EXTENDED WEAK-*DIRICHLET ALGEBRAS

Takahiko Nakazi

Let (X, \mathscr{A}, m) be a probability measure space and A a subalgebra of $L^{\infty}(m)$, containing the constant functions. Srinivasan and Wang defined A to be a weak-*Dirichlet algebra if $A + \overline{A}$ (the complex conjugate) is weak-*dense in $L^{\infty}(m)$ and the integral is multiplicative on A, $\int fgdm =$ $\int fdm \int gdm$ for $f, g \in A$. In this paper the notion of extended weak-*Dirichlet algebra is introduced; A is an extended weak-*Dirichlet algebra if $A + \overline{A}$ is weak-*dense in $L^{\infty}(m)$ and if the conditional expectation $E^{\mathscr{A}}$ to some sub σ -algebra \mathscr{B} is multiplicative on A. Then most of important theorems proved for weak-*Dirichlet algebras are generalized in the context of extended weak-*Dirichlet algebras, for instance, Szegö's theorem and Beuring's theorem. Besides, our approach will yield several theorems which were not known even for weak-*Dirichlet algebras.

1. Introduction. This paper presents a generalization of a portion of the theory of analytic functions in the unit disc. The theory to be extended consists of some basic theorems related to the Hardy class H^p $(1 \leq p \leq \infty)$. For example, (i) the theorem of Szegö, on mean-square approximation of 1 by polynomials which vanish at the origin, (ii) Beurling's theorem on invariant subspaces of H^2 , (iii) the factorization of H^p functions into products of "inner" and "outer" functions, (vi) Jensen inequality. The paper was inspired by the work of Srinivasan and Wang [13]. They introduced weak-*Dirichlet algebras for a generalized analytic function theory. Suppose A is an extended weak-*Dirichlet algebra of $L^{\infty} = L^{\infty}(m)$, defined in the abstract. The abstract Hardy spaces $H^p = H^p(m)$, $1 \leq p \leq \infty$, associated with A are defined as follows. For $1 \leq p < \infty$, H^p is the $L^p = L^p(m)$ -closure of A, while H^{∞} is defined to be the weak-*closure of A in L^{∞} . In operator algebras, A is called a subdiagonal algebra by Arveson [1]. Independently by the author [12], A is called an algebra on which m is quasi-multiplicative, in the study of invariant subspaces of weak-*Dirichlet algebras [12].

Let B be the algebra of continuous, complex-valued functions on the torus $T^2 = \{(z, w) \in C^2 : |z| = |w| = 1\}$ which are uniform limits of polynomials in $z^n w^m$ where $(n, m) \in \{(n, m) \in Z^2; m > 0\} \cup \{(n, 0) \in Z^2:$ $n \ge 0\}$. Denote by m the normalized Haar measure on T^2 , then B is a weak-*Dirichlet algebra of L^{∞} . Set $A = \bigcup_{n=0}^{\infty} \overline{z}^n B$, then A is not a weak-*Dirichlet algebra of L^{∞} , but it is an extended one. When \mathscr{A} is the σ -algebra of all Borel sets on T^2 , let \mathscr{B} be the sub σ algebra of \mathscr{A} consisting of all Borel sets of the form $E \times T$ where E is a Borel set on T. Let $E^{\mathscr{A}}$ denote the conditional expectation for \mathscr{D} . We show, if $f \in B$, then

$$\int_{T^2} \log |f| \, dm \ge \int_{T^2} \log |E^{\mathscr{B}}(f)| \, dm \ge \log \left| \int_{T^2} f dm
ight| \, .$$

There exists f in B such $\int_{T^2} \log |E^{\mathscr{B}}(f)| dm \ge \log \left| \int_{T^2} f dm \right|$. Let $w \in L^1$, $w \ge 0$. Even if $\int_{T^2} \log w dm = -\infty$, if $E^{\sim}(\log w) > -\infty$ a.e., then there exists f in $H^2(B)$ with $w = |f|^2$ where $E^{\mathscr{B}}(\log w)$ is defined by $\lim_{0 \le \varepsilon \to 0} E^{\mathscr{B}}\{\log (w + \varepsilon)\}$. Set $I = \bigcap_{n=0}^{\infty} z^n B$, then

$$\inf_{g \in I} \int_{T^2} \mid 1 - g \mid^{\scriptscriptstyle 2} w dm = \int_{T^2} \! \exp E^{\mathscr{B}}(\log w) dm \; .$$

