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GENERALIZATIONS OF THE ROBERTSON FUNCTIONS

Epwarp J. MouLis, JR.

We study a class of analytic functions which unifies a
number of classes previously studied, including functions
with boundary rotation at most kz, functions convex of
order o and the Robertson functions, i.e., functions f for
which zf’ is a-spirallike. We obtain representation theorems
for this general class, and using a simple variational for-
mula, also obtain sharp bounds on the modulus of the
second coefficient of the series expansion of these functions.
Using a univalence criterion due to Ahlfors, we determine
a condition on the parameters k, a, and p which will ensure
that a function in this class is univalent. This result im-
proves previously published results for various subclasses
and is sharp for the class of functions f for which zf’ is
a-spirallike of order p.

1. Let P}(p) denote the class of regular functions p(z) in £ =
{2:12] < 1} such that p(0) =1 and

Sz,\ Re {e"p(2)-0¢0s @&} | 15 « 1r cos a
0 1—p - |

E=20<p<1, areal, | <7/2 z=1e" 0= r <1
Let V(o) denote the class of functions regular in E with
F0) = f"(0) —1 =10 and

2f"(2) ¢ pu
1+ 0 P:(0),

k, &, and o as above. V(0) is the class of functions with bounded
boundary rotation. VZ%0) is a generalization of this class which
has been studied recently ([7] and [13]). Padmanabhan and
Parvatham [9] have studied properties of V{(0). In this paper we
study properties of V[ (p) which unlike V(o) contains functions
whose boundary rotation is not necessarily bounded. A function f
belongs to V(o) if and only if

{ [1 + 2f ”(2)]
Re & 7@ } > pecosa,
© and a as above. When p =0, we obtain the class of functions
f(z) for which zf’(z) is a-spirallike, which has been studied by M.S.
Robertson [10], Libera and Ziegler [6], Bajpai and Mehrok [2], and

Kulshrestha [5]. The case when &k =2 but p and a are not zero
has been studied by Chichra [4] who denoted the class F*. This
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class also has been studied by Sizuk [12], who has called zf'(z) a-
spiral-shaped of order o. The class V(o) is the class of functions
which are convex of order p, introduced by M. S. Robertson in
1936.

LEMMA 1. If p(z) € PXp), then

2r . 0 ..
1.1) ep(z) = C(;sna So 1+ (21_ z‘iﬁ)ze dy (@) + isinea ,

where ¥(0) is a function with bounded variation in [0, 2] satisfy-
ing

(1.2) S:"dqp(o) — 27 and S:”xdw(e)l <kr.

Proof. Let

e“p(z) — pcosa —isin
1—p)ecosa

9(z) =

b

and let

u(z) = Re {g(2)} = Re {-~ (f(i)p—)g):ia } _

Then since p(z) € PX0), Szz|u(re“’)]d0 < krm, and according to a repre-
0
sentation theorem due to Paatero [8],

THE w0,

ep(z) —pcosa —isina _ 1 S
1—p)cosa 27

where (@) has bounded variation and satisfies condition (1.2) above.
The conclusion of the lemma follows.

Now let f(z)e VE(p). By a theorem due to Padmanabhan and
Parvatham [9], the integral in (1.1)

= 1 4 (1 — 20)ze®

%So 1 e WO =1+27@)f),

for some f, in V(o). So

wl’_ i zJJ:’(’(j)J — cos a[ zfo”(z):‘ Lisine .

f”(Z) . pia fo”(z) e ginae — 1
7@ ¢ cosal - + 7 Jr et

Integrating, we obtain
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LEMMA 2. f(2) is in VXP) if and only if there is a function
fo2) in V(o) such that
f’(z) — [fo’(z)]e“i“cosa .
The function fy(z) in V(o) has associated with it a function g,(2)
in Vi0). (9], Lemma 2.)
LEMMA 3. f(z) is in VE(0) if and only if there is a function
g.(2) in V§#0) such that
F1(2) = [gu(a)] o e
LEMMA 4. f(z) is in V) if and only if there exists a func-
tion g(z) in VEO) such that
F@ = [g@1.

Proof. The function [gi(2)]* **°** determines a function g.(z),
where g¢,(z) is in VE0) [7].

From Paatero’s representation theorem for functions with
bounded variation [8], we obtain the following representation.

THEOREM 1. f(z) is in Vi) if and only if there exists a func-
tion (6) with bounded variation on [0, 2r] satisfying condition (1.2)
and

f(z) = exp { —d - Py):”” cos o S log (1 — zew)dn/r(ﬁ)} )

THEOREM 2. f(2) is in VE(0) if and only if
(A) there exist starlike functions S,, S, such that
l:Sl(Z)](kH)/4 (1—p)e ™% cosa

O -[g_%_zT—

4

(B) there exist a-spiral functions T,, T, such that
TI(Z) ‘J(k+2)/4~ 1—p

S(z) = [Tzijjw

z

v

(C) there exist fumctions L,, L, in V(0) such that
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, _ { [L;(z)](k-f—z)ﬂ (1—p)e i cos o
76 = {{zgrar) |

(D) there exist functions H,, H, in V(o) such that

[H[’(z)](k'iﬂ)/d } e~ 0 005
[H.(z)]* > :

Proof. (A) follows from Lemma 3 and Brannan’s representation
for functions with bounded boundary rotation [3]. (B) follows from
(A) since s(z) is starlike if and only if T(z) = 2z[s(z)/z]" "% is a-
spirallike. (C) follows from (A) because of the fact that H(z) is
convex if and only if zH'(z) = S(z) is starlike. (D) follows trivially
from (C).

