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SHIFTS ON INDEFINITE INNER PRODUCT SPACES

BRIAN W. M C E N N I S

We use the concept of a wandering subspace to study
isometries on spaces with an inner product that is not assumed
to be positive definite. The theory in many respects parallels
the Hubert space theory, but there are significant differences
that are emphasized here. Examples are given which illus-
trate the complications that can arise when the inner product
is indefinite.

The first few sections of this paper are devoted to the
study of indefinite inner product spaces with admissible to-
pologies, and the continuous operators on these spaces. The
rest of the paper concentrates on isometric operators, their
wandering subspaces, and the Fourier representations of
shifts.

1* Introduction. In the paper [5], Halmos studies shifts on
Hubert spaces by using wandering subspaces. We apply this technique
here, where we consider isometries on indefinite inner product spaces.
These operators have been studied in the past, principally by Iohvidov
([6] and [7]), on spaces where the indefinite inner product is derived
from a Hubert space inner product (a J- or (τ-inner product). The
results obtained for isometries here, however, apply in the more
general situation of an inner product space with an admissible to-
pology.

The theory of shifts on Hubert space was used by Sz.-Nagy and
Foias [11] in the study of the geometry of spaces of minimal unitary
dilations of contractions. A noncontraction possesses a minimal unitary
dilation on a space with an indefinite inner product [2], and it was
the study of the geometry of these dilation spaces (originating in the
papers of Davis [2] and Davis and Foias [3]) that motivated the
present work.

Most of the results appearing here formed part of the author's
Ph. D. thesis [10]; other work was partially supported by a grant
from the National Science Foundation.

2 Inner product spaces* An inner product space is a complex
vector space Sίf with an inner product [ , •] satisfying

[aLhL + a2h2, k] = a\h19 k] + a2[h2, k]

and
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for all alf a2eC and for all hίf h2, h,ke J%f. The inner product is not
assumed to be positive, that is [h, h] may be negative for some h e ^ .
For the theory of inner product spaces, refer to [1] and [8]

If [h, k] = 0, then we write h 1 k. If Stf and & are two sub-
sets of g(f, then we write h _L & if h l k for all k e &, and j y JL &
if h _i_ & for all hejtfί

If ^ and ^ are two subspaces, with ^ JL ̂  and £* Π ̂  =
{0}, then we write ^ 0 £f% for the direct sum of <jfx and ^ .

For any subset Szf £ Jg^ we define

Note (cf. [1, Sec. 1.3]) that j ^ 1 is a subspace, and if jzf £ & then
. ^ ^ J / 1 . Also, if ^ and ^ are subspaces of 3έf, then we have

{Sfi + ^Y = = îJ- n J2i L .

In contrast to the situation in Hubert space, it is possible to have
^ n ^ 7 1 Φ {0} for a subspace £f. The subspace

is called the isotropic part of .5^. A subspace J5^ of £έf is said to
be degenerate if ^ ° ^ {0}, i.e., if £? Π =^ L ^ {0} ([1, Sec. 1.4]).

We will be assuming throughout that all inner product spaces
are nondegenerate, i.e., έ%fL = {0} for every inner product space Sίf.
Consequently, if

[h, fcj = [Λ, fcj

for each h e J ^ then kt = AJ2.
If ^ and j ^ 2 are subspaces of <%1 with ^ £ =5 2̂, then £f2 Q JZ?

will be used to denote the subspace ^f2 Π = ^ J .
We will need the following lemma. The proof is straight-forward

and is omitted. (See [10, Lemma 1.1.1].)

LEMMA 2.1. If ^f = JZl 0 ^ , /or subspaces j*flf £ft of an inner
product space ^f, then

A topology on an inner product space έ%f is said to be admissible
if it is locally convex, and if (i) for every k e Sίf the linear functional

φk(h) = [h, k]

is continuous, and (ii) for every continuous linear functional φ on Sίf
there is a k e £ίf such that φ = φk ([1, Sec. III.5]). Every admissible
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topology on a nondegenerate space is separated, i.e., Hausdorff ([1,
Lemma III.5.2]).

The weak topology on Sif is the locally convex topology defined
by the family {pk}ke^ of seminorms, where

pk(h) - I [h, k]\ ( h , k e ,

([1, Sec. 111,2]). The weak topology is admissible ([l, Theorem ΠI.5.1]).

THEOREM 2.2. If Jίf is a subspace of £ίf, then the closure of Sf,
with respect to any admissible topology, is £fLL.

Proof. See [1, Theorem ΠI.6.1].