2. Extended weak-*Dirichlet algebras. We define an extended weak-*Dirichlet algebras formally.

DEFINITION 1. Let (X, \mathscr{N}, m) be a probability measure space. Let E° denote the conditional expectation for the sub σ -algebra \mathscr{B} of \mathscr{N} . An extended weak-*Dirichlet algebra is an algebra of $L^{\infty} = L^{\infty}(m)$ such that (i) the constant functions lie in A; (ii) $A + \overline{A}$ is weak-*dense in L^{∞} ; (iii) for all f and g in A, $E^{\mathscr{B}}(fg) = E^{\mathscr{B}}(f)E^{\mathscr{B}}(g)$; (iv) $E^{\mathscr{B}}(A) \subseteq A \cap \overline{A}$.

When $E^{\mathscr{D}}(A) = \{1\}$, the space spanned by 1, then $E^{\mathscr{D}}(f) = \int_{X} f dm$ for f in A, and hence A is a weak-*Dirichlet algebra. For $1 \leq p \leq \infty$, let $I^{p} = \{f \in H^{p}: E^{\mathscr{D}}(f) = 0\}$ and let $I = \{f \in A: E^{\mathscr{D}}(f) = 0\}$. Suppose $1 \leq p \leq \infty$. For any subset $M \subset L^{p}$, denote by $[M]_{p}$ the L^{p} closure of M (weak-*closure for $p = \infty$). For any measurable subset E of X, the function χ_{E} is the characteristic function of E. If $f \in L^{p}$ $(1 \leq p \leq \infty)$, write E(f) for the support set of f. The following lemma is well known [10] and the proof is easy.

LEMMA 1. For $1 \leq p \leq \infty$,

$$\int_{|X|} E^{\mathscr{B}}(f) |^p \, dm \leq \int_{|X|} |f|^p \, dm \qquad f \in L^p \; .$$

For f in L^{∞} , $|| E^{\mathscr{A}}(f) ||_{\infty} \leq ||f||_{\infty}$, where $|| ||_{\infty}$ is an essential sup-norm in L^{∞} . Moreover $E^{\mathscr{A}}$ is a weak-*continuous linear operator from L^{∞} into L^{∞} .

LEMMA 2. For $1 \leq p \leq \infty$, $E^{\mathscr{D}}(H^p) = [E^{\mathscr{D}}(A)]_p$ and $I^p = [I]_p$.

The proof is clear by Lemma 1.

PROPOSITION 1. Suppose $1 \leq p \leq \infty$.

(1) I is an ideal of A and I^p is a closed (for $p = \infty$ weak-*closed) invariant subspace of L^p .

(2) I is a maximum ideal with the property that if J is an ideal of A which contains I, then $J = E^{\mathscr{F}}(J) + I$ and $E^{\mathscr{F}}(J)$ is an ideal of $E^{\mathscr{F}}(A)$.

(3) I^p is a maximum invariant subspace with the property that if J^p is a closed invariant subspace of H^p with $I^p \subseteq J^p \subseteq H^p$, then $J^p = \chi_E E^{\mathscr{F}}(H^p) \bigoplus I^p = \chi_E H^p \bigoplus (1 - \chi_E) I^p$ where χ_E belongs to $[E^{\mathscr{F}}(A)]_{\infty}$ and \bigoplus denotes algebraic direct sum.

(4) I (or I^{∞}) is a maximum ideal of A (or H^{∞}) which is contained in $A_0 = \left\{ f \in A : \int_x fdm = 0 \right\} (or H_0^{\infty} = \left\{ f \in H^{\infty} : \int_x fdm = 0 \right\}).$

Proof. Since $E^{\mathscr{F}}(fg) = E^{\mathscr{F}}(f)E^{\mathscr{F}}(g)$ for all f and g in A, (1) is clear.

(2) It is clear that if J is an ideal of A which contains I, then $J = E^{\mathscr{R}}(J) + I$ and $E^{\mathscr{R}}(J)$ is an ideal of $E^{\mathscr{R}}(A)$. Suppose I' is an ideal with the above property, then ker $E^{\mathscr{R}}|_{I'} \subseteq I$. $E^{\mathscr{R}}(I') + I \supseteq I'$ and $E^{\mathscr{R}}(I') + I$ is an ideal of A. By the assumption on I', $E^{\mathscr{R}}(I') + I = E^{\mathscr{R}}(I') + I'$ and hence $E^{\mathscr{R}}(I') + I = I'$. Thus $I' \supseteq I$.

