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NON-MINIMAL ROOTS IN HOMOTOPY TREES

MICHEAL N. DYER

Let π be a finite group which does not satisfy the
Eichler condition and let M be a τr-module. A π-module Mr

is a noncancellation example of M if M®(Zπ)2^M'®{Zπ)2 but
M0M'. This note classifies the set ^V<^f

u{^) of isomorphism
classes of noncancellation examples for M— Zξ&Zπ, where
Z is the trivial π-module, M=A(π)9 the augmentation ideal,
and M-Zπl(N), where (N) is the ideal generated by the
norm element N=Σxeic% It is shown that these noncancel-
lation examples yield nonminimal roots of the homotopy
tree HT(π, m) of (zr, m)-complexes.

1* Introduction* Let π be a finite group. We say that a

7r-module M satisfies the Eichler condition if the endomorphism ring
End(QM) has no simple component which is a totally definite quater-
nion algebra over its center (see [11, page 176] for a definition). A
finitely generated, ^-torsion free (left) τr-module M has the cancella-
tion property (CP) iff for any π-module M' such that Λfφ (ϋΓπ)2 =
M' φ (Zπ)2 we have M ^ M'. If M 0 (Zπ)2 = Mf 0 (Zπ)2, we say
that M and M' are stably isomorphic. Note that this is completely
general, for by Bass' cancellation [1, Corollary 10.2], M@(Zπ)2 =
Mf © (Zπ)2 iff Mφ(Zπ)n = M' φ (^ττ)%(n ^ 2). If M has the Eichler
condition, and M^N®Zπ, then ilί has the cancellation property
[7], [11, Theorem 19.8].

In this paper we are interested in noncancellation examples. A
module M' is a noncancellation example for M iff M1 is stably
isomorphic to, but not isomorphic to M. We determine in § 2 the
set .Λ^^dft) of isomorphism classes on noncancellation examples
of certain modules M. In § 3, we show that the Swan counterex-
ample [10, Theorem 3] for the generalized quaternion group of order
32 gives rise to noncancellation examples.

We apply this to the homotopy classification of (π, m)-complexes.
A (π, m)-complex is a finite, connected, m-dimensional CPΓ-complex
with πxX = π and π^X = 0 for 1 < i < m. A (π, m)-conplex X is
called a root if there is no other (π, m)-complex Y such that Y V
Sm c=: X] a minimal root if the number ( — l)mχ(X) is minimal over
all (π, m)-complexes; otherwise a nonminimal root. In § 4, we
show that the Swan counterexample gives rise to nonminimal roots
for (GQ(32), 4i-l)-complexes.

For 7Γ a finite group, a recent theorem of W. Browning [2]
(generalizing the Jacobinski cancellation theorem to the category of
pointed modules) shows that such nonminimal roots occur very
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rarely. In fact, for π finite, nonminimal roots for (π, m)-complexes
oncur only if π is periodic »and m = k — 1, where k is a period of
7Γ. The situation for infinite groups is much less clear. However,
M. J. Dun woody [3] has constructed an example of a nonminimal
root for (Γ, 2)-complexes, where T is the trefoil knot group.

I would like to thank R. Swan for his proof of the crucial
Lemma 3.4 in this paper and the referee for simplifying the hypo-
theses in Lemmas 2.4 and 2.8.

2* Noncancellation. Let π be a finite group of order n. For
each integer p prime to n, let (p, N) denote the ideal of the inte-
gral group ring Zπ generated by p and the norm element N =
Σ*e;:# Each (p, N) is protective [8, Lemma 6.1]. If Z* denotes
the units of the ring of integers modulo n and p is the residue
class of an integer p modulo n, then the correspondence p —> class
[(pf N)] of (p, N) in the (reduced) protective class group K0Zπ of
Zπ defines a homomorphism

3: Z; > K0Zπ

(see [8, Lemma 6.1]).

Note. For any peZ£, we will abuse the notation and write
(p, N). This is well-defined up to isomorphism because if r ==
s(moάn), then (r, N) = (s, N).