COROLLARY 2.3. A subspace of Sίf is closed with respect to an
admissible topology if and only if it is weakly closed.

COROLLARY 2.4. If £fx ± J*f2, then ^ _L £?t1 where ^ denotes
the closure of the subspace £ζ\ with respect to any admissible topology.

3* Operators on inner product spaces* We assume from this
point on that all spaces are nondegenerate inner product spaces with
admissible topologies. An operator T: 3(fx -> 3ί?% is assumed to be
linear with domain equal to 3g\. The identity operator will be denoted
by I.

We will be needing the concept of a generalized sequence (or net)
(see, for example, [4, Definition 1.7.1]), and in particular the follow-
ing lemma (cf. [4, Lemma 1.7.4]):

LEMMA 3.1. An operator T is continuous if and only if for
every generalized sequence {ha} converging to zero, {Tha} converges
to zero.

LEMMA 3.2. Suppose 3(f and 34ff are two spaces with topologies
defined by the families of seminorms

respectively. If an operator T from ^ to £%f' has the property
that for each yeY there is an x e X such that

Py(Th) - Px(h) ,

for every h e ^ then T is continuous.

Proof. Suppose that the generalized sequence {ha} in 3ίf converges
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to zero. Then, for every y e Y, the generalized sequence of numbers

{py(Tha)} = {px(ha)}

converges to zero. But this is equivalent to saying that {Tha} con-
verges to zero and so, by Lemma 3.1, T is continuous.

PROPOSITION 3.3. // T is a continuous operator from <^f to
Sίf*, then there exists a unique operator T* from J%f' to Sίf such
that, for each hz3i? and h1'e

[Th, hr] = [h, T*h'] .

T* is weakly continuous.

Proof. For In! e T , [Th, h!\ is a continuous function of h. Since
the topology on Sίf is assumed to be admissible, there is a vector
k 6 £lf such that [Th, hf\ — [h, k]. 3$f is nondegenerate, and so this
equation uniquely determines k, and we can define T*h' = k. Clearly,
T* is an operator from έ%f to ̂ f, and it follows directly from Lemma
3.2 that T* is continuous in the weak topologies of ^f and 3ίff.

Γ* is known as the adjoint of T.

PROPOSITION 3.4. Every continuous operator is weakly con-
tinuous.

Proof. If T is continuous, then T = 'T**, and by Proposition 3.3
the adjoint of any operator is weakly continuous.

4* Regular subspaces* Projections•

THEOREM 4.1. If ^ is a subspace of Sίf, then Sf + £?L is
dense in 3ίf if and only if ^ L L is nondegenerate.

Proof. See [1, Theorem IΠ.6.5].

Thus if £f is a closed subspace which is nondegenerate, then

If in fact

we call £f a regular subspace. Note that every regular subspace is
nondegenerate.
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REMARK. This definition generalizes the use of the terms regular
in [3], right in [9], and praviVnym in [7], and coincides with the
use of ortho-complemented in [1], at least for riondegenerate inner
product spaces.

If J?f is regular, then every h e £έf has a unique expression in
the form h = I + V (le Sf, V e SfL). We define P&, the projection
of Sίf onto^f, by

PΛ - I

Clearly, P& is linear, P%> = P&, and for each h, k e Sίf

\PJι, k] - [h, P&k] .

Therefore, by Lemma 3.2, P& is weakly continuous and P% — P&.
It is obvious that if £? is regular, so is £fL and P^± == J — P^.
An operator P on .^^ is called a projection if it is weakly con-

tinuous and if P* = P 2 = P.
The proofs of the following theorem and its corollaries are straight-

forward, and are omitted.

THEOREM 4.2 (cf. [9, p. 116]). If P is a projection, then £f =
is regular and P = P^.

COROLLARY 4.3. Jίf is regular if and only if there is a projec-
tion P such that £f =

COROLLARY 4.4. If P ^ and P&2 commute, for two regular sub-
spaces £(\ and £f2, then &Ί — £fx[\£fιis regular with P^3 = P^tP^2.

COROLLARY 4.5. // <£\ and £f% are regular subspaces with £fλ Q
, then ££% = £έ\ Q £fx is regular with P^3 = P^

^2

In a Hubert space the direct sum of two orthogonal closed sub-
spaces is always closed. In an indefinite inner product space this is
true, provided we assume that one of the subspaces is regular.

THEOREM 4.6 (cf. [9, Lemma 5.1]). Suppose £έ^ and £f% are sub-
spaces of Sίf satisfying £έ\ _L £έ\. Then if £2\ is regular and J^%

is closed, Jίfj Q) Jzf2 is closed. If, in addition, £fz is regular, then
ι Θ .£1 is regular.