(3) can be shown as in the proof of (2), using Lemma 2. For $E^{\mathscr{G}}(A) \cdot E^{\mathscr{G}}(J^p) \subseteq E^{\mathscr{G}}(J^p) \subseteq [E^{\mathscr{G}}(A)]_p = L^p(X, \mathscr{B}, m)$ and so $E^{\mathscr{G}}(J^p) = \chi_E[E^{\mathscr{G}}(A)]_p$ for some χ_E in $[E^{\mathscr{G}}(A)]_{\infty} = L^{\infty}(X, \mathscr{B}, m)$. (4) Set $J = \left\{ f \in A \colon \int_X fgdm = 0 \text{ for all } g \text{ in } A \right\}$, then J is a

(4) Set $J = \left\{ f \in A: \int_{X} fgdm = 0 \text{ for all } g \text{ in } A \right\}$, then J is a maximum ideal of A which is contained in A_0 . We shall show J = I. Since $J \supseteq I$, by (2), $J = E^{\mathscr{D}}(J) + I$. If $f \in E^{\mathscr{D}}(J)$, then $\overline{f} \in A$ and hence $\int_{X} |f|^2 dm = 0$. Thus $E^{\mathscr{D}}(J) = \{0\}$ and I = J. The proof for I^{∞} is similar to the above.

LEMMA 3. $E^{\mathscr{B}}(A) = A \cap \overline{A} \text{ and for } p \geq 2, E^{\mathscr{B}}(H^p) = H^p \cap \overline{H}^p \text{ and }$ hence $[A \cap \overline{A}]_p = H^p \cap \overline{H}^p$.

Proof. By Lemma 2, $E^{\mathscr{P}}(H^p) \subseteq H^p \cap \overline{H}^p$. We shall show that $H^p \cap \overline{H}^p \subseteq E^{\mathscr{P}}(H^p)$. If $f \in H^p \cap \overline{H}^p$, then both $f - E^{\mathscr{P}}(f)$ and $\overline{f - E^{\mathscr{P}}(f)}$ lie in I^p . Since $p \geq 2$,

$$\begin{split} \int_{\mathcal{X}} |f - E^{\mathscr{F}}(f)|^2 dm &= \int_{\mathcal{X}} E^{\mathscr{F}}\{(f - E^{\mathscr{F}}(f))(\overline{f - E^{\mathscr{F}}(f)}\} dm \\ &= \int_{\mathcal{X}} E^{\mathscr{F}}(f - E^{\mathscr{F}}(f)) E^{\mathscr{F}}(\overline{f - E^{\mathscr{F}}(f)}) dm = 0 \end{split}$$

and so $f = E^{\mathscr{A}}(f)$ a.e.. The proof for $E^{\mathscr{A}}(A) = A \cap \overline{A}$ is similar to

the above.

Let \mathscr{L}^{∞} be a commutative von Neumann algebra of operators on L^2 which is contained in L^{∞} and let \mathscr{B} be the σ -algebra of measurable subsets E of X for which the characteristic functions χ_E lie in \mathscr{L}^{∞} . Then \mathscr{B} is a sub σ -algebra of \mathscr{A} and $\mathscr{L}^{\infty} = L^{\infty}(\mathscr{B}) =$ $L^{\infty}(X, \mathscr{B}, m)$. We say $E^{\mathscr{B}}$ is the conditional expectation for \mathscr{L}^{∞} (or \mathscr{B}).

PROPOSITION 2. Let A be a weak-*closed algebra of L^{∞} such that (i) the constant functions lie in A; (ii) $A + \overline{A}$ is weak-*dense in L^{∞} . Let $E^{\mathscr{T}}$ be the conditional expectation for $A \cap \overline{A}$ and let $K = L^2 \ominus H^2$ where ' \ominus ' denotes the orthogonal complement of H^2 in L^2 . Then $E^{\mathscr{T}}$ is multiplicative on A if and only if $H^2 \cap \overline{H}^2 = [A \cap \overline{A}]_2$ and $\overline{K} \subset H^2$.

