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PARTIAL ORDERINGS FOR INTEGRAL REPRESENTATIONS
ON CONVEX SETS WITH THE
RADON-NIKODYM PROPERTY

RICHARD D. BOURGIN

The separable extremal ordering and the dilation
ordering (as well as equivalent reformulations) have been
extensively used in the study of integral representations on
closed bounded convex sets with the Radon-Nikodym Pro-
perty. The relationship between these orderings is clarified
and other orderings are introduced.

Considerable attention has recently been focused on closed bound-
ed convex sets which have the Radon-Nikodym Property. Such sets
exhibit behavior reminiscent in many instances of weakly compact
convex sets, and in particular, a theory of integral representations
has emerged for these sets which closely parallels that developed by
Ghoquet, Bishop, DeLeeuw and others for compact convex sets. As
with the compact case, in all but the most elementary situations
(i.e., separable closed bounded convex sets, which correspond in
simplicity to metrizable compact convex sets) the techniques center
about the use of partial orderings as a means of determining how
4close' to the 'boundary' of the convex set the various measures
under consideration live. The exact relationship between two of
these orderings, the dilation ordering «<d and the separable extremal
ordering of Mankiewicz <<w, is the main subject of this paper.

Each of [17], [4], and [1] is recommended for a comprehensive
review of the compact case. Several partial orderings have been
used in the noncompact case: Edgar [7] studied the dilation ordering
in connection with a general existence theorem, while Bourgin and
Edgar [3] used <rf and another partial ordering introduced by Edgar
in [7], here denoted by < e , to prove uniqueness. Independently,
St. Raymond [20] employed the Choquet ordering, < c , to study the
uniqueness question in the separable case. Then Mankiewicz [13]
introduced the separable extremal order, and provided a significantly
easier proof of the existence of maximal integral representations
than had previously been available. Some relationships between
these orderings were obtained in [7], [3], [20], [13], and [8], and
those needed in this paper are listed in Theorem 1.3.

Section 1 contains background material. The main results,
formulated in a variety of ways, are contained in Theorems 2.1, 2.4,
2.5, and Corollary 2.3. Various other partial orderings are suggested
by Theorem 2.1 and these are considered in the latter part of §2.
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[2] contains all the necessary background for this paper.

1* Preliminaries* For any topological space V, denote by
the Borel σ-ύelά on V. (Thus &{V) is the smallest σ-algebra of
subsets of V which contains the open sets.) Let (M, d) be a complete
metric space. Recall that a probability measure μ on &(M) is a
nonnegative measure with μ(M) = 1. Such a measure is tight if,
for each ε > 0 there is a compact set DcM such that μ(D) > 1 — ε.
The collection of tight probability measures on &(M). is henceforth
written ^t(M). Theorems in [14] and [19] may be combined to
show that it is consistent with the Zermelo-Fraenkel axioms of set
theory together with the axiom of choice to assume that each
probability measure on M is tight. (Tightness is automatic when
M is separable. See [16].) Suppose now that gf is a σ-algebra of
subsets of a set Γ. Then •'^(gf) refers to the ^-universally
measurable sets. (Hence A e ^ ( ^ ) if and only if A belongs to the
^-completion of 5f for each nonnegative measure μ on & such that
μ{Γ)< oo.) When M is a complete matric space, ^/(.^(M)) will be
abbreviated <%f(M).

^t(M) may naturally be embedded in the dual space Cb(M)*.
(Here Cb{M) denotes the Banach space of continuous bounded real-
valued functions on M, equipped with the supremum norm || |U.)
It is understood that when &t{M) is considered a subset of Cb(M)*,
it has the inherited weak*-topology (so μβ—>μ if \fdμβ —> \fdμ for
each feCb(M), where μβ, μe&*t(M)aCh(M)*\ A second Banach
space which contains &t(M) in a natural way is Lip(Λf)*. (For
feCh(M), let

= S U P ] [JΛ J ±±EJ±\ x φ
{ d(x, y)

and let Lip(ilί) = {feCb(M): \\f\\L < oo}. When equipped with the
norm \\f\\BL = II/IU + ||/IU, Lip (M) is a Banach space.) When &t(M)
is considered a subset of Lip (Λf )* the topology on &*t(M) is under-
stood to be the inherited norm topology. That no ambiguity arises
from such conventions is a consequence of the following theorems
of Dudley [6].

THEOREM 1.1 (Dudley). Let Mbe a complete metric space. Then
έ^t(M) c Lip (AT)* is a closed bounded convex set. Moreover, the
identity map between έ^t(M) c Lip (M).* and &*t(M) c Cb(M)* is a
homeomorphism.

