right quotient ring Q. Then e,R.e, is semiprime and 1is
right finite dimensional.

Proof. First note that f,R, is a maximal two-sided ideal of
L*(R,) whose left annihilator is essential is a right ideal of R.
For suppose f,R, & M where M is a two-sided ideal of L*(R,) and
H = 1,(M) is essential as a right ideal of R,. By Lemma 3.1, M=
gR, for g an idempotent element of R,. Then MQ, = gQ, is a two-
sided ideal of L*(Q,) whose left annihilator contains H. Hence g¢@Q,
has a right essential left annihilator in @,. Therefore e,g = 0; so
since f,R, & M, g€ f,R,, and M = f,R,.

Claim e,R,e, is semiprime. Let I be a nilpotent ideal of e¢,R.e,.
If P is the closure of I in ¢,R.e, then P is a two-sided ideal of
L*(e,R.e,) whose left annihilator is right essential in e¢,R,e, by [17,
Lemma A]. Then it follows that

P 0
Lf2R2eZ .f‘2‘R2J(‘2_i

is a two-sided ideal of L*(R,) whose left annihilator is right essen-
tial in R,. This forces I to be zero as f,R, is the maximal two-
sided ideal of R, with this property. Thus ¢,R, is semiprime.

Since @ is an essential extension of R, it follows that RN eQ
is essential in ¢Q. Therefore R N (0 X ¢,Q,) is essential in 0 X e,Qe,;
so e,R,e, is essential in e,Q,¢,. Thus e,Q.,e, = S%e,Rye,) and e,R.e, is
finite dimensional since e,Q,e, is semisimple Artinian.

THEOREM 4.11. A right nonsingular ring R which possesses a
semiprimary classical right quotient ring has FGSP if and only
if R =R, X R, where R, has essential socle, R, has zero socle and
both R, and R, have FGSP with semiprimary classical right quo-
tient rings.

Proof. Let R have FGSP. By the choice of ¢, and f,, R.e, is
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essential as a right ideal of R, and R, has FGSP by Lemma 4.1.
Since R, has essential socle, the techniques of §2 can be applied to
show that

B [elRlel 0 1 [Al 0]
*" | fiRe, fRf. B C]

where A, is semisimple Artinian and C, is a semihereditary subring
of T = End (B) such that T, is flat.
Since R, has FGSP by Lemma 4.1, we have shown in Lemmas

4.9 and 4.10 that R, = [21: Cﬂ where A, = ¢,R,e, is a right finite
dimensional semiprime ring. By a slight modification of the proof
of Lemma 3.3, we see that C, = f,R.f, is a semihereditary ring
possessing a two-sided maximal quotient ring 7, which is right C,-
flat.

The proof of Lemma 4.4 can be modified to yield that E/ is a
direct summand of C, and E, = C..

E; =C, = f,R,f,; so f,eR. Thus by [18, Theorem A] f,Qf, =
fQ.f: is the semiprimary classical right quotient ring of C,. Also
Q.1 € fA(S°R)f,; so by Lemmas 2.6 and 4.10, R, has a semiprimary
classical right quotient ring @,. Therefore R, is right finite dimen-
sional by Proposition 38.5. Now it follows that

A, 0 0 A, 0 0
R, = A, Azz 0, E1 = A21 0 0
Ay Ay Ay Ay Ay Ag

and

R — A, 0 z - X 0
B, G| " |B G,
where A,;, A,, B,, C,, and X are as in Theorem 4.5.
If R is not the direct product of R, and R,, X + A,. If

a; 0 0 -
00

Mgy Ay 0 ’L ] eR
b ¢

U3 Qzp Q3

where a;;¢ A,;, b€ B, and cec C,, then a,, = 0. Claim

00 0 -

P=||4, 0 0 ( 00 J

a * " LB, N(C)
A3l A32 N(A33) i

is the prime radical of R. P is nilpotent; so P & N(R). Let
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000 70
o=(lorol. 7))
00
000
and suppose that U N(R). N(R) is nilpotent so U™ =0 for some
positive integer n. Thus I" =0 and J» = 0. Since A4, is semiprime,
then J = 0. Then it follows that I = 0. From this it is immediate
that P = N(R).
Since A, possesses a semisimple classical right quotient ring and

