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ON THE AVERAGE NUMBER OF REAL ZEROS OF A
CLASS OF RANDOM ALGEBRAIC CURVES

M. SAMBANDHAM

Let alf α2, , be a sequence of dependent normal random
variables with mean zero, variance one and the correlation
between any two random variables is p, 0<p<l. In this
paper the average number of real zeros of Σ*=i akk

pxk,
0^p<oo is estimated for large n and this average is asymp-
totic to (2π)-1[l+(2p+l)1/2logn.

1* Let a19 a2, be a sequence of dependent normal random
variables with mean zero, variance one and joint density function.

(1.1) I M\1/2(2π)-n/2 exp [-(l/2)α'ΛΓa]

where Af~] is the moment matrix with ptj — p, i Φ j, 0 < p < 1,
i, j — 1, 2, '' ,n. We estimate in this paper the average number
of real zeros of

(1.2) f{x) = Σ ®^xk , 0 ^ p < -

and we state our result in the following theorem.

THEOREM. The average number of real zeros of (1.2) in — co<;
x <̂  co, when the random variables are dependent normal with
joint density function (1.1) is (2π)"1[l + (2p + l)1/2] log n9 for larger n.

When p = 0, that is, for the polynomial Σ atP*9 the average
number of real zeros is estimated in Sambandham [5] and this
average is π"1 log n. Since the maxima or minima of Σ a^k is only
half of the average number of real zeros of Σ hakx

k~~\ by giving
p = 1 in the theorem we get the average number of maxima of
Σ ak^k- This average has been already estimated in Sambandham
and Bhatt [6] and its value is (4π)-ι[l + 31/2] log n.

When the random variables are independent and normally distri-
buted Das [2] estimated the average number of real zeros of [1.2]
and this average is π~ι[l + (2p + 1)1/2] log n. Under the same con-
dition the average number of maxima of Σ ak%k is (2π)~1[l + 31/2]
log n and the average number of real zeros of Σ akχk i s (2/π) log n.
These two results are respectively in Das [1] and Kac [3].

We note that the average number of zeros and the average
number of maxima in the case when the random variables are in
dependent are twice that of the case when the random variables are

207



208 M. SAMBANDHAM

dependent normal with a constant correlation.
This is because when the random variables are dependent with

a constant correlation p, most of the random variables have a
tendency to be of the same sign as they are interdependent. As
the most of the random variables preserve the same sign Σ akk

pxk

has a tendency of behaving like ±^\ak\kpxk. Under this condition
when x > 0, the consecutive terms have a tendency to cancel each
other and when x < 0 the cancellation does not become possible.
This fact reduces the average number of real zeros for x > 0 to
o(log n).

In view of the relation

f{x) = tt*s + 1 Σ <*•-*(! ~ kn-yyk+1

& = 0

== npxn+1Pn(y) , y = —
x

the number of roots of in (— oo, —1) U (1, °°) equals with probability
one, the number of roots of the polynomial Pn(y) in ( — 1, 1). Pro-
ceeding the method here we can easily show that the number of
zeros of the polynomial ^t^oakx

k in ( — 1,1) remain true for Pn(y)
in ( — 1, 1). Hence we get from Sambandham [5]

(1.3) ΛfΛ(l, oo) = o(logn)

and

(1.4) Mn(- oo, 1) ~ (27Γ)"1 logn .

Therefore our further discussion will be on the average number of
real zeros of (1.2) in ( — 1, 1).

If we show that

(1.5) M%{- 1, 0) ~ (2π)-\2p + 1)1/2 log n

and

(1.6) Mn(0, 1) = o(log n)

in view of the relations (1.3) and (1.4) we get the proof of the
theorem. To prove (1.5) and (1.6) we proceed as follows:

2* Let Mn(a, b) denote the average number of real zeros of
(1.2) in (a, b). Then following the method in Sambandham [5] we
get

(2.1) Mn(a, b) - [[(APCP -

where



ON THE AVERAGE NUMBER OF REAL ZEROS OF A CLASS 2Θ9

Ap = Ap(x) = (1 - p) Σ

Bp =

Cp Ξ

if ApCp — JSp > 0 in (α, 6) which is easily seen to hold as in Sam-
bandham [5].

Since

I . " - t e [*£(•£!;')]}
I da; L eZαΛ 1 — a? /J

we can sum the values of Ap, Bp and C9. This calculations show
that for large n and 0 <£ a? ̂  1 — (log log w/n)

- Bj A9CP-B*
A /"^ ~D 2 A /""* ~D 2 ^ (~1 ~D 2

and

^•0 -^-1 Άf> —1

since each

A^C^ - BU (1 - xY

and

Here and in the following Zr(a?, p) with subscripts are bounded posi-
tive values of x and all of them are greater than zero. Therefore
we find

{A,C,-BW* ^ L ( χ s (A0C0 - B y Lβ(x, p)

Therefore (2.1) reduces to

(2.8) AΓ./0,1 - l 0 g l 0 g W ) = 0(1) .
\ n /
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Since always

C — 2V/2

)

(2.4) MA - l o g l o g ^ l ) = 0(lo* log n)

(2.3) and (2.4) proves (1 6). Now we proceed to prove (1.5).
When — 1 <; x <; 0 we find that in APf Bp and Cp the first terms

in the right hand side are dominant and in this case we get

(APGP - Btr2

 < (ΛC0 - .B0

2)1/2

 L ^ v ) < L8(a?, p) ^
yj y4 I ___ /y *

Therefore for — 1 + ^ ^ α ^ O , where ίy = exp [ — (log w)1/3] we get

(2.5) Λfn(-1 + 57, 0) = 0(log n)1/s

For — 1 ^ x ^ — 1 + δ/n, where δ — (log n)1/2, we have

and therefore

(2.6) MJ-1, - 1 + A ) = 0(log w)1/2 .