Proof. Since ^ S ^ 1 and ^ is regular, the sum of £fx and
is direct.
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Suppose h is in the closure of ^ 0 ^ . Then, by Corollary 2.3,
there is a generalized sequence {ha\ in -5^ φ '£ft converging weakly to
h ([4, Lemma 1.7.2]). Let P be the projection of Sίf onto £?„ Clearly,
(/ — P)ha e ̂  and, since P is weakly continuous and Sί% is closed,
(J - P)he £?ι. Hence h = Ph + (I - P)h e JS^ φ J2^2, and j ^ 0 J2^2 is
therefore closed.

Now suppose Jίf2 is regular and let Q be the projection of £έf
onto j ^ 2 . Since j ^ 1 j ^ 2 , QP = PQ = 0. Hence P + Q is a projec-
tion with (P + Q ) ^ - J2^ 0 J2^2 and so, by Theorem 4.2, ^ 0 j ^ 2

is regular.

5* Isometries* An operator V from < ^ to £%ff is called an
isometry if it is continuous and [ Vh, Vk] = [h, k] for each h, k e ̂ ^
The condition that a continuous operator F be an isometry is equiv-
alent to V*Vr = 7, and hence every isometry is injective. (Cf. [6,
Proposition 1°]. Recall that Sίf is assumed to be nondegenerate.)

An isometry is called unitary if it is surjective. As in Hubert
space, the unitary operators V are characterized by the relations
F * F - I and F F * = I, i.e., by the relation F * = V~\

LEMMA 5.1 (cf. [6, Theorem 2]). If V is an isometry and
is a closed subspace, then VJϊf is also a closed subspace.

Proof. V£f is clearly a subspace. In view of Corollary 2.3 it
suffices to show F=S^ is weakly closed.

Suppose h is in the weak closure of V^f. Select a generalized
sequence {la} of vectors in £f so that {Vla} converges weakly to h.
Since F* is weakly continuous, {la} = {V*Vla} converges weakly to
F*fe. By Corollary 2.3, jgf is weakly closed, so V*h e^f. Also, since
Proposition 3.4 implies the weak continuity of F, {VIa} converges
weakly to VV*h. But {Vla} was assumed to converge weakly to h
and the weak topology is separated, so h = VV*h e VjZf. Hence V£?
is weakly closed.

THEOREM 5.2 (cf. [7, p. 176], [1, Theorem VI.3.8]). // & is a
regular subspace of έ%? and V is an isometry from J%f to 3$f\ then
VSf is a regular subspace of Sίf\ The projection of £ί?f onto V£?
is VP^V*.

Proof. Let P = P^, Q = VPV*. Then Q is weakly continuous,
Q z= Q*, and since F is an isometry, Q2 — Q. Therefore Q is a pro-
jection.

We have QJT'S VP3T= V^ and for any I e ̂  QVl = VPV*Vl =
VPl = VI. Hence QSίf' = V£f, so by Theorem 4.2, V£? is regular
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and Q is the projection of Sίf* onto V£f.

We also include the following result, in which the operator V is
not assumed to be continuous. A similar result has been obtained by
Iohvidov [7, Theorem 2] for G-isometric operators on a Hilbert space
with a G-metric. Here we consider arbitrary nondegenerate inner
product spaces Sίf and Sίf9 and we discuss the weak continuity of V.

THEOREM 5.3. Suppose that V: £ί?'-> 3έf' satisfies [Vh, Vk] =
[h, k] for all h, ke Sίf. Then V is weakly continuous if and only if

is a regular subspace of 3(?9.

Proof. If V is weakly continuous, then Theorem 5.2 shows that
is a regular subspace of 3ίf9. Conversely, suppose that VSίf

is regular and let P be the projection of 3$f' onto Vέ%f. If Vh — 0
for some h^^f, then [h, k] = [Vh, Vk] = 0 for all keβ^f and so V
is injective. Thus we can define U=V~1Pf an operator from £$ff

to Sίf.
For all h e ̂ f and k e Sίf' we have

[Λ, CTJfc] - [Ffe, FC7&] - [Ffc, Pfc] - [Vh, k] .

Consequently, by Lemma 3.2, V is weakly continuous.

6. Wandering subspaces* Let V be an isometry on £{f. Follow-
ing Halmos [5], we call a closed subspace £f of Stf wandering for
V if it is nondegenerate and Vp£f 1 Vq£f for every pair of integers
p, q ̂  0, p Φ q. Since V is an isometry, Sf is wandering for V if
and only if it is nondegenerate and

VnSf 1 Se for n = 1, 2, - .