Proof. Suppose $E^{\mathscr{F}}$ is multiplicative on A. Then Lemma 3 implies $H^2 \cap \overline{H}^2 = [A \cap \overline{A}]_2$. Since $H^2 = H^2 \cap \overline{H}^2 \bigoplus I^2$ and $A + \overline{A}$ is weak-*dense in L^{∞} , $L^2 = H^2 \bigoplus \overline{I}^2$ and so $K = \overline{I}^2$.

Suppose $H^2 \cap \overline{H}^2 = [A \cap \overline{A}]_2$ and $\overline{K} \subset H^2$. Then $H^2 = H^2 \cap \overline{H}^2 \bigoplus \overline{K}$. Since $H^2 \cap \overline{H}^2 = [A \cap \overline{A}]_2$ and $E^{\mathscr{A}}(A) = A \cap \overline{A}$, $E^{\mathscr{A}}(H^2) = [E^{\mathscr{A}}(A)]_2 = [A \cap \overline{A}]_2 = H^2 \cap \overline{H}^2$ and hence ker $E^{\mathscr{A}}|_{H^2} = \overline{K}$. By the definition of K, $\overline{K} \cap L^{\infty}$ and so $(\ker E^{\mathscr{A}}|_{H^2}) \cap L^{\infty}$ is an ideal of $B = H^2 \cap L^{\infty}$. Since ker $E^{\mathscr{A}}|_B = (\ker E^{\mathscr{A}}|_{H^2}) \cap L^{\infty}$, ker $E^{\mathscr{A}}|_B$ is an ideal and hence $E^{\mathscr{A}}$ is multiplicative on A.

Later in § 5 we shall use this proposition to show that an algebra, consists of analytic functions defined by a flow, is an (extended) weak-*Dirichlet algebra.

DEFINITION 2. By Jensen's inequality, we mean the following statement:

$$E^{\mathscr{B}}(\log|f|) \ge \log|E^{\mathscr{B}}(f)|$$

for every f in A, where $E^{\mathscr{A}}(\log |f|)$ is defined by $\lim_{0<\epsilon\to 0} E^{\mathscr{A}}\{\log (|f|+\epsilon)\}$.

If $E^{\mathscr{F}}(A) = \{1\}$, then $E^{\mathscr{F}}(w) = \int_{x} w dm$ and hence $\int_{x} \log |f| dm \ge \log |\int_{x} f dm|$. Then it is known [15, Corollary 2.4.6.] that m is a Jensen measure.

LEMMA 4. Let B be $\{1\} + I$, then B is a subalgebra of A and for all f and g in B,

$$\int_{x} fgdm = \int_{x} fdm \int_{x} gdm .$$

The proof is clear.

496

PROPOSITION 3. $E^{\mathscr{P}}(A) = A \cap \overline{A} \text{ and for } p \geq 1, \ E^{\mathscr{P}}(H^p) = H^p \cap \overline{H}^p$ and hence $[A \cap \overline{A}]_p = H^p \cap \overline{H}^p$.

Proof. If $f \in B = \{1\} + 1$, then $E^{\mathscr{P}}(f) = \int_x f dm$. By Theorem 2 in §3, Jensen's inequality is valid for A. By the definition of Jensen's inequality, it follows that for all f in B,

$$\int_{\mathcal{X}} \log |f| \, dm \ge \log \left| \int_{\mathcal{X}} f dm \right| \, .$$

If g in $[B]_i$ is a real-valued function, then it must be a constant [5, p. 140]. Hence if $f \in H^p \cap \overline{H}^p$, then both $f - E^{\mathscr{G}}(f)$ and $\overline{f - E^{\mathscr{G}}(f)}$ lie in $I^p(\subseteq [B]_i)$ and so $f = E^{\mathscr{G}}(f)$ a.e.. Thus $E^{\mathscr{G}}(H^p) \supseteq H^p \cap \overline{H}^p$ and by Lemma 2 $E^{\mathscr{G}}(H^p) = H^p \cap \overline{H}^p$.