If (Γy^yQ) is a probability space and C is a closed bounded
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convex subset of a Banach space E, let Lϊc(Γ, &, Q), or more briefly
Lc(Q), denote the set of Bochner integrable functions on (Γ, S?, Q)
with Q-almost all values in C. Then Lc(Q) is a closed bounded
convex subset of the Banach space UE{Q) of unvalued Bochner
integrable functions. Note that Lι

c(Q) is separable whenever C is
separable and Sf is countably generated. For fe&c(Q),the proba-
bility measure f(Q) on &(C) is the distribution of Q by f and is
defined by the relations:

f(Q)(A) - Q(f~\A)) for each A e <&(C) .

We are now in a position to state relevant definitions. Through-
out this paper K will denote a closed bounded convex subset of a
Banach space E.

DEFINITION 1.2. K has the Radon-Nikodym Property (RNP) if

whenever (Γ, 5f, Q) is a probability space and m: & —> E is an E-

valued measure whose average range {m(A)/Q(A): i e ^ , Q(A) > 0} is

contained in K, then there is an / 6 UK{Q) such that \ fdQ = m{A)
JA

for each i g

DEFINITION 1.3. Suppose that μ and v belong to (

(a) (Choquet ordering): μ<.cv if \ fdμ <̂  1 fdv for each
JK JK

convex function feCb(K);
(b) (Dilation ordering): μ<*dv if there is a function Te

L^t(K){Ky ^{K)y μ) (where &*t(K) is here considered a closed bounded
convex subset of Lip (£")*) such that

(1) ( Tdμ = v, and

(2) for ίceiί in a set of /^-measure 1, \ yd[T(x)](y) = x.

T is then called a μ-dilation. (A reformulation of 2) is that for
/^-almost every x in if, the center of mass, or barycenter, of the
measure T(#) is x itself. See [2].)

(c) μ < e v if there are: a probability space (Γ, 5 ,̂ Q), a #-
algebra Sίf Q Ŝ , and functions f1 and / 2 in Lι

κ(Q) such that

(1) UQ) = μ and/ 2 (Q)=y; and
(2) Λ-^[/2|^].

(Here E\f^\^f\ denotes the Banach-valued conditional expectation
of f2 given <%?: See [18] or [2] for details.)

THEOREM 1.3. -<<., < d , and < e are partial orderings on
Moreover, for any two measures μ, ve^t{K), μ*<cv if and only
if μ < d v, if and only if μ < e v.

The results of Theorem 1.3, various portions of which appeared
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originally in [7], [3], and [20], have been generalized to the locally
convex case by Edgar [8]. (A proof of the Banach space version
of 1.3 appears in [2].)

Let a denote the first uncountable ordinal, and Ω the uncounta-
ble product, {0, l}α, of two point spaces, equipped with the product
topology. For each countable ordinal 7 and point ωeΩ, let α)(τ) be
the 7th coordinate of a). P will denote the product probability
measure on &{Ω) whose factors assign mass 1/2 to each of {0} and
{1}. For β < a let ^ 7 denote the P-completion of the (j-algebra
generated by {{ω e_Ω: ω(y) = 0}: 7 < β}. Let &~ = U*<«^> In a
similar vein, let Ώ = ΠΓ=i {0,1} be the countable product of two
point spaces. It is a compact metric space when given the product
topology. P denotes the product probability measure on &(Ω) each
of whose factors assigns mass 1/2 to each of {0} and {1}, and JΓ
denotes the P-completion of &{Ω). In general, a bar over any letter
refers to a separable version of the unbarred letter.

DEFINITION 1.4. If /, g e UK(Ω, ̂ 7 P), write f<mg if there is
a β < a such that / = E[g\^]. < m is called the separable extremal
order.

It is easily verified that <TO is a partial order. The main link
between Lϊκ(P) and &t(K) appears below.

THEOREM 1.5. {/(P): / e Lι

κ(Ω, άT, P)} = &>t(K). Moreover the
function f —> f(P) is continuous from UK{P) onto

Proof. The fact that the map / -> /(P) is surjective appears in
[3, Theorem 3.1], [12], and [2]. Now suppose that /» -> / in UK{P)
and that g e Cb(K). Then

[ = \ gdf{P) .
K

Hence fn(P) ->/(P) in &>t(K) c Cb(K)\
The following well-known criterion for Bochner integrability

will be used repeatedly in the next section. It is reproduced here
for convenient reference. (See, for exmple, [9], [10], or [2].)