Let &°'(π) denote the set of isomorphism classes of protective
(left) ideals in the integral group ring Zπ of π. By Theorem A of
[9], &\π) is also the set of isomorphism classes of rank 1 projec-
tive 7Γ-modules. Let {P} denote the isomorphism class of the pro-
jective ideal P. Let SF(&') (respectively SW(&*')) denote the
subset of έP\π) consisting of those isomorphism classes {P} such
that the element [P] in KQZπ is zero (respectively, [P]eim3).
Furthermore, let F(π) = {p e Z* \ (p, N) ^ Zπ} and SF(π) = ker 3 =

We may identify the groups SF(π)/F(π) ^ Z*/F(π) as subgroups
of the set .^'(π) via p —> {(p, N)}. The group action is given by
{(ft N)} {(q, N)} = {(p, iV) ®<τ (?, iV)} - {(p?f N)}. Thus

F(π)

n n
Furthermore, the group Z*/F(π) (respectively SF(π)/F(π)) acts on
the set SW(.^1) (respectively SF(.S?1)) as follows: for each projec-
tive ideal P and peZ*, define Pp = (p, N)®ZP. Then let p {P} =
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{Pp}. In order to define the above tensor product, we note that
(p, N) is a 2-sided ideal, hence a right τr-module ((p, N) is also an
invertible bimodule). Then Pp has a left π-module structure using
the left module structure of P, because (p, N)(ξξ>πP = Zπq-P +
ZπN P(qep is an integer) and hence is the left ideal generated by
(q.P,N.P).

DEFINITION. Let M be a π-module. Let *M denote the class of
modules isomorphic to M. Let ^K&Ίiiπ) be the set whose elements
consist of *M together with the set of isomorphism classes of non-
cancellation examples of M. Thus

π) = {*M} U {{M'}\Mf 0 (Zπ)2 = Mφ(Zπ)2 but M'ΦM).

In this section we will compute ^V&Jji) for M = Z 0 ίίπ,
where Z is the trivial π-module, M = A(π), the augmentation ideal
in Zπ, and M = Zπ/(N), where (N) is the ideal generated by the
norm element N. If a group G acts on a set S (on the left) as a
group of permutations, we denote the set of orbits by S/G.

THEOREM 2.1. The following sets are isomorphic:
(a)
(b)

Note 2.2. (a) It follows from [11, Theorem 9.7], [4, Propositions
5.3, 5.4, 5.5] that if Mis Z® Zπ, A(π), or Zπ/(N), then M' is stably
isomorphic to M iff ΛΓ 0 ^ π ̂  ikf 0 Zπ.

(b) Lemma 6.2 of [8] and Proposition 5.5 of [4] show that

iff ikΓ = Z@P where P is a projective ideal and [P]eim9 in K0Zπ.
We will prove Theorem 2.1 after a series of propositions and

lemmas.

LEMMA 2.3. For any qeZ*, and any protective {left) ideal
PaZπ, P-JPf = P/Pπ, where Pj = (q,N)®zP and P* = {peP\xp =
p, Vx e π}.

Proof. Let N-P = tP Z-Nc: (N) Π P = sP Z N = P*, where tP

and sP are positive integers such that sP divides tP. Then

p / P , = (g, JSΓ) ®,P _ q P + P N
(qsPZ + tpZ)N

^ p/(sPZ)N = P/P" .
(sPZ+tPZ)N
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The second isomorphism is given by carrying qa + a'N —> a + a'N
for any a, a' e P.

PROPOSITION 2.4. Let P be a protective (left) ideal in Zπ and
n be the order of π. Then Ext^(P/P~, P~) = Zn. Furthermore,
the protective extensions of P' ~ Z by P/P~ are Z* — {0 —> Pτ

q —>
IIz

Pq -> PJP; -> 01 q 6 Z*}, where P/P* = PJPq\

Proof. To prove the first statement we localize: E x t ^ P / P * , P~)~
®pln ExtZ(p)7ΐ(P{p)/Pπ, Pfp)). [6, Corollary 3.12, page 16.] Theorem
4.4 of [6] yields that Z{p)π is isomorphic to P ( p ) . Thus ExtL(P/P%

^ Zn.