X + A, is essential as a  right ideal of A4,, there is a regular ele-
ment of d of A4, such that de X. Consider the element

100 \
do
x=1l000], €R
01
001

and let Z =« + N(R). Now Z is a regular element of R/N(R). For
if

a, 00 0

a

77:( 0a,0 |, { J—%N(R)

0c
0 0 a,

is such that zy = 0, then a, = 0, a;; € N(4,), ce N(C,) and da = 0.
Since d is a regular element of A, a = 0. Hence a, = 0; so ¥ = 0.
Similarly %% = 0 implies ¥=0. By the proof of [29, Theorem 2.12],
x must be a regular element of R. However if a, # 0 is in 4,,,

100 W/ 000
Td 0 00
000, a, 00/, =0,
01 00
001 L0 00]

and « is not a regular element of RB. This contradiction yields that
X=A4,and R=R, X R,
The converse is obvious.

REMARK. Another situation in which the essential product of
Theorem 4.5 is actually a direct product occurs when A4, is commu-
tative. Then A, is a direct product of Priifer domains. If X is as
in Theorem 4.5, then there is a nonzero divisor de X. If X = dA,,
then X is a finitely generated idempotent ideal of A,. But it is
well known that such an ideal is a direct summand of A, which is
impossible. If dA,< X, then X/d,A, is a direct summand of A,/
d,A,. But again this forces X to be finitely generated which is
impossible. Thus X = A4, and the product is direct.
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5. Applications to rings with SP and BSP. Let M be a
singular R-module and I an essential right ideal of R. We say
that M has bounded order I if M can be embedded in a module
which has a set of generators all annihilated by I. M has bounded
order if M has bounded order for some essential right ideal I of
R. A ring R has bounded splitting property (BSP), if Z(M) is a
direct summand of M for every right R-module M such that Z(M)
has bounded order.

We now make some observations on how the results and tech-
niques developed in this paper can be applied to rings with SP and
BSP. If a ring R has BSP or SP, then R has FGSP. Also by the
proof of [16, Theorem 5.3] if R has BSP or SP and H is a two-
sided ideal of R which is essential as a right ideal, then R/H is
right perfect.

Let R be a right nonsingular right finite dimensional ring with

zero socle. If R has BSP, then R has FGSP; so R = [g g:! where

A, B, and C satisfy the conditions of Theorem 3.6. Since [g g] is

essential in R, then C is a semiprimary ring. Hence by Proposi-
tion 8.11, B, is injective. Thus we have the following result.

THEOREM 5.1. Let R be a right monsingular right finite di-
mensional ring with zero socle and BSP. Then R 1is isomorphic

to
| A 0}
B C
where

(1) A is a semiprime right nonsingular right finite dimen-
stonal ring with zero socle and BSP;

(2) B is a C— A bimodule which is a finite dimensional non-
singular imjective A-module;

(8) C s a semiprimary ring with a two-sided maximal
quotient ring T = End (B).

Conversely, any such matrix ring is a right nonsingular right
finite dimensional ring with zero socle and has BSP.

Proof. We only need to prove the converse. But this follows
by a slight modification of the arguments used to prove |17,
Theorem 6].

Thus the ring [g g] has FGSP by Theorem 3.6 and Corollary
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3.13 whereas [g g] has BSP. Z denotes the integers and @ the

rational numbers.

If R has essential socle and is either right finite dimensional
or a right order in a semiprimary classical right quotient ring, then
BSP is equivalent to SP and the structure of these rings are given
in [8].

We now turn to the problem of expressing a right nonsingular
ring R with BSP or SP as an essential product of R, and R, where
R, has essential socle and R, has zero socle. Two conditions were
critical in order to obtain Theorem 4.5. First of all, each R, was

isomorphic to a formal triangular matrix ring [é 8] where [‘é 8:[

is an essential right ideal. Secondly, the E.’s must satisfy Lemma
4.3. The second condition holds if R has SP or BSP. If R has SP
with no infinite sets of orthogonal idempotents in its socle, then R,
and R, has the desired triangular form by [8, Theorem 38.5] and
[17, Theorem 7]. Furthermore, if R is right finite dimensional and
has BSP, R, and R, have the required triangular form by Theorem
2.5 (or [8, Theorem 3.5]) and Theorem 2.6. Thus in these cases a
theorem similar to Theorem 4.5 can be proven.
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