Let Λf+C^) = VSU V -̂Sf (ί e > t i i e closed linear span of the sub-
spaces F\£f, ̂  = 0, 1, 2, •).

PROPOSITION 6.1. (i) VM+(^f) = M+(V^f) and (ii)

Proof, (i) follows from the definition of M+(^f) and the fact
that VM+(^f) is closed (Lemma 5.1).

To prove (ii), note that £f± Vn+1^f for each n ^ 0, and so (by
Corollary 2.4) & l

THEOREM 6.2. // . ^ is regular, then

(6.1)
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(6.2) VM+{£f) = M+(£f) θ Sf.

Proof. Proposition 6.1 and the nondegeneracy of Sf show that
the use of 0 in (6.1) is justified. Clearly, M+(£f) is spanned by £f
and VM+(£f). (6.1) follows from Theorem 4.6, since £f is regular
and VM+(JZf) is closed (Lemma 5.1).

(6.2) is a direct consequence of Lemma 2.1, since J?f0 = {0}.

COROLLARY 6.3. If Sf is regular, then for n = 1, 2, •

When < ^ is a Hubert space, ^ is uniquely determined by V
and M+(3f):

(6.3) J ^ - M+(j^) θ FAί + (^) .

The following example shows that this is not necessarily true when
the inner product on 'Sίf is not positive definite.

EXAMPLE 6.4. Let 3ίf be the space of sequences x = {xk}k^o of
complex numbers such that

For two sequences x and y we define

[x, y] = xoyo - Σ

The topology on <%* is that defined by the norm || ||, and this topology
is readily seen to be admissible.

Let £f be the one-dimensional subspace of 3ίf spanned by the
vector I, where l0 = τ / 3 , k = 2 and ZΛ = 0 for & ̂  2. It is easily
checked that ^ is regular.

For x G ̂ ^ let Vx be the sequence y e 3ίf with 2/0 — 2#0, 2/] —
1/ 3 x0 and yfc. = xk_x for & > 1. Then V" is an isometry and £f is
wandering for V.

By writing down the condition that z _L Vnl for ^ = 0,1, 2, ,
it can be readily seen that M+( e^) i is spanned by the single vector
z with'3o =.l/i/3 and £fc = 2"fe for ft ^ 1.

Let Sf be the one-dimensional subspace of 3ίf spanned by the
vector V — I + z. Then £f' is regular and wandering for V. As
before, it can be shown that M+i^?')1 is spanned by the same vector
z that spans M+(£f)L. Consequently, M'+(J*f') = M+(J*f), but

Note that in the preceding example M+(J*f) is a degenerate sub-
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space. In fact, since M+{.2fY is spanned by the vector z and since

[z, z] - 1/3 - Σ 4"fc = 0 ,

then M+(<2f)L e M+(£f). The following theorem shows that the non-
degeneracy of M+(£f) is a necessary and sufficient condition for (6.3)
to be true, provided £f is regular.

THEOREM 6.5. If Sf is regular, then £f = M+(jSf)
if and only if M+{jSf) is nondegenerate.

Proof. If £? is regular, then Theorem 6.2 implies M+(£f) =
£f 0 VM+(£f). Thus, by Lemma 2.1,

Hence, M+(£f)QVM+(£f) =.£? if and only if VM+{Sf) is non-
degenerate. Since V is an isometry, this is equivalent to
being nondegenerate.

THEOREM 6.6. If M+{Sf) is regular, then Sf is regular. If P
is the projection of §ίf onto M+(J*f), then P — VTF* is the projec-
tion of Sίf onto £f.

Proof. If M+(^f) is regular, then so is VM+(^f)f with the pro-
jection of £ίf onto VM+(^f) being F P F * (Theorem 5.2). As in the
proof of Theorem 6.2, we deduce that M+{£?) = £f 0 VM+(^f).
Hence, as in the above proof, £f = M+(£f) Q VM+(£f), and the proof
is completed by Corollary 4.5.

THEOREM 6.7. If Sf is regular, then the isotropic part of
is

Proof. Suppose h e Π^U VnM+(^f). By Proposition 6.1 (ii) we
have, for each n^Q, he Vn+ιM+{£?)LVn£f. Therefore
Since h e M+(£f), we conclude that

Conversely, assume h e M+(£f)°, and let us make the induction
assumption that h e VnM+(£f) (which is clearly true for n — 0). Since
Sf is regular, Theorem 6.2 implies



122 BRIAN W. McENNIS

We have assumed h satisfies h ± M+(Jϊf)^VnJέp

1 and VnJΪ? is non-
degenerate (because Sf is). Thus, by Lemma 2.1, h e Vn+ίM+(J*f),
and hence, by induction, h e ΠΛ=O V*M+(£f).