The protective extensions a re necessarily t h e units Z* of Z%

[5, 1.1] and hence a re given by the diagram below. Choose seqe
17*

An

z
0 > P' > P > PjP' > 0

o — > p ; — > p q — >
II

{sP + N P}

Thus Pq represents the element q e Ext (P/P^ Pτ) = Zn.

Note. We observe that the function Z = End PΓ -> Extk(P/Pτ,
Pz) given by pushouts is surjective because P is protective.

LEMMA 2.5. If h\P®Zπ% (Zπ)\ then PIPr φ Zπ = Zπ/(N)φ
Zπ.

Proof. It is easy to see that Pz = (N)f]P and that ( P φ Zπf =
({N) n P) φ (N). Consider h = h \ (P φ ZTΓ)*. fe is an automorphism
of Z® Z. By diagonalizing the (integer) matrix of h, one may
obtain a basis {elf ej for Zττ2 with respect to which ^((iV) Π P) =
iV Zπ ̂ . Thus P/P* φ ^TΓ ^ Zπ/(N) φ ZTΓ.

LEMMA 2.6. For each peZ;, Pp φ Zπ = P φ (p, JV).

Proof. Choose an integer qe pe Z* and consider the following
commutative diagram with exact rows:
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—*Zπ > Zπ/(N) >0

( * ) [β \f I
0 > (N) > {q, N) - ^ (Zπ/(N) > 0

where h: {q, N) ->• Zπ/(N) carries aq + a'N h-* a + (N) and f{a) =
q a(a, a' e Zπ). Then g is multiplication by q, also. By tensoring
the above diagram (*) on the right by P we obtain

* Zπ/(N)

0 > (N) 0 , P >(q, N) @πP >Zπ/(N) ® , P > 0 .

Thus by SchanueΓs lemma [8, § 1], Z®PP = Z®P by a map of
degree q (multiplication by q on the left factor). By Lemma 6.4 of
[8], [Pp] = [P] + [(p, JSΓ)] in K0Zπ and hence Pp 0 Zπ ^ P φ (p, iV)
follows from Bass' cancellation theorem [11, Theorem 9.7].

LEMMA 2.7. // [P] is a member of im d, then P/Pπ φ Zπ ^

Proo/.

P φ £ * = (P, N) 0 Zπ = > P © Zπ φ (g, JV) = {Zπ)\q -

(2.6)

==> Pq 0 Zπ ^ (Zπ)2 (Bass cancellation)

= > PJPq

π ®Zπ = Zπ/(N) 0 Zπ (2.5)

— P\PT 0 Zπ = Zπ/(N) 0 Zπ (2.3).

PROPOSITION 2.8. If P and Q are projective ideals in Zπ, then
= Z φ Q iff Q = PP for some peZ:.

Proof. If Q = Pp, then ZφP^ Z®PP follows from the proof
of Lemma 2.6. ZφP= ZφQ implies that P/Pπ = Q/Q\ Since
Ext (Q/Q*, Z) = Zn, there is an extension 0 -> Z-+i?-*P/P r ->0
such that R = Q. R is projective implies that R = Pp for some
p e Z * .

The following proposition follows easily from Lemma 6.1 of

[8].
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PROPOSITION 2.9. Z φ P φ & s Z φ { Z π f iff[P]eim3cjζ,Zjτ.

PROPOSITION 2.10. Zπ/(N) φ Zπ ^ M φ Zπ iff there exists a
projective ideal PM such that

(a) PM\(PMY = M

(b) [PM] = 0 in K0Zπ.
Furthermore, let Zπ/(N) φ Zπ s M' φ Zπ. Tfcew Λf s Λf' i # P ^ s
(P»ι)pfor some peZ*.

Proof. («•=) By 2.7, P^ 0 ZTΓ S (ZTΓ)2 implies Zπ/(N)®Zπ =
PMY φZπ^MφZπ.
(==») Consider the exact sequence

0 „ ^ - U (ZJΓ)2 - ^ Zτr/(iV) 0 Zπ • 0 .

