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GENERALIZATIONS OF THE ROBERTSON FUNCTIONS

EDWARD J. MOULIS, JR.

We study a class of analytic functions which unifies a
number of classes previously studied, including functions
with boundary rotation at most kπ, functions convex of
order p and the Robertson functions, i.e., functions / for
which zf is α-spirallike. We obtain representation theorems
for this general class, and using a simple variational for-
mula, also obtain sharp bounds on the modulus of the
second coefficient of the series expansion of these functions.
Using a univalence criterion due to Ahlfors, we determine
a condition on the parameters k, a, and p which will ensure
that a function in this class is univalent. This result im-
proves previously published results for various subclasses
and is sharp for the class of functions / for which zf is
α-spirallike of order p.

1, Let Pa(p) denote the class of regular functions p(z) in E =
{z:\z\ < 1} such that p(0) = 1 and

Re {e^pjzyp cos a} dQ ^ kπcoB€Cf

1-p

k^2,0^ρ<l,a real, \a\ < ττ/2, z = re", 0 ^ r < 1.
Let Va(p) denote the class of functions regular in E with

/(0) - /'(0) - 1 - 0 and

1 i */"(*) ePk(o)

k, a, and p as above. F0

7ί(0) is the class of functions with bounded
boundary rotation. Fα

&(0) is a generalization of this class which
has been studied recently ([7] and [13]). Padmanabhan and
Parvatham [9] have studied properties of Vo

k(p). In this paper we
study properties of VZ(p) which unlike Vo

k(p) contains functions
whose boundary rotation is not necessarily bounded. A function /
belongs to Vl(p) if and only if

p and a as above. When p = 0, we obtain the class of functions
f(z) for which zf'(z) is α-spirallike, which has been studied by M.S.
Robertson [10], Libera and Ziegler [6], Bajpai and Mehrok [2], and
Kulshrestha [5]. The case when k — 2 but p and a are not zero
has been studied by Chichra [4] who denoted the class F£. This
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class also has been studied by Sizuk [12], who has called zf{z) a-
spiral-shaped of order p. The class Vί(p) is the class of functions
which are convex of order p, introduced by M. S. Robertson in
1936.

LEMMA 1. If p{z) e P£(p), then

(1.1) ««"*») =

where ψ(θ) is a function with bounded variation in [0, 2π] satisfy-
ing

(1.2) \2πdf(θ) = 2π and ΓW(#)I ^ kπ .
J Jo

Proof. L e t

— eiap(z) ~~ P cos a — i sin a( \
(1 — p) cos a

and let

u(z) = Re {g(z)} = Re \ » f ^ ~ P c o s a \ .
I (1 — /0) cos α )

I w(re^) I d^ ^ &7Γ, and according to a repre-

0

sentation theorem due to Paatero [8],
eίap(z) — p cos a — i sin a _ _lf27Γ 1 + zeiθ ^m\

(1 - p) cos α ~ 2ττ Jo 1 - zeίθ '

where ψ(θ) has bounded variation and satisfies condition (1.2) above.
The conclusion of the lemma follows.

Now let f{z) e V£(p). By a theorem due to Padmanabhan and
Parvatham [9], the integral in (1.1)

lπ Jo 1 — £g t { /2ττ

for some f0 in F0

fc(|θ). So

/ί(ίδ)
isin

Integrating, we obtain
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LEMMA 2. f(z) is in Vk(ρ) if and only if there is a function
fQ(z) in Vk(p) such that

The function fo(z) in Vk(p) has associated with it a function go(z)
in Vίc(0). ([9], Lemma 2.)

LEMMA 3. f(z) is in V£(p) if and only if there is a function
gQ(z) in V0

k(0) such that

LEMMA 4. f(z) is in V£(p) if and only if there exists a func-
tion g(z) in Va(0) such that

/'(*) = to W ' } •

Proof. The function [gΌ(z)]e~ί<Xcosa determines a function g'a(z),
where ga(z) is in Va

k(0) [7].

From Paatero's representation theorem for functions with
bounded variation [8], we obtain the following representation.

THEOREM 1. f(z) is in V£(p) if and only if there exists a func-
tion ψ(θ) with bounded variation on [0, 2π] satisfying condition (1.2)
and

f\z) - exp
— (1 — p)e ίacosa [2π

π
log (1 - zeiθ)dψ(θ)} .

THEOREM 2. f(z) is in V£(p) if and only if
(A) there exist starlike functions Slt S2 such that

f'(z) =
rrJ

z J

(1—p)e ia cosα

(B) there exist a-spiral functions Tlt Γ2 such that

ΓΓtCg) T + 2 1 / 4 '

L 2J J

VT2(z) Ύk-2)/4

(C) there exist functions Llf L2 in F0

2(0) such that
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(D) there exist functions Hu H2 in Vo

z(p) such that

J

Proof. (A) follows from Lemma 3 and Brannan's representation
for functions with bounded boundary rotation [3]. (B) follows from
(A) since s(z) is starlike if and only if T(z) = z[s(z)/z]e~iacθΆa is a-
spirallike. (C) follows from (A) because of the fact that H(z) is
convex if and only if zH'(z) = S(z) is starlike. (D) follows trivially
from (C).

2* Properties of functions in V£(p)+

COROLLARY 1. Suppose f(z) = z + a2z
2 + is in V£(p). Then

\a2\ ̂  k(l — p) cos a/2, and this bound is sharp.