Consequently,

7 Fourier coefficients in M+(£f). We now assume that Sf is
regular, with the projection of £$f onto £f denoted by P.

Corollary 6.3 implies that for every h e M+(£f) there is a unique
sequence {ln}n>0 of vectors in ^f such that, for each n ^ 1,

(7.1) λ - Σ ^ ^ e Fwikf+(.^) .
fc=0

The vectors Zw (w ^ 0) satisfying (7.1) are known as the Fourier coef-
ficients of h in M+(JZf).

The Fourier coefficients can be written explicitly in terms of h:

THEOREM 7.1. If heM+(£?) then the Fourier coefficients of h
are given by

Zn = PV*nh , n = 0,1, 2, . . . .

Proof. By Theorem 6.2,

Hence if lQ = Ph, (7.1) is satisfied for n = 1.
Suppose h - Σϊ=ϊ F'ί^ - Vnh' for some w ^ 1, hr e M+(=^), and

. Since V is an isometry,

is wandering for F and so V*m£^ L Sf for all m ^ 1. Thus
f̂c = Ph' and, letting Zπ = PV*nh, we have

Λ - Σ V% = ^"(^

When the inner product on ^f is positive definite, h can be
expressed as the orthogonal sum

(7.2) h = Σ V̂ Z*

In general, however, the Fourier coefficients do not determine h
uniquely. For example, the vector z in Example 6.4 is in
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and hence in VnM+(jSf\ for each n ^ 0 (Theorem 6.7). Consequently,
for ln — 0 for each n, (7.1) is satisfied both when h = 0 and when

THEOREM 7.2. The map which associates to each h e M+{£?) its
Fourier coefficients is injective if and only if M+(Jίf) is nonde-
generate.

Proof. From (7.1), ln = 0 for each n if and only if

hef) VnM+{£?) = M+(^)° (Theorem 6.7) .

Since the map taking h to {ln}n^0 is obviously linear, it is injective
if and only if M+(£f) is nondegenerate.

When M+(J*f) is nondegenerate, we still cannot expect to recover
h from its Fourier coefficients by means of (7.2). Indeed, even when

= Sίf, (7.2) may not be valid, as the following example shows.

EXAMPLE 7.3. Let 3έf be the space in Example 6.4, except that
the inner product is given by

[x, y] = xoyo + - Σ

Let ^ ^ be the two-dimensional subspace of J%f spanned by the
vectors a and δ, where α0 = α2 = 1, αfc = 0 for k Φ 0, 2, and δx = δ2 =
— l f 6fc = 0 for k Φ 1, 2. A vector a? is in SfL if and only if xQ =
a?! = x2, and hence it is easily deduced that J*f is regular.

For x 6 j^r^ let Vx be the vector # e £tf with y0 = ^ = &0, yfc =
xfe_2 for k ^ 2. Then F is an isometry and ,S^ is wandering for V.

We have

ίl for & = 0, 1, - , 2n k = 2n + 2

(0 for k - 2n + 1 fc S 2n + 3

and

0 for k = 0,1, , 2n fc ^ 2^ + 3

Hence it follows that a? _[_ F 7 1 1 ,^ 7 for m = 0,1, 2, , n — 1 if and only
if xQ — xί = = α?2w_1 = a;8il. Consequently, only the zero vector is
orthogonal to M+(£f), and thus M+{^) = ,5^.

Let ft be the vector with h0 = 1, hk — 0 for A; ̂  1. Since
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- 1 for k = 1, 2, , 2n - 1, 2n

0 f or k = 0 k > 2n

then

(h-χv-b) ^ί
(0 for k> 2n

Hence fe - Σm=oFm& = F*fee F*ikf+(^), and we conclude that the
Fourier coefficients of h in Λf+(«S )̂ are all equal to b. However, h Φ
Σ*=oVr*6, as the sum does not converge. Also note that although
h0 = 1, each of the partial sums Σ&=i Vkh has zeroth term equal to
zero. If the inner product on £ίf is positive definite, then

[h, h] = Σ [Z4, y ,
fc=o

but the above example, where [h, h] — 1 and Σ&U [i*> h] = 0, shows
this is not true in general.