W), 0)

Since a: Zπ/(N) φ Zπ s MφZπ, we have

0. » z -i-» Zτr2 - ^ ^ Λf φ ^JΓ •• 0

is exact. Zπ is a projective π-module implies that there exists a
projective ideal PM such that β: PMφZπS: Zπ® Zπ and

0 > £ > p Λ 0 Zπ - ^ M φ ZTΓ »0
II

3' 0 ίώ

i' ύf

Thus 0 - > Z - ^ P ^ - ^ M - ^ 0 is exact. M is torsion free and Mπ — 0
implies that i\Z) = P.}. Thus PM/(PM)π ~ M and [PM] = 0 in J ^ o ^ .

For the second part, suppose that PM, = (PM)P for some peZ*.

Then ΛΓ s PM>KPM>Y = (PM),I(PM)1 = P^/Pί = ilf by 2.3.
If M ̂  M', then 0 -> Z -+ PM, -> M -> 0 is exact. By 2.4,

Ext (Λf, Z) = Zn and the set of projective extensions is given by

{o — > P£ — > (PM)P — > (PMy{PM)ι = pM/Pi = M — > o i p G z:}.

Thus Pjtf, = (PM)p for some p e Zf.
The following proposition has a proof which is similar to that

of 2.10. For any projective ideal PaZπ, let ε:P-+Z be the
augmentation.

PROPOSITION 2.11. A(π) φ Zπ ^ I φ Zπ iff there exists a pro-

jective ideal PM such that

(a) 0 - > ϊ - > P ^ 2 - > Ϊ
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and
(b) [PM] = 0 in K0Zπ.

Furthermore, let A(π) φ Zπ ^ M' φ Zπ. Then M = M' iff PM, =
(PM)P for some pe Z*.

We point out that the proof of 2.11 is not quite "dual" to that
of 2.10, for it uses the relative injectivity of Zπ and the fact that,
for any protective ideal P in Zπ, Ext (Z, P/ker ε) = Zn, etc.

Proof of Theorem 2.1. We prove only (a), as (b) is similar.
Define a function v: SW(^'(π)) -> ̂ Γ^z@z, by v({P}) = {Z 0 P}([P] e
imd), where P is a protective ideal in Zπ. Clearly v is onto by
2.2(b). If Z@P=Z@P', then (2.8) implies that P' ~ Pp for some
peZ*.

3. Nontrivial Λ^cέ?N(π). In this section we show that both
ikx) a n d -^^®^r(Aut π) are nontrivial for π = GQ(32), the

generalized quaternion group of order 32.

DEFINITION. Let Θ be an automorphism of π. Two τr-modules
M, M' are θ-isomorphic (M = ^Λf') if there is a function β:M->M'
which is bijective such that β(x-m) — θ(x)β(m) for all xeπ, meM.
β is called a θ-ίsomorphίsm. Let *M denote the class of all modules
stably isomorphic to M and #-isomorphic to M for some θ 6 Aut π.
Clearly *M c *M. Furthermore, let ^^^^(Aut π) denote the set
which is the union of *M with the set of Aut ^-isomorphism classes
of 7Γ-modules Mf such that

(a) M'®(Zπ)2 = M®(ZπY
and

(b) M' is not ^-isomorphic to M for any θ e Aut π.

DEFINITION. A π-module M is full if for each θ e Aut π, there
is a ^-isomorphism M-^M.

For example, it is clear that Z($Zπ, A(π), and Zπ/(N) are full
7r-modules.

PROPOSITION 3.1. / / M is a full π-module, then *M = *M.

Proof. We must show that M = M' if M ~ ΘM'. Suppose β:
M~+M' is an ^-isomorphism. Let a:M^M be a ^-isomorphism.
Then the composite β a: M-> M' is an ΐd-isomorphism.

COROLLARY 3.2. / / M is a full π-module, then ^ " ^ ( π ) Φ *M

yields ίyί^c^M{kut π) Φ *M.
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Now let G = (?Q(32), the generalized quaternion group of order
32, and let P be the protective ideal in ZG defined in [10]. P has
the following properties:

3.3 (a) P®ZG = (ZGf
but

3.3 (b) P £ ZG.
The proof of the following lemma was shown to me by R.