Proof. It is well known that if gύ is in F0*(0), then |#"(0)j ^
k, so the result follows directly from Lemma 3. This bound is
sharp for the function f(z) in V£(ρ) defined by

(l-/))e-i«cosα

LEMMA 5. If f(z) is in V£(p), then F(z) defined by

F'(z) = - a z , J F ( O ) - 0 , \a\ z\<l,

is also in V£(p).

Proof. By Lemma 2, for f(z) in V%(p), there exists fo(z) in
Vϊ{p) such that f\z) -

Jo
z + a

1 + dz

"*"008". By Lemma 3 in [9],

is the derivative of

a function in Vό'(p). Hence

/ό α
1 + αz

l-p)

f
az
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is the derivative of a function in V£(p).

THEOREM 3. // f{z) is in VJί(ρ) and 0 < k(l - p) cos a ^ 1,
then f(z) is univalent in \z\ < 1.

Proof. By the previous lemma, if f(z) is in V£(p), then F(z)
defined by

f( z + a

F'(z) = V l + g g / ^ ^ o ) = 0

/'(α)(l +a2) 2 ( 1-" ) e" t e c O B e

is in Va(p) also, with \a\ < 1 and |«| < 1. Then

F"{z) - Γ(l + qa;)2 ( 1^ ) e^c o s a/^f z

1 + az I (1 + α#)2

- 2(1 - |0)e-ία cos α(l + az)m-*>)9~iaco*a-ιa,f'l z + a X]
M + az/J

x [/'()(l άyw~iaeθBa]ι

F"(0) = - S ^ t t ~ l<*|2) - 2(1 - p)e-**cosa a .

Replacing a by z, using Corollary 1 of Theorem 2, and multiplying
through by \z\, we have

- 2 ( 1 - p)e~ίa cos a\z\2

: I z I < k(l — p) cos α .

Ahlfors' univalence criterion [1], with c = 2(1 — p)e~ίa cos a, shows
that / is univalent in E when 0 < fc(l — p) cos α <; 1.

COROLLARY 1. If f(z) is in F« (0), / is univalent in E when-
ever

(2.1) 0 < cos a ^ 1/fc .

ήs simplifies and improves bounds previously published for this
class [7].

COROLLARY 2. // f(z) is in VQ

k(p), then f is univalent in E
for

(2.2) p :> A z i l .
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Previously, it was shown in [9] that f is univalent for p ^
(fc + l)/(fc + 2).

COROLLARY 3. // f(z) is in VZ(ρ), then f(z) is univalent in E
when 0 < cos a <£ 1/2(1 — p). f need not be univalent if cos a > 1/
[2(1 - p)].

Chichra [4] has shown that for each a, 1/[2(1 — p)] < cos a < 1,
there exists a function f{z) in F£ = Fα

2(^) such that /(z) is not
univalent in E. Hence the problem of univalence in V%(p) is solved.

3* We may use the same function / as in [4] to study condi-
tions on k, a, and p which will allow functions in V£(p) to be non-
univalent. Let

(3.1) g(z) = — [(1 - z)-" - 1] ,

and note

g\z) = * μ + 1 .

g'(z) has the form given in Theorem 2C, with L[{z) = (1 — zY1 and
Viz) = 1 and

(3.2) μ + l = e~ia cos α(l - ρ){k + 2)/4 .

Hence g{z) is in V£(p) and, from an earlier result due to Royster
[11], will not be univalent in \z\ < 1 when \μ + 1| > 1 and |j" — 1|
> 1. The first condition requires that

(3.3) cos ail — p)(k + 2)/4 > 1 ,

while the second condition simplifies to

(3.4) cos2 α(l - p)(k + 2)[ ( 1 " p)^ + 2 ) - 3 .

We may use these conditions to analyze the nonunivalence of func-
tions in subclasses of V£(p) which have been previously studied.
When p = 0, the conditions defined by (2.1), (3.3) and (3.4) appear
in Fig. 1. All functions in V£(0) with k and a corresponding to
points in region 1 are univalent, by (2.1). In region 3, (fc + 2)cosα/
4 > 1 and condition (3.4) is satisfied for all k > 6 when 0 < cos a
<i/8/2; for τ/8/2 ^ cos a < 1, (3.4) is equivalent to k > 6 — 4[4
cos2 a — 3]1/2/cos a. When #(z) defined by (3.1) is chosen so as to
correspond with points in region 3, it will not be univalent. When
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1/2 t/3/2 1

FIGURE 1

-•-cos a:

1/2 1 '

FIGURE 2

k and a correspond to points in region 2, it is an open question
whether such / in V,?(0) will be univalent.

Fig. 2 is the corresponding diagram for univalence in the class
Vl\p). Region 1 depicts inequality (2.2), and all functions g defined
by (3.1) with fc, p satisfying (3.2) for a — 0 are univalent in | ^ | < 1 .
Conditions (3.3) and (3.4) require that p < (k - 10)/(fc + 2), and for
these values of p and k (in region 3), g(z) will not be univalent.
Region 2 shows those values of k and p for which the univalency
of functions in Vo

k(p) is an open question. We note that when
k = 2, the equation (3.1) defines the function used by Chichra in
showing that there exist functions / in F£ = Va(p) where / is not
univalent in \z\ < 1, for 1/2(1 — p) < cosα < 1.
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