PROPOSITION 4. Suppose 1 . Then

$$H^p \oplus \overline{I}^p = H^p \cap \overline{H}^p \oplus \overline{I}^p \oplus \overline{I}^p = L^p.$$

Proof. Since $A + \overline{A}$ is weak-*dense in L^{∞} , by Lemma 3, $E^{\mathscr{A}}(A) + I + \overline{I}$ is weak-*dense in L^{∞} . By Lemma 1, $[E^{\mathscr{A}}(A)]_p \bigoplus [I + \overline{I}]_p = L^p$. By Theorem 2 in §3, *m* is a Jensen measure for $B = \{1\} + I$. Hence by [9] and Lemma 4, $[I + \overline{I}]_p = I^p \bigoplus \overline{I}^p$.

 $[E^{\mathscr{B}}(A)]_{\infty}$ is a commutative von Neumann algebra as operators on L^2 .

LEMMA 5. Let $E^{\mathscr{G}}$ be an conditional expectation for $[E^{\mathscr{G}}(A)]_{\infty}$, then $E^{\mathscr{G}} = E^{\mathscr{G}}$. Hence $\mathscr{B} = \{X, \phi\}$ if and only if $E^{\mathscr{G}}(A) = \{1\}$.

Proof. For all f in $A E^{\mathscr{C}}(f) = E^{\mathscr{C}}(E^{\mathscr{A}}(f)) = E^{\mathscr{A}}(f)$. For $E^{\mathscr{A}}(f) \in [E^{\mathscr{A}}(A)]_{\infty}$. Since $A + \overline{A}$ is weak-*dense in L^{∞} , it follows that $E^{\mathscr{C}} = E^{\mathscr{A}}$.

Now we shall show the main lemma which is used later and is trivial for weak-*Dirichlet algebras, i.e., $E^{\mathscr{A}}(A) = \{1\}$. We do not use Jensen's inequality to show it.

LEMMA 6. Suppose $1 \leq p \leq \infty$ and $v \in L^p$. If for all f and g in I, $\int_x v(f + \overline{g}) dm = 0$, then v lies in $E^{\mathscr{G}}(H^p) = [E^{\mathscr{G}}(A)]_p$.

Proof. Since $A + \overline{A}$ is weak-*dense in L^{∞} and so $E^{\mathscr{P}}(A) + I + \overline{I}$ is weak-*dense in L^{∞} , by Lemma 1, it follows that $[E^{\mathscr{P}}(A)]_{p} \bigoplus [I + \overline{I}]_{p} = L^{p}$. Let $E^{\mathscr{P}}$ be a conditional expectation for $[E^{\mathscr{P}}(A)]_{\infty}$ then $E^{\mathscr{P}} = E^{\mathscr{P}}$ by Lemma 5. Hence $E^{\mathscr{P}}(L^{p}) = E^{\mathscr{P}}(H^{p})$ and so ker $E^{\mathscr{P}}|_{L^{p}} = [I + \overline{I}]_{p}$.

TAKAHIKO NAKAZI

If $v \in L^{p}$ annihilates $I + \overline{I}$, i.e., $\int_{X} v(g + \overline{f}) dm = 0$ for all f and g in I, then

$$egin{aligned} &\int_{\mathbb{X}}(v-E^{\mathscr{T}}(v))(g+ar{f})dm=-\int_{\mathbb{X}}E^{\mathscr{T}}(v)(g+ar{f})dm\ &=-\int_{\mathbb{X}}E^{\mathscr{T}}(v)E^{\mathscr{T}}(g+ar{f})dm=0 \ , \end{aligned}$$

i.e., $v - E^{\mathscr{P}}(v)$ annihilates $I + \overline{I}$ too. Since $v - E^{\mathscr{P}}(v)$ lies in $[I + \overline{I}]_p$, it follows that $v = E^{\mathscr{P}}(v)$ a.e.. For if $k \in L^q$ with 1/p + 1/q = 1, since $v - E^{\mathscr{P}}(v)$ annihilates $I + \overline{I}$ and it lies in $[I + \overline{I}]_p$,

$$\int_{\mathfrak{X}} k(v - E^{\mathscr{B}}(v)) dm = \int_{\mathfrak{X}} E^{\mathscr{B}}(k)(v - E^{\mathscr{B}}(v)) dm = 0.$$

Thus for any k in L^{q} , $\int_{X} k(v - E^{\mathscr{B}}(v)) dm = 0$ and so $v = E^{\mathscr{B}}(v)$ a.e.