THEOREM 1.6. Let (Γ, &, Q) be a probability space and E a
Banach space. A function f:Γ-+E is Bochner integrable if and
only if (a) there is a set Ae & with Q(A) — 0 such that f(Γ\A) is
a separable subset of E (f is 'almost separably valued')', (b) for
each FeE*, F<>f is ^-measurable (/ is 'weakly measurable1)',

(c)
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Note that a Bochner integral version of the Fubini theorem is
a direct consequence of Theorem 1.6 and the usual Fubini theorem.

2* The separable extremal and dilation orderings* The precise
relationship between <,d and < m occupies the majority of this section.

THEOREM 2.1. Assume that K has the RNP. If f, g e Lι

κ{P) and
f<.m9 then f(P) <,dg(P). Conversely, suppose that μx and μ2 are
measures in £?t(K). If μλ <d μ2 there are functions f and g in
UK{P) such that f(P) = μ19 g(P) = μ2, and f <mg.

Proof. If /, g e Iϊκ(P) and / < m g then there is a countable
ordinal β such that / = E[g\^β]. For any convex FeCb(K) it
follows from Jensen's inequality [15] that

\ Fdf(P) = \ F°fdP=\ FoE[g\^β]dP
JK JΩ JΩ

<, \ E[Fog\j?rβ]dP = \ FogdP = ( Fdg(P)
JΩ JΩ JΩ

whence f(P) < c g{P). The fact that f{P) <,d g(P) is a consequence of
Theorem 1.3.

Suppose now that μly μ2 e &%(K) and that μx <,d μ2. Since μ1 and μ2

are tight they have separable support. Let K be the intersection with
K of the closed linear span of the support of μ1 + μ2. Then K is a
separable closed bounded convex set. Pick any feL^(P) for which
f(P) = fr (cf. Theorem 1.5) and let T: K->^>t(K) be a ^-dilation such
that \_ Tdμ1 — μ2. By modifying T on a set of ^-measure 0 we may

JK _

also assume that T(x) has barycenter x for each xe K. (Let ε̂  denote
the Dirac measure, or point mass, at x. Then x •—> εx is continuous.
On a ^/{K) set of measure 0 containing the points x at which T(x)
fails to have barycenter x, replace T(x) by εx. In this way the
modified T is still <%r{K) - ^(^(^))-measurable.) Observe that
T(f(ώ)) e &*t(K) for each ώeΩ. It follows from Theorem 1.5 that,
for a given ώ e Ω, there is at least one h e &&(?) such that h{P) =
T(f(ω)). It is critical in what follows that the correspondence ώ -» h
be made in a measurable fashion, and this may be accomplished as
follows. The map which takes g to g(P) from Li(JP) onto &t(K) is
both continuous and surjective by Theorem 1.5. Moreover, UK(P)
and &t{K) are completely metrizable and separable since K is
separable (cf. Theorem 1.1). A special case of the Kuratowski-Ryll-
Nardzewski selection theorem ([11] or [5]) asserts the existence of a
function S: &*t(K) -> L|<P) which is Ψ/(^t(K)) - ^(I£(P))-measura-
ble such that [S(v)](P) = v for each v e &t(K). In order to examine
the map So T<>f: Ω -»L^(P), the following easily established facts
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will be used (see, for example [2]).
Suppose that (Γlf gfj and (Γ2, Ŝ 2) are measurable spaces.
(a) If H:Γ1~^Γ2 is 2^ — ̂ -measurable, it is also

^(g^) measurable;
(b) m^i^i)) = ^(Sfx);
(c) If v is a nonnegative measure on ^ with v(/\) < ^ and

if the j -completion of ^ is again ^ then ^"(SfJ = Ŝ \.
If UaL^P) is_(relatively) open then S'\U)e^(^t(K)). Since
TeL^iK, ?/{K)t_μύ, T is ^( i f ) - .^(^(JO)-measurable hence T
is ^(J£) - ^(^(ίθ)-measurable by (a) and (b) above. It follows
that T-\S-\U))e^(K). But feL^P) whence / is jT" - ^ ( i m -
measurable. Use (a) and (c) above to show that / is ^ — ̂ (Im-
measurable. It follows that (S<> To f)~\U) e ^ . Since j£ is separa-
ble and bounded it follows from Theorem 1.6 that SoTofiΩ-^ L\{P)
is Bochner integrable. That is, S° To/eLii ( ? ) (P).