For a? in the interval (— 1 + δ/n, 1 — 17) we follow the method
suggested by Logan and Shepp [4], which was used by Das [2]
also.

3. We put

με(x) = 1 if — ε < x < ε

= 0 otherwise.

From Kac [3] we get

(3.1) Mn(a, b) = lim(2εr\bE{με(f(x))\f\x)\}dx .
ε-» 0 J α

The combined variable (f(x), f\x)) has characteristic function,

φ(z, w) — £7{exp [i f(x)z + ίf'(x)w]} .

The probability density p(ξ, η) for f(x) = ξ and f\x) = 77 is given by

p(f> V) — (2π)\ \ e χ P [—iζz — i^w]9>(2, w)dzdw .



ON THE AVERAGE NUMBER OF REAL ZEROS OF A CLASS 211

Therefore the chance that u ^ fix) < u + du and u ^ f'(x) < v + dv
hold together in p(u, v)du du. As the x's very both / and / ' assume
values from - co to w independently to one another so that

E[μλf)\f'\] =

Let us write

F(u) — \ \v\p(u, v)dv .
J —oo

Then F(u) is continuous and therefore we get

lim(2ε)-
1
E[μ

ε
(f)\f'\] = lim(2s)-

1
(

£
 F(u)du

0 J

S b

!*z{f)\f'\dx is bounded from (3.1)
α

we get the Kac — Rice formula.

Mn(a, b) = lim(2ε)\bE[με(f)\f'\]dx

(3.2) = \bF(0)dx = Γ dx (°° \η\p(fi, η)dη .
Ja Ja J -co

We put f(x) = Σ'Li αΛ6fc and f\x) = Σϊ=i «^7ί so that

9>(s, w) - exp [( - y ) ^ 1 - 1°) Σ ( M + CJCW)2

and

(3.3) p(0, i/) = (27r)~2\ dw \ exp (-ίyw)φ(z, w)dz .
J - c o J —oo

Then for ε > 0 we have

where Re stands for the real part. We need the following identity,
valid for non zero P and Q,
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(3.5) Re τr 2 Γ dw Γ exp Γ - {±r\Pz + Qwf\dz = 0 .

One way to see this is to allow bk and ck to be arbitrary in (3.4). If
we take them each to be constant in k then the probability density
p(ξ> V) corresponding to ξ = Σ &J>* = P# and ^ = Σ α*A = ©2/ dege-
nerates and (3.5) follows. Further given P and Q, the constants x
and ?/ can be chosen such that x and y are normally distributed.

We choose P and Q such that

(3.6) p2 - (1 - p) Σ δϊ

PQ = (1 - P) Σ

From (3.4) and (3.5) we get

(3.7)

- exp{ - (-ί

We put 2 = w'w, w = — xw' and use Frullani's theorem to integrate
on w\ The right hand side of (3.7) reduces to

(3.8) gn(x) - 2 ^ L l o g hn^Xf

where

K(x, u)
_ {[(1 -p) + ρ\]u2 - 2[(1 - i)λ2 + px,]u + [(1 -

where

λ2 s

λ3 = χ3(χ) =

λ5 Ξ
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We put a — — 1 + δ/ n, 6 = — 1 + 7, % — — exp (— t/2ri), u = nv/t.
Therefore

A f ^ - 1 + —, - 1 + 7J = 1 gn(x]

(3.9) = (47rr i Γ 0 vi° O logTΓΛ(t,

where

and

V»(ί, v)

Un(t, v) = [(1 -p) + pXn]vz

i V ^ / J

[φ *•"»(-?)] '

n

+ [(1 - p)Xtl

[(1 - /o) + ̂ j L - (1 ~ ̂ V + fλ31 T
L (1 - !θ) + |θλu J
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From Das

and^using

4-2

Λ'δlW ' o

[2] we get

^ 2 1 =

λ4 1 =

the idea in

M. SAMBANDBAM

[Σ(-i

[Σ

= (2p + 1)

= (2p + 1)

(2.2) we

xsι =

• + 00

<2p +

get

o(±)

p(~)]

\ r> —1/2\
lϋ ) ,

2) + 0(£<Γί/2)

2p + l

2p+3

Now

log W.{v, t)dv = Llog (^2 ~ ^L + ^)(L2 + 2λL + μ)
g *k ' ; K (L2 - 2λL + λ2)(L2 + 2XL + λ2)

~ 2 λ L

(L2 - 2λL + λ2)(L2 + 2XL + λ2)

^ ~ μ)dv

where

λ = λ ( t ) =
(1 - p) +

and

For (l/2)(log w)1/2 <: t ^ nδ and when ^ is large, we find that λ31,
λn and λ51 are tending to zero, λ21 and λ41 are respectively asympto-
tic to (2p + 1) and (2p + l)(2p + 2) and

(3.10) ^r°**\L log ^ - 2 ^ + ^ d , = 0 (Llogn) .
- 2Xv + λ2

Further we note that
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Vύ — ΔT V + 8

for large L. This makes

τ0 t i-L v2 — 2λ?; + μ2

- 2 ) ,

I)
2

Where |^ | <εlog?ι and ε is infinitely small. Taking L large we
obtain from (3.9), (3.10) and (3.11)

l + —,-l + n) = (2π)-\2<p + l)1 / 2logn + o(logn) .
n I

Hence we have proved (1.5) combining this with the discussion
in §§ 1 and 2 we get the proof of the theorem.
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