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CHARACTERIZING REDUCED WITT RINGS II

THOMAS C. CRAVEN

We have recently given a recursive construction of all
reduced Witt rings of fields with finitely many places into
the real numbers. In this paper we extend the construction
to include all reduced Witt rings of fields. We then demon-
strate how this recursion process can be used to prove facts
about these rings.

1. Introduction. Given a field F, we denote its Witt ring of
nondegenerate symmetric bilinear forms by W(F). Modulo the
nilradical, we obtain the reduced Witt ring Wxea(F). We begin
with some notation and basic facts about these rings from [11] and
[12] which will be used throughout this paper. Our interest is only
in fields F for which the Witt ring is not entirely torsion. This is
equivalent to the field being formally real [13]. In this case, Wτeά(F)
can be naturally embedded in ^(X, Z), the ring of continuous func-
tions from the topological space X = X(F) of minimal prime ideals
of W(F) with the Zariski topology to the ring of integers with the
discrete topology. One can also identify X with the set of orderings
of F and with the set of ring homomorphisms from W(F) to Z. In
dealing with elements of X, we shall usually think of them as
orderings, represented by a set of positive elements P. More gener-
ally, one can consider "abstract Witt rings" (defined in [12]) and
obtain a similar embedding. We will generally identify such rings
with their canonical embeddings in rings of continuous functions,
hence considering an element / in Wτea(F) as a continuous function
/: X{F) -> Z.

Our goal in this paper is to separate the reduced Witt rings of
fields from among the class of all abstract Witt rings. This will be
done by extending results in [6] to obtain a ring theoretic construc-
tion of a category of rings whose objects represent all isomorphism
classes of reduced Witt rings of fields. The recursive nature of this
construction provides a strong method of proof for questions con-
cerning the ring structure of the reduced Witt ring. This will be
demonstrated in §4 where we obtain a new proof of a powerful
recent theorem due to Becker and Brocker [1, Theorem 5.3]. In §3
we state and prove the characterization theorem for reduced Witt
rings, generalizing [6, Theorem 2.1].

Section 2 is devoted to defining and briefly studying the category
of rings in which we are interested. As a matter of notation, we
shall let R* denote the multiplicative group of units in any ring R.
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For any set S, we denote the cardinality of S by |S|. Further
notation will be developed in the next section.

We wish to express our appreciation to Alex Rosenberg for his
valuable comments and suggestions for revising an earlier version
of this paper.

2» Construction of categories* Our objective in this section is
to construct a category of rings which contains a ring isomorphic
to Wxod(F) for any formally real field F.

DEFINITION 2.1. Let ^ 0 be the full subcategory of the category
of rings with 1 whose objects are the rings constructed in the
following recursive definitions:

( a) Z is in ^ 0 .
(b) lί R1 and R2 are in ^?0 and Mt is the unique maximal ideal

of Ri containing 2, then R — Z + Mx x M2 is in ^?0, where Z has
the diagonal embedding in Rt x R2.

(c) If Ro is in &09 so is the group ring R = R0[Λ] where A is
a group of order 2.

REMARK 2.2. For further details, see [6] where this construc-
tion is studied in depth. In particular, it is shown that R is in
^?0 if and only if there exists a field F with a finite number of
orderings such that R is isomorphic to Wxe&(F) [6, Theorem 2.1].

We now wish to embed this category in a category &, ensuring
that every reduced Witt ring will be isomorphic to an object in &.

DEFINITION 2.3. The category & is defined to be the full sub-
category of the category of rings with 1 whose objects consist of
the objects in ^?0 together with rings of the form

R = (lim Ra) Π ΐf(lim Xa, Z)

where (Ra,faβ) is an inverse system of rings Ra in ^?0 and surjec-
tive homomorphisms faβ: Rβ—>Ra; and Xa is the associated topologi-
cal space of minimal prime ideals of Ra. Note that faβ, being
surjective, induces on injection f*β: Xa —> Xβ. Thus (Xaf f*β) is a
direct system of topological spaces. Since we identify each Ra with
its natural embedding in ^(Xα, Z), the elements of lim Ra can be
considered as (not necessarily continuous) functions from limXα to

Zy and so the intersection takes place in the set of all functions
from lim Xa to Z. We further require that X = lim Xa be a Boolean

space ajid β be a Witt subring of <if(X, Z) as^defined in [11, §3].
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In view of [11, Corollary 3.7], this is equivalent to to requiring that
R be additively generated by its units, which are the continuous
elements of

REMARK 2.4. The conditions that X be Boolean and that R be
an abstract Witt ring are certainly necessary. We do not know if the
latter condition is automatic in this situation. It does guarantee
that X is the same as the space of homomorphisms of R into Z (or
equivalently, minimal prime ideals of R), which we shall denote by
X{R).