Define gx: Ω x Ω —• K as follows:

In Proposition 2.2 below it is established that there is a function
g: Ω x Ω-> K such that </((*), •) = gx{ώy •) [a.e. P] for each ώeΩ,
and <; is ^ x ^ " — .^(ΪΓ)-measurable. Temporarily assume that
such a g has already been constructed. We will have occasion to
factor Ω out of Ω and write Ω — Ω x Ωίf and even Ω = Ω x Ω x Ω2.
The probability measure P will similarly be factored as P = P x P1

and P = P x P x P2 Functions on Ω will be identified with func-
tions on Ω = Ω x Ωt which depend only on the Ω coordinates (so
that f:Ω ->E, for example, corresponds to /: Ω = Ω x Ωx -> E given
by f(ω, α)J = /(ώ)). Functions on Ω x Ω may similarly be identified
with functions on Ω — Ω x Ω x Ω2 and in particular, g: Ω x Ω -> K
will be identified with g: Ω-> K. We first show that E[g\J^ζ] = /
where £ is the first infinite ordinal. Certainly / is .^-measurable.
If, now, A e ^ 7 , there is a set Be^(Ω) such that the symmetric
difference of A and JB x Ωι is of P-measure 0. Consequently

\
JA

gdP

= ( LS g(ω,ώ'fωJdPt(ωJdP(ω')dP(ώ)

}
ff(ώ ώ')( ff(, ώ')dP{ώ')dP{ώ) - ( (_ ^(ώ, ώ')dP(ω')dP(ω)

B ]Ω JB JΩ

- 1 L »d[So Tof(ώ)](P)(x)dP(ώ)
JB JK
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= ( \_xd[T(f(ώ))](x)dP(ώ) = \ f(ώ)dP(ώ)
JB JK JB

\ \ f(ώ, ωJdPMdPiώ) = \ fdP=\ fdP.

Hence E[g\jη] = f.
The next calculation establishes that g(P x P) — μ2 (or equivalent-

ly, g(P) =g(F x P x P2) = ft). Note first that for any μ e
we have μ = l_ εxdμ{x). Now

ft = (_ T{x)dμι{x) = \_ T(x)df(P){x)

= [Tof(ώ)dP(ώ) = [[SoT°f(ώ)](P)dP(ώ)

ΰ JΩ

= L SgG>ά>)dP x
Ji2xi2

= \ εxdg(P x JP)(«) = ί εβg(P){x) = g(P).

Hence g{P) - μif f{P) = ̂ , and E[g\^\ - / so that /<mflr. The
proof of Theorem 2.1 thus rests on the existence of g as asserted
in the previous paragraphs.

Recall that a probability space (Γ, &, Q) is said to be separable
if there is a countable collection Bί9 B2, of sets in & such that
whenever i e ^ there is a 5 in the <τ-algebra generated by
{B19 B2, } such that Q(A Δ 5 ) = 0. (Δ denotes symmetric dif-
ference.) I wish to thank Robert Cogburn for useful discussions
concerning the next result.

PROPOSITION 2.2. Let (Γ, &, Q) be a separable probability space,
and suppose that K is a separable closed bounded convex subset of
a Banach space E. Assume further that K has the RNP. If
g: Γ —> Irg(Q) is Bochner integrable {i.e., geL^i^iQ)) then there is a

K

function h: Γ —» L\(Q) such that
( a ) g(o), •) = h((O, •) [a.e. Q] holds for each choice of ωeΓ

(where g(ω, ωr) is alternate notation for [g(co)]((θ'), and similarly
for h(ω, ω'));

( b ) h:Γ x Γ -> K is %? x ^-measurable.
Moreover, functions h can be constructed satisfying (a) above but
not (b).
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Proof. Without loss of generality assume Qe K. Let Bί9 B2,
be sets in Sf as in the definition of separability of (Γ, &, Q) before
the statement of the proposition, and for each n let &n be the σ-
algebra generated by {Bγ, •• ,JBΛ}. Thus ^ consists of arbitrary
unions of minimal nonempty intersections of various of the J5/s,
i = 1, •••, n. These minimal nonempty intersections are the atoms
of S?n, and for each n and each ωeΓ, there is a unique atom of
&nf henceforth denoted by An(ω), which contains ω.