3. Invariant subspaces and Jensen's inequality. Let A be an extended weak-*Dirichlet algebra of L^{∞} with respect to $E^{\mathscr{D}}$. For $1 \leq p \leq \infty$, a closed subspace M of L^p is called invariant if $f \in M$ and $g \in A$, then $fg \in M$.

DEFINITION 3. Let M be a closed invariant subspace of L^p for $1 \leq p \leq \infty$. (i) M is called type I if

 $\chi_E M \supseteq \chi_E [IM]_p$

for every nonzero $\chi_{_E} \in [E^{\mathscr{D}}(A)]_{\infty}$ so that $\chi_{_E}M \neq \{0\}$. (ii) M is called type II if M^{\perp} is type I where $M^{\perp} = \left\{f \in \chi_{_F}L^s: \int_{\chi} fgdm = 0$ for all $g \in M\right\}$ and F is a support set of M and 1/p + 1/s = 1, and if Mcontains no nontrivial invariant subspace of type I. (iii) M is called type III if $M = [IM]_p$ and $M^{\perp} = [IM^{\perp}]_s$ where 1/p + 1/s = 1.

If $\mathscr{B} = \{X, \phi\}$ or $E^{\mathscr{P}}(A) = \{1\}$, then an invariant subspace of type I is a simply invariant subspace [15], for then $[E^{\mathscr{P}}(A)]_{\infty}$ is the complex field.

PROPOSITION 5. Suppose $1 \leq p \leq \infty$ and M is an invariant subspace of L^p . Then

$$M = \chi_{_{E_1}} M \oplus \chi_{_{E_2}} M \oplus \chi_{_{E_3}} M$$

where χ_{E_1}, χ_{E_2} , and χ_{E_3} belongs to $[E^{\mathscr{P}}(A)]_{\infty}, \chi_{E_1} + \chi_{E_2} + \chi_{E_3} = 1$. $\chi_{E_1}M$ is type I, $\chi_{E_2}M$ is type II and $\chi_{E_3}M$ is type III. This decomposition is unique.

The proof is parallel to [12, Theorem 1] and we omit it.

498

THEOREM 1. Let M be an invariant subspace of L^2 . (1) M is type I if and only if

$$M = \chi_E q H^2$$

where χ_{E} belongs to $[E^{\mathscr{F}}(A)]_{\infty}$ and q is unimodular. If $M = \chi_{E}q'H^{2}$ with another unimodular q', then $\chi_{E}q' = \chi_{E}Fq$ where F is a unimodular function in $[E^{\mathscr{F}}(A)]_{\infty}$.

(2) If M is type II, then

$$M = \chi_E q I^2$$

where χ_E belongs to $[E^{\mathscr{R}}(A)]_{\infty}$ and q is unimodular.

The proof is almost parallel to [12, Theorem 2] if we use Lemma 6. The proof of the part of 'only if' is only nontrivial by that $\overline{I}^2 = L^2 \bigoplus H^2$. We shall give a sketch of the proof.

Let M be type I and let $R = M \ominus [IM]_2$. Observe that for any f in R,

$$\int_X g |f|^2 dm = 0 \qquad (g \in I)$$
 .

Then by Lemma 6, it follows that $|f|^2$ lies in $E^{\mathscr{P}}(H^1)$. By Lemma 2 and Lemma 5, $E^{\mathscr{P}}(H^1) = L^1(X, \mathscr{B}, m)$. Hence |f| lies in $E^{\mathscr{P}}(H^1)$ and $\mathcal{X}_{E(f)} \in [E^{\mathscr{P}}(A)]_{\infty}$. Let E be the support set of R, then there exists f_0 in R with $E(f_0) = E$. Define

$$q(x) = egin{cases} f_{\mathfrak{g}}(x) / | \ f_{\mathfrak{g}}(x) | & x \in E \ 1 & x \notin E \ , \end{cases}$$

then $\chi_E q$ lies in M. By the assumption on M and that $H^2 \oplus \overline{I}^2 = L^2$, it follows that $M = \chi_E q H^2$.

COROLLARY 1. [15, Theorem 2.2.1]. Suppose $\mathscr{B} = \{X, \phi\}$, M is a simply invariant subspace in L^2 if and only if $M = qH^2$, where q is unimodular and the q is unique up to multiplication by a constant of absolute value 1.