8* Unilateral shifts* Wold decomposition* An isometry V on
έ%f is called a unilateral shift if there exists in < ^ a subspace iZf
which is wandering for V such that M+(£f) = ^g^ This subspace ^
called generating for F, is necessarily regular (Theorem 6.6) and is
uniquely determined by V:

£f = (V^y (Theorem 6.5)

(cf. [5]).
In Hubert space, a unilateral shift is determined up to unitary

equivalence by the dimension of ^ In general, however, it is possible
to have two unilateral shifts acting on isomorphic spaces that are
not unitarily equivalent, even though their generating subspaces are
isomorphic.

EXAMPLE 8.1. Let £ίf be the space in Example 6.4, except that
the inner product is defined by

l>, y] = Σ x&Vik - Σ

Let £f be the two-dimensional subspace of 3ίf spanned by the
vectors a and b, where α0 .= a1 = 1, ak = 0 for k Φ 0,1, and b1 = b2 ,= 1,
6fc = 0 for k Φ 1, 2.

For & e jg^ let Fα; be the vector y e Sίf with y0 — yt = χ0 and
τ/fc = χk_2 for fc ̂  2. Then F is an isometry and Sf is wandering for F.
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It is readily checked that a vector x e £ίf is orthogonal to VmSf
for m = 0,1, 2, ••• , n •— 1 if and only if #0 = »x = ••• = x2n, and there-
fore, as in Example 7.3, M+(£f) = < ^ Thus V is a unilateral shift
on J%?' with generating subspace j*f.

Another unilateral shift on Sίf is the isometry V defined by
V'x = ?/, where y0 — y1 = 0 and τ/fc = %_2 for & ̂  2. The operator φ
defined on £f by ψa — c, where c0 — ct — 1/τ/ 2 and ^ = 0 for k ^ 2,
and <£& = d, where d0 = -l/τ/!Γ, ^ = 1/VΎ and 4 = 0 for k ;> 2, is
a unitary operator from Sf onto the generating subspace for V.
But for any x e ^g^ with x0 Φ 0, we have (for n = 0, 1, 2, •)

1 1 ^ ^ 1 1 = || a? | | ,

whereas ||V*a?||-^oo as w->oo. Thus, despite having isomorphic
generating subspaces, V and V are not unitarily equivalent.

In Hubert space, the property V*nx-+0 for all x characterizes
those isometries that are unilateral shifts [5] This does not apply
in general, as the vector h in Example 7.3 has V**h = h for n =
o,i......

We can prove a Wold decomposition theorem for isometries, but
it does not have the generality of the corresponding result in Hubert
space (cf. [11, Theorem 1.1.1]).

THEOREM 8.2. Let V be an isometry on r7tf and let
In order to have the orthogonal sum £ίf = 3% φ ^g ,̂ where £0% and
c/ίfx are invariant for V, V | J%fQ is a unilateral shift and V \ Sίfγ is
unitary, it is necessary and sufficient that M+{Jϊf) be regular. In
that case,

_ 7MΓ
0 — •lrJ.^

and

Proof. Suppose that M+(Jίf) is regular, and let £g?<> = M+(£f),
;?έ{ = M+(£f)L. Then we have Sίf = ^ φ <%t It is clear that έ%%
is invariant for V and V \ £έf0 is a unilateral shift. By a similar
argument to that in [5, Lemma 1], Sίfγ — Γ\n=oVnJ%^, and so Vβ^l =
,S t̂. Thus, F I Jgt is unitary.

Conversely, suppose <^t and ^ t are invariant for F, where Jg^ =
r I ^ ^ is a unilateral shift, and F | Sff^ is unitary. Since
we have £f = (F,^^) 1 = ^ ? θ F,^J, and thus ^ is the

generating subspace for the unilateral shift F | Sίf^ Consequently,
I, and since 3έf = ,^1 φ ^ t , Λί-i-C^7) is regular.
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9* The space M(£f). Fourier coefficients in M(£f). Let V be
a unitary operator on §ίf and let £έ? be a wandering subspace for
V. Then £f is nondegenerate and F * ^ ± VgJίf for all integers p
and g. We define

W = — oo

It is clear that Afί^) reduces V and that M(J2^) = M(V^f).
The following can be proved in the same manner as Theorem 6.2.

THEOREM 9.1. If £f is regular and n is an integer, then

M{£f) = Vn^f © V {Vk^: kΦn).

COROLLARY 9.2. If ^ is regular and m and n are integers
such that m ^ n, then

M(&)= Vm^ 0 Vm+1£f 0 0 Vn^ 0 V {Vh£f: k>n, k< m} .