Swan. It generalizes (3.3(b)).

LEMMA 3.4. For any peZ£, (p, N) ¥ P.

Proof. Suppose P 9= (p, N) for some peZ*2. Then PφZ =
ZGφZ. Let A be the order considered in [10] and apply A ® ZG—
to the above obtaining

(3.5) (A (X) ZGP) 0 (A (X) ZQZ) ^A@{A® ZGZ) .

The module & = A (x) ZGP & A [10, Lemma 1]. Now A (g) ZGZ is a
torsion module because QG = QA x Q x , so ζM (x) QGQ = 0. Fac-
toring out the torsion in (3.5) gives & = A, which is contradiction.

COROLLARY 3.6. For G = GQ(32) and M=:Z@ZG, A(G), or
ZG/(N),

Proof. P 0 (p, N) for any p e Z£ implies that Zζ&ZG£
by 2.8. Clearly Z®P® ZG s Zφ (ZG)2 by 3.3(a). If A' =
ker{ε:P->£}, then by 2.11, A(G) © ZG ̂  A!0 ZG, but A'&A(G).
Letting B = P/PG, 2.10 shows that B® ZG ̂  ZGj(N)@ ZG, but
B £ ZG/(N), by 3.4.

4* Roots in homotopy trees* Let (TΓ, m) be fixed, where π is
a group and m an integer greater than or equal to two. Let χ m i n =
%min(π, m) = min{( — l)mχ(X)|X is a (π, m)-complex}. The level of a
(TΓ, m)-complex X is the number ( — ϊ)mχ(X) — χmin. For π finite, it
is known that roots occur only at levels 0 (minimal roots) or 1. In
this section we give an example of a (TΓ, m)-complex which is a
root at level one. As pointed out in the introduction, these level
one roots are rare (for π finite), occurring only when TΓ is periodic
and m = k — 1, where & is a period of π. Dunwoody's example is
also at level one [3].

Question. Do roots occur at levels other than 0 or 1?

DEFINITION. The homotopy tree HT(π, m) is a directed tree
whose vertices [X] consist of the homotopy classes of (TΓ, m)-com-
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plexes X; a vertex [X] is connected by an edge to vertex [Y] iff
Y has the homotopy type of the sum XvSm of X and the m-
sphere Sm.

COROLLARY 3.7. Let G = (?Q(32). Then each homotopy tree
HT(G, 4i-l)(i > 0) has nonminimal roots (at level one).

Proof. Consider ker {3: Z£ -> KQZG} (see § 2). Recent compu-
tations of S. Ullom [12, Prop. 3.5] show that

ker 3 = ± (Z*γ .

Let ^V^ = ^ir<^z®zQ (Aut G). For each a e ^V^, choose a repre-
sentative Z®Paea. It follows from Theorem 9.1 of [4] that the
number of distinct homotopy classes of (G; 4ί-l)-complexes at level
one is given by order of the set

LJ {ker d/Q4UZ®Pa)}.

For a definition of the subgroup Qa-xiZ @ Pa) of ker 3, see [4, page
272]. The number of distinct classes of roots is given by the order
of the nonempty set

LJ .{ker d/Q<UZΘP«)}

We note that ^r£T¥(G) Φ * for M - A(G) or ZG/(N) implies
that the homotopy trees HT(G, 4i-2) or (respectively) HT(Gf 4ΐ) have
nontrivial minimal roots, with the possible exception of HT(G, 2).

Finally, the computations of Ullom [12, 3.5] allow one to show
that the homotopy tree HT(G, 3) looks like:

[X v 4S3]

[X V 3S3]

[X V 2S3]

[X V S3]

level

4

3

2

1

0

where X is the unique ((?, 3)-complex (up to homotopy type) having
Euler characteristic zero and Y is the (G9 3)-complex at level 1
having π3(Y) = Zξ&P. It follows that Q 3 ( ^ 0 P α ) = ker3 for all
a e ^Y*^ and hence the number of homotopy types of (G, 3)-com-
plexes at level one is given by the order of the set
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