For each ωeΓ and Ae & let

P(ω, A) =

(P( , •) may be thought of as an Jϊ-valued transition probability
function.) Note that for each ωeΓ, P(ω, •) is an i^-valued measure
absolutely continuous with respect to Q, whose average range belongs
to K. For each positive integer n let

hn(ω, ωf) =

We first show that hn: Γ x Γ ->E is ^ x ^-measurable. A
straightforward reduction shows that hn is & x ^-measurable if,
for each atom C of ^ Λ for which Q(C) > 0, the map Gc: Γ -+E
defined by

0 if Q(iiΛ(α>')) = 0

= ί

is ^-measurable. Observe that Gσ is iί-valued (since 0 6 K). Since
Gc has separable range (K is separable) it suffices to show that Gc

is weakly measurable (cf. Theorem 1.6). That is, if FeE* then it
must be demonstrated that FoGG: Ω —> R is ^-measurable. In this
regard define HF e UE(Q)* by

= ( Fof(ω)dQ(ω) for feL^Q).

Since #eLiL(Q)(Q), it is weakly measurable, and in particular for
HF as above, HFog is ^-measurable. But HF°g = FoGc so that
FoG^is indeed ^-measurable. Consequently hn is ^ x ^-measura-
ble.

Next we claim that, for fixed ωeΓ, (hn(ω, •), ̂ », Q)?=i is a Jf-
valued martingale. (Indeed, if C is an atom of gfΛ with Q(C) > 0,
and if the atoms of &n+1 of positive Q-measure contained in C are
Clf , Ck then Q(C\U?=i C<) - 0 and
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( hn(ω, ω')dQ{ω') = P(ω, C) = Σ p(ω, Q
Jc t=i

= ΣJ σ < λ +i(ω,α)')dO(α)0

= \ hn+1((0, ωf)dQ{ω') .

The martingale conclusion follows easily from this calculation.)
Since K has the RNP, for each ω e Γ we have

( * ) lim hn(ω, ωf) exists for Q-almost all ωr .

Let A — {(ω, ω'): l im,^ hn(ω, ω') exists} and let that limit be denoted
by h(ω, ω') for (α>, ω') e A. Note that i e g ' x g ' since each hn is
jointly measurable. It follows from (*) that XAf the characteristic
function of A, has the property that

( XAdQ x Q = ( ( XA(ω, ω')dQ{ω')dQ{ω) = [ UQ(ω) =
JΓXΓ JΓ JΓ JΓ

1 .

Consequently h is defined [a.e. Q x Q], and it is jointly measurable.
In order to prove that Λ(α>, •) — g(ω, •) [a.e. Q] for each ωeΓ,

suppose initially that C is an atom of &n for some n. Then

h(ω, ω')dQ(ω') = ( ΛΛ(ω, ω')dQ(ωf)

- P(α), C) - \ g(ω, ω')dQ{ω') .

It follows that ( Λ(α>, ωf)dQ(ω') = \ g(ω, ω')dQ{ω') for J5 e U^i Sf».
But for each ε > 0 and S e g 5 there is a set D e U?=i ^ such that
Q(β Δ D) < ε. Since Jί is bounded (and since the ranges of h and
g are [a.e. Q] in K) it is straightforward to check that

, ω')dQ{ωr)

for each ΰ e ^ . Thus #(<*), •) = /&(<», •) [a.e. Q] as was to be shown.
In order to produce an example of a function ht which satisfies

(a) in the statement of the proposition but not (b), let Γ = K = [0,1],
5^ = ^([0,1]), and let λ denote Lebesgue measure on 5 .̂ Let
f:Γ-*Γ be a function whose graph (as a subset [0,1] x [0,1]) is
nonmeasurable. (See, for example, B. R. Gelbaum and J. M. H.
Olmstead, Counterexamples in Analysis, Holden Day, Inc., San
Francisco, Example 23, p. 145.) If A denotes the graph of /;
g: [0,1] -» L\X) is the identically 0 function, and ^(α), α>') = XA(<£, <*>')
for (ω, ωr) e [0,1] x [0,1], then for each choice of ω, h^ω, •) = g{ω, •)
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[a.e. λ] since both are 0 almost everywhere, but ht is not jointly
measurable since A is nonmeasurable. Professor P. Erdos kindly
pointed out this example to us. Thus the proof of the proposition
is complete, and consequently that of Theorem 2.1 as well.

In fact, the argument presented in the proof of Theorem 2.1
may be slightly modified to prove the following, formally stronger
result.

COROLLARY 2.3. Assume that K has the RNP. If μίy μ2 e
and if μ <,d μ2, then for each f e Lι

κ{P) such that f(P) = μλ there is
age Lι

κ(P) with g(P) = μ2 and f <m g.