Consequently, if Sf is regular and heM(^f), there is a unique
sequence {ln}n=-oo of vectors in £f such that for all integers m and
n> with m ^ n,

(9.1) Λ - Σ ^ ^ e V {V'jSf: j > n, j < m) .

The vectors ln satisfying (9.1) are known as the Fourier coefficients
of h in M(£f). Clearly, if h e M+(£f), then ln = 0 for n < 0 and
{U»*o i s t ^ e sequence of Fourier coefficients of fe in AΓ+ί.^).

We now assume that J^f is regular with the projection of ;%f
onto £f denoted by P. The following analogue of Theorem 7.1 is
given here without proof (see [10, Theorem II.7.4]).

THEOREM 9.3. If he M( 2^) then the Fourier coefficients of h are
given by

ln = PV**h, n^O, ± 1 , ±2, . . . .

10* The space M_{Jϊf). Let JZf be a wandering subspace for
the unitary operator V on ;%?. We define

AL(jSf) - V Vn,5f .
W = — o o

From the above definition, Theorem 4.6, and Lemma 2.1 we obtain
the following decomposition of

THEOREM 10.1. // M+(£f) is regular, then
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and

Note that M_{£?) is the same as the space M+(V~ι£?), formed
with respect to the unitary V"1. We can therefore obtain directly
from the properties proved for M+(Jΐ?) analogous properties for ML(
We start with a corollary to Theorem 10.1.

COROLLARY 10.2. If M_(£f) is regular, then

and

THEOREM 10.3. // M_(£?) is regular, then £? is regular. If P
is the projection of £ίf onto M_(^f), then VPV* — P is the projec-
tion of Sίf onto &>.

Proof. Apply Theorem 6.6.

THEOREM 10.4. // £? is regular, then

and

Proof. Apply Theorem 6.2.

COROLLARY 10.5. If J^? is a regular, then for n = 1, 2,

Hence, if J*f is regular and /̂  e M_(£f)9 there is a unique sequence
{ln}n<0 of vectors in £f such that, for all n < 0,

(10.1) fc - Σ V*J* 6 FΛilί_(.^) .

The vectors ZΛ (n < 0) satisfying (10.1) are known as the Fourier
coefficients of h in M_{JSf), and these obviously coincide with the
Fourier coefficients (with negative index) of h in M(Jϊf).

Let P be the projection of Sίf onto Sf. For completeness, we
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state the following theorem (cf. Theorem 7.1 and Theorem 9.3).

THEOREM 10.6. // heM_(^f) then the Fourier coefficients of h
are given by

ln = pγ**hi tt= - l , -2, •-. .

When M+(£f) or M_(^f) is regular we get a strengthening of
Corollary 9.2 which more closely resembles Corollary 6.3.

THEOREM 10.7. // M+(£?) or M_(£?) is regular, then for each
m, n ^ 0, we have

0 V-m+ι£? 0 0 Vn~ι^f 0 V"

Proof. If M+(J2f) is regular, then by Theorem 6.6 £? is regular.
Hence, by Corollary 6.3 and Corollary 10.5, we have

= £f 0 V& 0 0 F * ' 1 ^ © V*

and

MXSf) - V-γ& 0 V~%£ί> 0 0 V~™^ 0

The same equations are obtained when M__(J?f) is regular (by
Theorem 10.3), and the proof is completed by using Theorem 10.1 or
Corollary 10.2.

When M+(jSf) or MX^ζf) is regular, we can rewrite (9.1) as

h - Σ V% e V~m

k = ~ m

where m, n ^ 0.

11 • Fourier representations* Let V be an isometry on pέf, and
suppose ^ is a wandering subspace for V, with M+(J2f) regular.
Then ^f is regular (Theorem 6.6), and every vector heM+(^f) has
a sequence {ln}n^0 of Fourier coefficients given by Theorem 7.1. The
Fourier representation of M+{^f) is the map Φ which associates to
every h e M+(jSf) the function Φh, where

(11.1) (Φh)(X) = Σ λ i. .

Φfe is defined for all complex numbers λ for which the series (11.1)
converges, and takes values in the space Jέf. The action of V on
M+(J*f) corresponds (via the Fourier representation) to multiplication
by the independent variable λ on
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If the topology on £f can be defined by a norm || ||, and if £?
is separable, then we define H\J2f) as the space of all functions u,
defined and analytic on the open unit disk, with values in £f, such
that

\\* dt

exists. The inner product on H\£f) is given by

(11.2) [u, v] = lim l/2ττ \2*[u(reu), v(reu)]dt .