In the proofs of Propositions 3 and 4, we used Jensen's inequality for A. We now prove it. Let $w \in L^1$, $w \ge 0$ and ε is any positive number. Define $E^{\mathscr{G}}(\log w)$ by $\lim_{\varepsilon \to 0} E^{\mathscr{G}}\{\log (w + \varepsilon)\}$.

THEOREM 2. Jensen's inequality is valid for H^{∞} .

Proof. Let f be an invertible element in H^{∞} , then $\log |f| \in L^{\infty}$. Let $E^{\mathscr{G}}$ be an conditional expectation for $[E^{\mathscr{G}}(A)]_{\infty}$, then by Lemma 5 $E^{\mathscr{G}} = E^{\mathscr{G}}$. Since $L^{\infty} = E^{\mathscr{G}}(L^{\infty}) \bigoplus [I + \overline{I}]_{\infty}$, $E^{\mathscr{G}}(\log |f|) \in E^{\mathscr{G}}(L^{\infty})$ and

TAKAHIKO NAKAZI

 $\log |f| - E^{\mathscr{R}}(\log |f|) \in [I + \overline{I}]_{\infty}$. Hence $\log |f| - E^{\mathscr{R}}(\log |f|)$ lies in the uniqueness subspace of $[B]_{\infty} = [\{1\} + I]_{\infty}$ by Lemma 4 and [5, p. 103]. By [5, p. 103], there exists f_2 in $[B]_{\infty}$ such that $\log |f| - E^{\mathscr{R}}(\log |f|) = \log |f_2|$. Set $f_1 = \exp E^{\mathscr{R}}(\log |f|)$, then $f_1 \in E^{\mathscr{R}}(H^{\infty})$. Since both f_1 and f_2 are invertible in H^{∞} , $f_1 f_2$ is in H^{∞} too and

$$egin{aligned} \log |f| &= E^{\mathscr{B}}(\log |f|) + \log |f| - E^{\mathscr{B}}(\log |f|) \ &= \log |f_1| + \log |f_2| = \log |f_1f_2| \ . \end{aligned}$$

Hence $f = qf_1f_2$ for some unimodular q in $E^{\infty}(H^{\infty})$, $\log |f_1| = \log |qf_1|$ and $E^{\mathscr{B}}(f) = qf_1E^{\mathscr{B}}(f_2)$. Since $E^{\mathscr{B}}(\log |f_2|) = 0$,

$$\int_{\mathcal{X}} \log |f_2| \, dm = \log \left| \int_{\mathcal{X}} f_2 dm \right| = 0$$

and so $f_2 = c + f_{2,0}$ for a constant c of absolute value 1 and for $f_{2,0} \in [I]_{\infty}$. Thus for any invertible f in H^{∞} ,

$$egin{array}{ll} E^{\mathscr{D}}(\log|f|) = \log|f_1| = \log|cqf_1| \ = \log|E^{\mathscr{D}}(f)| \ . \end{array}$$

For all f in H^{∞} and for any $\varepsilon > 0$, $E^{\mathscr{F}}\{\log (|f| + \varepsilon)\} \ge \log |E^{\mathscr{F}}(f)|$. For $\log (|f| + \varepsilon) \in L^{\infty}$ and so there exists an invertible g in H^{∞} with $\log (|f| + \varepsilon) = \log |g|$, using Theorem 1 as in the proof of [15, Lemma 2.4.3]. Now we can use the method of Hoffman [6, Theorem 4.1]. Let $h = fg^{-1}$, then $|h| = |f|/|g| = |f|/(|f| + \varepsilon) \le 1$. By Lemma 1, $|E^{\mathscr{F}}(h)| \le 1$ and so $|E^{\mathscr{F}}(f)| |E^{\mathscr{F}}(g)|^{-1} \le 1$,

$$\log |E^{\mathscr{B}}(f)| \leq \log |E^{\mathscr{B}}(g)|$$
 .

Since g is invertible in H^{∞} , by the first half of this proof, $\log |E^{\mathscr{F}}(g)| = E^{\mathscr{F}}(\log |g|) = E^{\mathscr{F}}\{\log(|f| + \varepsilon)\}$. Thus

$$E^{\mathscr{B}}\{\log\left(\left|f
ight|+arepsilon
ight)\}=\log\left|E^{\mathscr{B}}(g)
ight|\ge\log\left|E^{\mathscr{D}}(f)
ight|$$
 .