Proof. It is straightforward to check that if feLι

κ(P) then
there is a countable ordinal β such that / e / ^ , Throughout the
proof of Theorem 2.1 the first Ω-ίactor of Ω may be replaced by
{0, l}β with only notational changes necessary in the subsequent
proofs. (The second Ω-ί actor used, for example in the definition of
glf need not be alternated.) Proposition 2.2 must also be modified
appropriately, but the changes here too are cosmetic only. Indeed,
nowhere in the proof of the proposition is it important that the
first and second factors be identical, nor that the first factor be a
separable probability space.

Another way of looking at 2.1 and 2.3 is to introduce an
equivalence relation ~ on Iϊκ(P) so that / ~ g if and only if
/(P) - g(P). Let [/] - {g e UK(P): f ~ g) and let & = {[/]: / e UK{P)}.
Define I: &> -> ̂ t(K) by /([/]) = /(P). Then I is 1 - 1 and onto.
The proof of the following result is immediate from Theorem 2.1.

THEOREM 2.4. Suppose that K has the RNP. Write [f] < [g]
if there are /L 6 [/] and gt e [g] such that fx *<m gγ. Then I is an
order isomorphism between (Jzf, <) and (έ^t(K), *<d). (In particular,
< is a partial order on Jίf.)

Our next result provides information about the structure of [/]
for feUκ(P).

THEOREM 2.5. Let f and g be functions in Iΐκ(P). If f<,mg
and f Φ g on a set of positive measure then f(P) Φ g(P). That is,
no two elements of [/] are commensurable.

N. B. The RNP assumption is not needed.

Proof. It is convenient to consider the case / = E[g\^] where
ξ is the first infinite ordinal since notation has already been developed
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earlier for dealing with this situation. The general case (/ =•
for some β < a) differs from this one notationally only. By modify-
ing / and g on sets of measure 0, assume that each is separably-
valued with all values in K, and that g is ^(42)-measurable. The
function g is not ^-measurable since / and g differ on a set of
positive measure by assumption. As in the proof of Theorem 2.1,
we will sometimes write Ω — Ω x Ωίf P — P x Pί and ω == (ωζ, ω')
(where it is understood that ωζeΩ and ωx e ΩJ.

Observe that there is a set Be^(Ω) with P(B) > 0 such that
whenever a)ξeB then the function g(o)ξf ):Ω1—>K is not [a.e. PJ a
constant function. Indeed, assume the contrary. Pick a set A of
P-measure 1 such that g(o)ξ, •) is almost everywhere constant for
each choice of ωξ e A. Let h(ωξ) = I g((t)ζ, ω^dP^ω') for each ωζ e Ω.

Since g is ^(immeasurable (hence &{Ω) x ^(βj-measurable) the
Fubini theorem asserts that h is ^(β)-measurable. Clearly h(ωξ)
is the value that g((θζ, •) assumes [a.e. PJ for ωζ in A. Let C —
{(ωξ, ωf) e Ω: h(ωξ) Φ g(ωξ, ω% Then C e &(Ω) and

= 0 ._ lcdP = (_ ί X0(ωξ,
Ω 3A )ΩL

Consequently g is .^-measurable (since it differs from h on a set
of measure 0). This impossibility shows that g{(*)ξ, •) is not [a.e. PJ
constant for ωξ in some set Be^(Ω) of positive measure, as as-
sociated above.

Since / and g have separable ranges, Rf and Rg, there is a
convex function FeCb(K) which is strictly convex on the closed
convex hull of Rf \J Rg. (For example, choose {Fi}?^ c JE* such that
\\Fi\\ =1 for each i and {Fjj°=1 separates the points of the closed
convex hull of Rf U R9, and let F = ΣΓ«i 1/2*1*1.) Moreover, one
version of E[g\^ξ] is given by the formula

(**) E[g\^\{ω,9 ωx) = ( flr(α),, ωf)dP,{ωf) .

/To see this, note first that the function (ωξf ωt) --> I βr(ft)o

is ^ ( β ) x {Φ, i2J-measurable by Fubini's theorem. ' If ΰ e ^ , it
differs from some set DxΩ1 (where De^(Ω)) on a set of measure
0, and hence

( g(ωξJ ω'WP^ω'WPiω) = (_ g(ωζ, ω')dP x P,{ωξ, ω')
D JΩX JDXΩ1

- S gdP.
JD

Thus (**) holds, j Finally, note that if ωζeB then there is a set
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A e &(Ωj) such that 0 < PX(A) < 1 and

— L - ( g(ωί9 ωf)dPx(ωη Φ L — - \ g(ωζ, ωf)dPx(ωf) .
PX(A) h 1 - Pi (A) JfliVi

Thus, by the strict convexity of F on the closed convex hull of
Rf U Rg, as well as by Jensen's inequality [15], we have