In Hubert space, the shift V \ M+{£f) depends (up to unitary
equivalence) only on the generating subspace £f9 and Φ is a unitary
map from AΓ+CSf) onto H\£f) (cf. [5], [11, Sec. V.3]). The situa-
tion is different here, as Example 8.1 shows that the generating
subspace does not uniquely determine the shift, and so ΦM+(£f) can
be different from H\.Sf). Indeed, the vector h in Example 7.3 has

(Φh)(x) = Σ Λ = ( l - λ)-* ,

and clearly Φh£
If V is unitary, we can also discuss the Fourier representation

Φ of M(£f). If heM(^) and {Uϊ=_oo is the sequence of Fourier
coefficients of h in M(Jtf), then Φh is the function pair (u, v), where

and v(X) is defined by the right hand side of (11.1) (cf. [10, Sec. IV.4]).
The function u is defined on some neighborhood of infinity, and v is
defined on some neighborhood of zero.

In Hubert space, the Fourier representation is taken so that Φ
is a unitary map from M(£f) onto L\^f), the space of all measurable
functions defined on the unit circle, taking values in £f, and having
square integrable norms (cf. [5], [11, Sec. V.3]). As with the Fourier
representation of M+(^f)f this is not valid in general. However, if
^f is normed and separable, and if we have, for each h

n = — oo
U 2 < - , and [Λ,Λ]

then we do obtain a representation of M{^f) as the space
with inner product

[/, g] = l/2π Γ[/(e"), g(e")]dt .
JO

This can be done by replacing u and v by their radial limits (a.e.)
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u(eil) = lim u(reu) and v(eu) — lim v(reu)

and identifying the pair (u, v) with the U function

u(eu) + v{eu) = Σ eίn% .

Because the spaces Λf+(.Sf) and ikf(̂ Ŝ ) can not always be repres-
ented as H2 or L2 spaces, Fourier representations are not as powerful
a tool in studying shifts as they are in Hubert space. One approach
is to restrict our attention to shifts for which it is known that Φ is
a unitary operator from M+(£?) to H\£?) (or from M(£f) to L\£f)).
This is done in [3] and [10, Chapter IV], where dilations of operators
with bounded characteristic function are studied.

Another approach is to try to determine the types of function
spaces that can occur if Φ is to be unitary. This is done in [10,
Chapter VI], where dilations of some operators with unbounded char-
acteristic function are studied. The situation is complicated by the
fact that the inner product on the function space ΦM+(Jzf) need not
be given by (11.2). This can be seen by considering the vector h in
Example 7.3, which has [h, h] = 1, whereas (11.2) would assign the
value zero to the inner product [Φh, Φh] (see the remark following
Example 7.3).

REFERENCES

1. J. Bognar, Indefinite inner product spaces, Springer-Verlag, New York (1974).
2. Ch. Davis, J-unitary dilation of a general operator, Acta Sci. Math., 31 (1970), 75-86.
3. Ch. Davis and C. Foias, Operators with bounded characteristic function and their
J-unitary dilation, Acta Sci. Math., 32 (1971), 127-139.
4. N. Dunford and J. Schwartz, Linear operators, Part I, Interscience, New York (1958).
5. P. R. Halmos, Shifts on Hilbert spaces, J. reine angew. Math., 208 (1961), 102-112.
6. I. S. Iohvidov, Boundedness of J-isometric operators, Amer. Math. Soc. Transl.,
(2) 4 7 (1965), 67-71. (Translated from Uspehi Mat. Nauk, 16, no. 4 (1961), 167-170.)
7. , G'isometric and J-semiunitary operators in Hilbert space (In Russian),
Uspehi Mat. Nauk, 20, no. 3 (1965), 175-181.
8. M. G. Krein, Introduction to the geometry of indefinite J-spaces and to the theory
of operators in those spaces, Amer. Math. Soc. Transl., (2) 93 (1970), 103-176. (Translated
from Second mathematical summer school, Part I, 15-92, Kiev: Naukova Dumka 1965.)
9. M. G. Krein and Ju. L. SmuΓjan, J-polar representations of plus-operators, Amer.
Math. Soc. Transl., (2) 8 5 (1969), 115-143. (Translated from Mat. Issled., 1 (1966), no.
1, 172-210.)
10. B. W. McEnnis, Characteristic functions and the geometry of dilation spaces, Ph.
D. thesis, University of Toronto (1977).
11. B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert space, North
Holland, Amsterdam-London (1970).

Received April 10, 1978.

UNIVERSITY OP MISSOURI-ROLLA

ROLLA, MO 65401