THEOREM 2.5. The inverse limit in the category & of a surjec-
tive inverse system (Raffaβ) with all Ra in ^?0 is (lim Ra) Π ^(lim Xa,Z)
when this ring is ano bject in &; that is, when limXα is a Boolean
space and the ring is additively generated by its units.

Proof. Given such an inverse system, let R be in & with a
compatible family of homomorphisms φa\ R —> Ra. Then, as in the
category of rings, there exists a unique homomorphism φ: R —> lim Ra

such that fβφ = φβ for each β, where fβ is the homomorphism from
lim Ra to Rβ. Since R e &, the ring R is contained in ^(X(R)f Z).

Each φa induces a continuous map <p*: Xa^ X(R), so we obtain a
unique continuous map ψ: lim Xa —> X(R) extending each φ*. This

induces a homomorphism of R into ^(lim Xa, Z). Thus the image

of φ is contained in (lim Ra) (Ί ̂ (lim Xa, Z) and so by definition this

is the inverse limit in &.

DEFINITION 2.6. In view of the previous theorem, the ring R
defined in Definition 2.3 will be denoted by lim^Ra. We continue

to use lim Ra to denote the inverse limit in the category of all rings

with identity.

3* The characterization theorem* The purpose of this section
is to prove the following theorem.

THEOREM 3.1 (Characterization Theorem). Let F be a formally
real field. Then the reduced Witt ring of F is isomorphic to one
of the rings in & (cf. Definitions 2.1 and 2.3).

REMARK 3.2. We conjecture that the converse is also true. In
fact, given any R in ^?, we conjecture that there exists a pythago-
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rean field whose Witt ring is isomorphic to R. This has been proved
for ^ 0 in [6].

We shall begin by relating some definitions and results of several
authors {1, 2, 10, 14, 15] which we will need in order to prove the
theorem. Throughout this section, F will denote a formally real
field.

DEFINITION 3.3 (cf. [1, 2]). A subset T of F is called a pre-
ordering if it is closed under addition and multiplication, contains
the squares of F and does not contain —1. A preordering is called
a fan if it satisfies T + aT = T (J aT for all a eF, aZ-T. Note
that T*, the set of nonzero elements of T, forms a subgroup of F*.

DEFINITION 3.4 (cf. [10, 11]). For any subset T of Ff let V(T) =
{PeX(F)\teP for all 0 Φ t e T). For any subset Y<zX(F), let
Γ(Y) = { α e F * | α e P for all P e Y} = ΓlΓeYP. A subset Y of X(F)
is said to be saturated if Y = V(Γ(Y)). (An equivalent concept is
that of subspace in [14].)

LEMMA 3.5. Any finite subset of X{F) is contained in a finite
saturated subset.

Proof. For any subset S of X(F), the set V(Γ(S)) is saturated.
The fact that it is finite follows immediately from [14, Lemma 2.1].

Saturated sets have been used by Kleinstein and Rosenberg in
[10] to generalize results for fields using preorderings [1, 2] to Witt
rings of semilocal rings and abstract Witt rings. The following
lemma gives the relationship between these concepts.

LEMMA 3.6. ( a) If T is a preordering of F with [F*: ϊ7*] < <*>,
then V(T) is a finite saturated subset of X(F).

(b) If Y is a finite saturated subset of X{F), then Γ{Y) U {0}
is a preordering of F with [JF*: Γ(Y)] < co.

Proof. Let T be a preordering of F with Γ* of finite index in
F*. Then V(Γ(V(T))) = V(T) since Γ(V(T)) = T [1, Satz 1] and
thus V{T) is saturated. It is finite by [15].

For part (b), let Γ b e a finite saturated subset and consider
Γ(Y). Since Γ(Y) is an intersection of orderings, it clearly satisfies
the definition of preordering with the addition of 0, and has finite
index in F* since Y is finite.

The final lemma we need gives the relationship between the
above concepts and the rings we have been considering.
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LEMMA 3.7. Let R be the quotient ring of Wτea(F) obtained by
restricting the elements to a finite saturated subset Y of X(F).
Then R is isomorphic to an object in &0.

Proof. By [15, Theorem 2.2], the ring R satisfies the hypotheses
of [14, Theorem 4.11]. The conclusion is that R is isomorphic to
the Witt ring of some field with Y corresponding to its set of
orderings, and so R is isomorphic to an object in ^?0.