£@ =1

2. Properties of functions in V(o).

COROLLARY 1. Suppose f(z) = z + a,2* + --- 15 in VEp). Then
ia,| < k(1 — p)cos @/2, and this bound s sharp.

Proof. It is well known that if g, is in V#0), then |g,(0)]| =
k, so the result follows directly from Lemma 8. This bound is
sharp for the function f(z) in V(o) defined by

LemmA 5. If f(z) is in Vo), then F(z) defined by

v 2+ a
(==
F'(z) = <1+az?“ ,
f’(a/)(l "I" @2)2“_!’)6 & cos a

F(0) =0, la] <1, [2] <1,

is also in Vi(p).

Proof. By Lemma 2, for f(z) in Vi(0), there exists fy(z) in
V(o) sueh that f'(z) = [fJ(»)]° “**“. By Lemma 3 in [9],

Al
Fla)d + azpe o

a function in V(o). Hence

, z+a> THcosa ,< z+a>
f°<1+5z 4 1+ az

fol(a)(l -+ dz)z““’” - f’(a)(l + Ez)?:(l—p)e_'i“cosrx

is the derivative of




GENERALIZATIONS OF THE ROBERTSON FUNCTIONS 171

is the derivative of a function in V}(p).

THEOREM 3. If f(z) is in VXHpe) and 0 <k@d — p)cosa £ 1,
then f(z) is univalent in |2| < 1.

Proof. By the previous lemma, if f(z) is in V}(p), then F(z)
defined by
[ R+ a
4 <1 + 6z)

f’(a)(l 4 dz)zu-p)e“ia cos a

F'(z) = , F0)=0,

is in V(o) also, with |a| <1 and |z| < 1. Then

“i%cosa £ "“ 2
Pt = [ aapeoensgn (240 ) L= lal

—2(1 — “ieos (L + Gr) T eosa1g /( z+a ]
(L — e cos a(l + @z) ar ({2

% [f'(a)(l + (—iz)ul—,{:)e_‘;”cosa]-ﬂ ,
Fr(0) = %{1 —lal®) — 201 — P cos @ @ .

Replacing a by z, using Corollary 1 of Theorem 2, and multiplying
through by |z|, we have

zf”(z) (1 Iz lz) 2(1 —ia 2
—=2(1 — — — P)e " cos a|z
F@) |
k(1 —p)cosalz| <k(l—pcosa.
Ahlfors’ univalence criterion [1], with ¢ = 2(1 — p)e~**cos @, shows
that f is univalent in £ when 0 < k(1 — p)cosa < 1.

COROLLARY 1. If f(z) is im VX0), f is univalent in E when-
ever

2.1) O0<cosaxl/k.

This simplifies and improves bounds previously published for this
class [7].

COROLLARY 2. If f(2) is in V(0), then f is wunivalent in E

for

E—1
. = .
(2.2) = —
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Previously, it was shown in [9] that f is wunivalent for o=
k + 1)/k + 2).

COROLLARY 3. If f(z) is in V3(0), then f(z) is univalent in E
when 0 < cosa = 1/2(1 — p). f need mot be wunivalent if cosa > 1/

[2(1 — 0)].

Chichra [4] has shown that for each «, 1/[2(1 — p)] < cosa < 1,
there exists a function f(z) in F¢ = Vo) such that f(z) is not
univalent in E. Hence the problem of univalence in V(o) is solved.

3. We may use the same function f as in [4] to study condi-
tions on %, &, and o which will allow functions in V/}(0) to be non-
univalent. Let

3.1) o(z) = %[(1 — 2 —1],

and note

1

——(—]'.—_';)—#‘!-1.

9'(z) =
g'(z) has the form given in Theorem 2C, with Li(z) = (1 —2)™* and
Lyz) =1 and
(3.2) p+1=e*cosall — o)k + 2)/4.

Hence g(z) is in V(o) and, from an earlier result due to Royster
[11], will not be univalent in |2| <1 when |+ 1| >1 and |z — 1|
> 1. The first condition requires that

(3.3) cosa(l — o)k +2)/4>1,

while the second condition simplifies to

3.4)  costa(l — o)k + 2)[ (= f’ig“ +2) _ 1} > —3.

We may use these conditions to analyze the nonunivalence of func-
tions in subclasses of V[ (0) which have been previously studied.
When o = 0, the conditions defined by (2.1), (3.3) and (3.4) appear
in Fig. 1. All functions in V%) with % and a corresponding to
points in region 1 are univalent, by (2.1). In region 3, (k+2)cos ¢/
4 >1 and condition (3.4) is satisfied for all ¥ > 6 when 0 <cosa
<V'3/2; for V32 =<cosa <1, (3.4) is equivalent to & >6 — 4[4
cos*a — 3]*/cos . When g¢(z) defined by (3.1) is chosen so as to
correspond with points in region 8, it will not be univalent. When
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k and « correspond to points in region 2, it is an open question
whether such f in V/(0) will be univalent.

Fig. 2 is the corresponding diagram for univalence in the class
V(o). Region 1 depicts inequality (2.2), and all functions g defined
by (3.1) with k, p satisfying (3.2) for @ = 0 are univalent in [z|<1.
Conditions (3.3) and (8.4) require that o < (k — 10)/(k + 2), and for
these values of o and % (in region 3), g(2) will not be univalent.
Region 2 shows those values of k¥ and p for which the univalency
of functions in V{(p) is an open question. We note that when
Ik = 2, the equation (3.1) defines the function used by Chichra in
showing that there exist functions f in FY = VXp) where f is not
univalent in |z < 1, for 1/2(1 — p) < cosa < 1.
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