<PU)F(\ gd - £ - ) + (1 - PU)W(\ gd p*

o gd-£ + (lP1(A))\ F gd
i (A) JOM 1 — Pi(A)

Consequently

Fdf(P) = \ Fof(ω)dP(ω) =
JΩ

= \ F(\ gdPλdP + i F(\ gdPλdP

_
Ω\B

^ L ( FogdP.dP = \ FogdP - \ Fdg(P)
}Ω JΩ1 JΩ )K

Thus f(P) Φ g(P) as was to be shown.
In [13] Mankiewicz showed that when K has the RNP, μ e

is separable extremal if and only if μ is ^-maximal. (See [13] or
[2] for definitions and proofs.) The corresponding result concerning
the partially ordered sets (&κ(P)f < m ) and (&*t(K), < d ) is a conse-
quence of Theorem 2.5.

COROLLARY 2.6. Assume that K has the RNP. Then f e UK(P)
is -<m-maximal if and only if f{P) is <<d-maximal.

Proof. Mankiewicz [13] proved that if / is <w-maximal then
f{P) is separable extremal and hence ^-maximal. (Alternatively,
see [2].) Conversely, suppose that μe^t(K) is <d-maximal and
that f(P)=μ. If f<mg for some g e Lι

κ(P) then f(P)<mg(P)
(Theorem 2.1) and consequently f(P) = g(P). It follows from Theorem
2.5 that f = g [a.e. P]. That is, / is <m-maximal.
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Other orderings are suggested by the setup used in Corollary
2.4. Suppose that ^ is a refinement of ^f. (That is, ^ is a
partition of Lι

κ(P) into pair wise disjoint sets, each of which is a
subset of some [/] for some / e UK{P).) If M,Ne ^ C write M < N
if there are f eM and g e N such that / < m g. (For example, let
ψ = [ψ: a-> a: ψ is 1 — 1 and onto} denote the collection of 1 — 1
correspondences on the countable ordinals. When ψeΨ and co e Ω
let ψ(ω) be that point of Ω whose βth coordinate (β < a) is β)(ψ(β)).
Furthermore, for / 6UK{P) let Mf = {g eUK{P): there is n.ψeΨ such
that foψ^g). Note that if fxeMf — so that fx = foψ for some
ψeΨ — then/(P) = //P) and hence/x 6 [/]. Moreover, {Mf: f eLι

κ{P)}
clearly partitions IMP) into pairwise disjoint sets. As above, we
write Mf < Mg if there are f1eMf and g1eMg such that / 1 < m ^ 1 . )

THEOREM 2.7. < is α reflexive and antisymmetric order. If
K has the RNP then the following are equivalent:

(1) Me Λ€ is <t-maximal.
( 2 ) f is <^m-maximal for each f eM.
( 3 ) f is <,m-maximal for some f eM.
( 4 ) f{P) is <,d-maximal for each (some) f eM.

Proof. Reflexivity is (self) evident. Suppose now that L < M
and M < L. Then there are functions f19 f2eL and g19 g2eM such
that fι<mgι and g2<mf2. Let f,{P) •= μλ and g,(P) •= μ2. Since ^ T
is a refinement of ^ it follows that /2 G [/J and g2 e [grj. By
Theorem 2.1,

/i(P) - Λ <d 9i(P) = fr = Λ(P) <d/.(P) = A .

Consequently μx = μ2 (since < r f is a partial order) and hence gx e [/J.
But then Theorem 2.5 applies. Thus /x = gx [a.e. P] and hence ft e
L<Γ\M. Thus L = M.

The equivalence of statements (2), (3), and (4) was established
in Corollary 2.6. Suppose next that Mis <-maximal and that f eM.
If / < w g and / and g differ on a set of positive P-measure then
f(P)Φg(P) by Theorem 2.5. Let geNe^f. Then N^M since
ilί" £ [/] and N Q [g]. Also M < N by definition. Thus (1) implies
(2). Finally, assume that for each feMf f is <m-rnaximal. If
M C N then there are fλeM and g^ N such that /x *<m &. Conse-
quently /i = ^ [a.e. P] and thus M = N. Therefore (2) implies (1),
and the proof is complete.