REMARKS 3.8. (a) In the situation of the previous lemma, it
is possible for R to be isomorphic to an object in ^?0 even though
the set Y is not saturated. For example, we may have Wΐed(F)
isomorphic to the integral group ring Z[Λ] where Λ is a group of
exponent 2 and order 4. Take Y to be any three of the four ele-
ments in X(F). One can then check that Y is not saturated but
the restriction of the functions in Z[Λ] c ^(X, Z) to the subset Y
gives a ring isomorphic to one in ^?0.

(b) It is even possible for the ring R in (a) to be the homo-
morphic image of Z[Λ] under the canonical homomorphism induced
by inclusion of fields. For example, it is well known that the Witt
ring of the field of iterated Laurent series F = R((x))((y)) over the
real numbers has Witt ring isomorphic to Z[Λ]. By [7] we can
embed F in a field K to which each ordering of F extends uniquely
and which satisfies SAP (that is, K contains an element a which is
positive in the three orderings in Y and negative in the fourth
ordering). We can then form L = K(a1/2, aiμ, a1/8

9 •••)> s o that the
homomorphism W(F) —> Wieά(L) is canonically the same as Z[Λ] —» R.
Using the techniques of [5, §4], we can enlarge L to a pythagorean
field 1/ so that the homomorphism becomes W(F) -> W(U).

(c) If one approaches this subject by looking instead at sub-
rings of Wΐeά(F) and quotient spaces of X(F), he finds that a similar
situation exists. There are subrings which are abstract Witt rings
in the sense of [11] but which are not in ^?0 On the other hand,
there also exist abstract Witt rings which never occur as a subring
of the reduced Witt ring of a field.

Proof of Theorem 3.1. Let F be a formally real field and R =
WτeΛ(F). For each finite saturated subset Xa of X = X{F), let Ra

be the corresponding quotient ring of R. By Lemma 3.7 each ring
Ra is isomorphic to a ring in &ύ, hence in &. Thus we are done
if X is finite. We now assume that X is infinite and show that R is
isomorphic to lim^Ra (where, for reasons of notation, we identify the

rings Ra with the objects in the category & isomorphic to them).
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Note first that the rings Ra form an inverse system with all
of the induced homomorphisms surjective since, by Lemma 3.5, the
sets Xa form a direct system under inclusion with lim Xa = {jXa — X.

Furthermore, we have a natural homomorphism φ\ R —> lim Ra Π
^{X, Z) as in the proof of Theorem 2.5 since the only properties
of R used in that proof are well known properties of the reduced
Witt ring. Each singleton set {x} c X is clearly saturated, so the
corresponding quotient ring of R is among the rings Ra. If / e R
is in the kernel of φ, the image of / upon restriction to each
singleton [x] is zero, and so / is zero as an element of ^{X, Z)f

hence as an element of R. Therefore φ is injective.
Now let / G lim Ra Π ̂ (X, Z). By Lemma 3.6, if we have any

preordering T with [F*: T*] < <*>, the set Xτ = {PeX\PzD T*} is
saturated. Thus the restriction of / to Xτ has a preimage in R,
since R—> Rτ is surjective where Rτ is the quotient ring correspond-
ing to Xτ. By [1, Corollary 5.2], this is sufficient to guarantee that
/ lies in the image of φ. Therefore φ is an isomorphism. Since
R, being the reduced Witt ring of a field, is additively generated
by its units, the ring lim Ra Π ̂ {X, Z) is an object in &. Thus R
is isomorphic to lim^ Ra and the theorem is proved.

4* Applications. In [4], Brown attempted to characterize, for
a formally real field F, the elements of ^(X, Z) which lie in the
image of Wτeά(F) using valuation theory. He was led to define
the concept of an "exact" field. In [1], Becker and Brocker have
not only shown that all formally real fields are exact, but have
obtained the characterization in a much more pleasing form as
follows.

THEOREM 4.1 [1, Theorem 5.3]. Let F be any formally real
field. The function f in &(X(Wτea(F)), Z) lies in the image of
Wτea(F) if and only if

Σ f(P) Ξ 0 (mod — [F*: T*])

for all fans T with [F*: T*] < oo.

We shall give a new proof of this theorem which will demon-
strate the use of our recursive construction of reduced Witt rings.
Using an idea first presented in [8], we will cast the theorem in
ring theoretic terms.

DEFINITION 4.2. For any ring R e &, we call a subspace Y of



CHARACTERIZING REDUCED WITT RINGS II 347

X(R) a, 2n-box if | Y\ = 2n and the quotient ring obtained by restrict-
ing the functions in R to the subspace Y is an integral group ring.
(This quotient ring is studied carefully in [8, Theorem 3.8].)