It is not difficult to construct examples of partitions ^£ for
which < is not transitive. Nevertheless our last result is typical
of those for a collection of 'natural' partitions ^/ί.
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PROPOSITION 2.8. Let Λ€ be the partition described prior to
Theorem 2.7 (in which a typical Mf e ^ is of the form {g e UK(P):
g — f oψ for some 1 — 1 correspondence ψ on the countable ordinals}).
Then < is a partial order.

N. B. The RNP is not required for this result.

Proof. It suffices, by virtue of Theorem 2.7, to establish the
transitivity of <. For a nonempty set B of countable ordinals (pos-
sibly of the form β = U {T: 7 < β} for β < a) let &B denote the
er-algebra of subsets of Ω generated by {{ω e Ω: ω(β) = 0}: β e B}.
Write fψ in place of / © ψ and observe that if / is .^-measurable
then fψ is ^V-i(j5)-measurable. Moreover, if / is ^-measurable for
some β < a and if ω and ω' are points of Ω for which ω(j) = ω'(y)
for 7 < β then f(ω) = f(ωf). For J5 as above let ΩB = {0,1}B and
let P 5 be the (by now) natural product probability measure on

Suppose that Mf < Mg and that Mg < Mh. In this paragraph
we construct functions f^Mf, gug2eMg, and h2eMh, as well as a
countable ordinal β, such that

(a) /1<«flr1, g2<mh2

(b) /x and & are .^-measurable; #2 and fe2 are .^-measurable
where J5 = {7: £ + 1 ^ 7 ^ 2/3}. Indeed, if ft e Mf, glf g' e Mg and
h' eMh are chosen so that fι<.mg1 and g'<*mhf, each may be modified
on a set of measure 0 so that they become ^(ώ)-measurable. Since
&(Ω) = \Jβ<a ^β it is possible to choose β < a such that flf gίf gr

and fe' are ^-measurable. Choose any α/r € Ψ such that α/r(/9 + 7) = 7
for each 7 in the interval 1 ^ 7 ^ / 9 . We will show that g'ψ < w tiψ.
(Once this is established, conditions (a) and (b) will be met by β, flf

9i, ΰ% = 9γf and h2 = Λy.) Pick ^ ^ /9 such that #' = E[h'\&η]. Then
^ is ^+3?-measurable. In order to prove that E[hψ \ &β+v\ = g'ψ it
thus suffices to demonstrate that \ tiψdP = \ gψdP for each A e ^ J + 9 .
Let C={7<α:/3+^^7}, and choose A^^iΩβ) and A2e^(Ω{β+r:r<η)).
Then fc' does not depend on the ψ(G) coordinates (since they are
each past β). Thus

\ tiψdP - \ hfdP
JA1XA2XΩC JΨU1)xΨU2)xΩf{C)

— I I I h
jψU{i JΨUI) 0Ωψ{C)

= \ \ h'dPrA

But φ(A2) e ^ η and since E[hf \ ^ , ] = g' the above calculation may
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be continued as follows:

AίXΛ2xΩc

JAIXA2XΩ

Thus 1 hψdP = \ g'ψdP where A = A1 x A% x Ωc. The same equa-
JA JA

tion therefore obtains more generally for all finite disjoint unions
of sets of the form Aλ x A2 x Ωc. This collection of sets is an
algebra which generates &β+1!, and a standard argument shows that
the above equation extends to all A e ^ + , as desired. (Recall: g'ψ
and tiψ take their values in the bounded set K.)

In the new notation, then, E[h2\ &β+η] = g2- Define ψ' as follows:
ψf(2β + 7) = β + 7 and ψ\β + 7) = 2/S + 7, for η ^ Ί < β, while
<ψ»'(7) = 7 otherwise for 7 < «:. Let λ8 = (fe2)v /. It is easy to check
that E[hι\&β+η] = sr2. Now find φeΨ such that (^2)f = gx and pick
φr eΨ such that

(1) φ'~\Ί) < β + η whenever 7 < β + η.
(2) 9>'(7) = φ(Ί) if both 1 ̂  7 < /9 and β ^ ^(7) < /S + η.

It follows from (2) that (g2)r = (^^ = &.
Since ^ is .^-measurable it is ^^+r/-measurable. It is a con-

sequence of (1) that if A1 e ̂ (Ωβ+7/) then φ\A1 x flσ) e &β+η. Thus,
for such sets Ax we have

Jψ'Uι)xΩ<pr

{

= \
Jφ'UiίxΩφ'ί)

= \ {g>)o>dP - \
JA^ΩQ JA

Thus ^[(ΛβVI ^ + d = 9i- That is, f1<m9i<m(h)<P,. Consequently
/1 < (Λβ)*" a n d thus

as was to be shown.
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