REMARK 4.3. The original work on fans done by Becker and
Kopping [2] shows that fans with finite index in the field are
precisely the intersections of order ings in a 2w-box for some n.
Thus a fan has the same relationship with a 2w-box as a preordering
has with a saturated set. Furthermore, it is shown that [F*: T*]
equals twice the number of orderings containing T.

THEOREM 4.4. Let Re&. The function f in ^(X(R), Z) lies
in R if and only if for every integer n ^ 1 and every 2n-box B in

X(R),

Σ/(P) = 0 (mod2 ).
PeB

Proof. The result is clearly true if R = Z. We proceed induc-
tively, verifying the theorem for all of the rings constructed in
Definitions 2.1 and 2.3. First assume the theorem holds for two
rings Rx and R2 in &09 and let R = Z + M1 x M2 be as in (2.1b).
It is shown in [6] that X(R) is the disjoint union of X(Rt) and X(R2)
and that any 2M)ox, n > 1, is entirely contained in either X(RJ or
X(R2). Since Af< is contained in <lf(X(Rt), 2Z), it follows from [11,
Proposition 3.8] that feRiΐ and only if / restricted to X(Bt) lies
in Ri for i = 1, 2 and parity is maintained (P< e X(Bt), i = 1, 2
implies /(PJ = /(P2) (mod 2)). Thus the theorem holds for R.

Next assume the theorem holds for RQ in ^ 0 and let R = R0[Λ]
as in (2.1c). It is shown in [6] that X(R) can be written as
X(R0) x {1,2} where the generator λ of Λ, as an element of
%?(X(R),Z), is 1 on X(R0) x {1} and - 1 on X(RQ) x {2}. The ring
R is additively generated by the constant functions together with
functions 21υ where Xπ is the characteristic function of a set U of
the form {σ e X{R) \ σ(g) = 1} or its complement for some unit g e R
[11, §3]. So it will suffice to show that 2Xπ satisfies the congruences
for any 2%-box B in X{R). If B is contained in one copy of X(R0),
this is clear since 2XV restricts to an element of Ro on that copy.
Otherwise, B must be a union of two 2%"1-boxes, Bt c X(R0) x {i},
i = 1, 2 [8, Theorem 3.8]. Since J? is a 2%-box, we have |Z7 Π Bt\ = 0
or 2"-1 [8], and thus

PeB
2JWP) = 0 , 2n or

and so is congruent to 0 modulo 2\ Conversely, assume fe
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) x {1, 2}, Z) satisfies all of the congruences. Define fl9 f2 e
), Z) by Ux) = l/2(/(s, 1) +/(x, 2)) and /2(x) - l/2(/(x, 1) -

/(as, 2)). These take integral values since {(x, 1), (x, 2)} is a 2-box.
Since /(α, t) = f,(x) + f2(x)X(t) for (a, ί) in X(i20) x {1, 2}, we need
only show that fγ and /2 lie in Ro. Let 5 be any 2%-box in X(R0).
Then

Σ Λ(P) = ^ Σ /(Λ 1) + f(P, 2) = 0 (mod 2 )

since B x {1, 2} is a 2w+1-box. Similarly, /2 satisfies the congruences
and so f19 f2 e RQ.

Finally, let R = (Km Ra) Π ̂ (lim Xa, Z) as in Definition 2.3 where

each Ra satisfies the theorem. If f e R, the congruences hold for
/ since each 2%-box in X(R) gives rise to a quotient ring in &Q,
and thus the box is contained in some Xa corresponding to one of
the rings Ra. Conversely, assume the congruences all hold for
/ G <if(lim Xa, Z). Then the image fa of / in ^(Xa9 Z) lies in Ra

for each a by hypothesis, and so / e lim Ra. Since / is continuous,

/ is in R.
This concludes the proof of the theorem.

REMARK 4.5. It is interesting to note that converse of Theorem
4.4 does not hold. That is, there exist abstract Witt rings whose
elements are characterized by the system of congruences, but which
do not lie in &. The smallest such ring is the quotient ring of
R = Z(Λ), where A is a group of exponent 2 and order 8, obtained
by deleting one point from the 23-box X{R).

Results such as the equivalence of WAP and SAP [9, Theorem
5.3] and generalizations to stability [3, Satz 3.17], [8, Theorem 4.3],
[16] can also be proved easily from Theorem 3.1, using a recursive
method as in the above proof. The main difficulty is in formulating
the results so that they can be proved for inverse limits. For
example, to get the equivalence of the Hasse-Minkowski Property
with WAP and SAP, it is better to use Definition 1.22 of [10] than
the original definition in [9].
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