COROLLARY 2. For every f in A,

(1)
$$\int_{\mathcal{X}} \log |f| dm \ge \int_{\mathcal{X}} \log |E^{\mathscr{D}}(f)| dm$$

(2)
$$\int_{\mathcal{X}} \exp E^{\mathscr{D}}(\log |f|) dm \ge \int_{\mathcal{X}} |E^{\mathscr{D}}(f)| dm$$

(1) of this corollary is known [1, Corollary 4.4.6]. Our proof is different.

COROLLARY 3. For every f in H^1 ,

$$E^{\mathscr{T}}(\log |f|) \geq \log |E^{\mathscr{T}}(f)|$$

and so

$$\begin{split} &\int_{X} \log |f| \, dm \geqq \int_{X} \log |E^{\mathscr{D}}(f)| \, dm \\ &\int_{X} \exp E^{\mathscr{D}}(\log |f|) \, dm \geqq \int_{X} |E^{\mathscr{D}}(f)| \, dm \end{split}$$

Proof. Using Fatou's lemma for the conditional expectation (easily shown), as in the proof of [3, p. 122], we can show this corollary.

4. Szegö's theorem and factorization theorems. Let A be an extended weak-*Dirichlet algebra of L^{∞} with respect to E^{ω} . In this section we shall show Szegö's theorem which is different from that in Arveson [1, p. 611].

DEFINITION 4. A function h in H^1 is called outer if $[hA]_1 = H^1$.

If h is outer, then |h| > 0 a.e. and $|E^{\mathscr{B}}(h)| > 0$ a.e.; in particular, $\chi_{E}h \notin [hI]_{1}$ for every nonzero χ_{E} in $[E^{\mathscr{B}}(A)]_{\infty}$. If h, h' are outer and |h| = |h'|, then h = qh' for some unimodular q in $[E^{\mathscr{B}}(A)]_{\infty}$.

LEMMA 7. If $f \in L^2$ and $\chi_E f \notin [fI]_2$ for every χ_E in $[E^{\mathscr{T}}(A)]_{\infty}$ with $\chi_E f \neq 0$, then $f = \chi_{E(f)} qh$ where h is outer and q is unimodular.

Proof. Our assumption implies that $[fA]_2$ is an invariant subspace of type I, and hence by Theorem 1, $[fA]_2 = \chi_{E(f)}qH^2$ for some unimodular q. Now this lemma is clear.

As we noted in the proof of Theorem 2, H^{∞} is a logmodular algebra on the maximal ideal space of L^{∞} by Lemma 7. In general, m is not multiplicative on H^{∞} . However E^{sp} is multiplicative on H^{∞} . Moreover if we use the method of Srinivasan and Wang [15, pp. 230-231], it is easy to show the following.

(a)
$$H^1 = \Big\{ f \in L^1 : \int_X fgdm = 0 \text{ for all } g \text{ in } I \Big\}.$$

(b) $H^{\infty} = H^1 \cap L^{\infty}.$

If D is a subalgebra such that $D \supseteq H^{\infty}$ and it is an extended weak-*Dirichlet algebra with respect to E^{\varnothing} , then $D = H^{\infty}$. For $I^{\infty} \subseteq \ker E^{\varnothing}|_{D}$ and by Proposition 4 $[\ker E^{\varnothing}|_{D}]_{2} \subseteq I^{2}$. So $[\ker E^{\varnothing}|_{D}]_{2} = I^{2}$ and $[D]_{2} = H^{2}$ by Proposition 4. By (b), it follows that $D = H^{\infty}$.

THEOREM 3. Let $w \in L^1$, $w \ge 0$. Then

$$\inf_{g \in I} \int_{\mathbb{X}} |1 - g|^2 \, w dm = \int_{\mathbb{X}} \exp E^{\mathscr{B}}(\log w) dm$$
 ,

TAKAHIKO NAKAZI

where $E^{\mathscr{B}}(\log w)$ is defined by $\lim_{\varepsilon \to 0} E^{\mathscr{B}}\{\log (w + \varepsilon)\}$.

Proof. We shall use the method of Srinivasan and Wang [15, Theorem 2.5.5]. We can show the inequality of arithmetic and geometric means for conditional expectation. So if v is a real function in L^1 and $\exp v \in L^1$, then $\exp E^{\mathscr{P}}(v) \leq E^{\mathscr{P}}(\exp v)$. Fix $w \in L^1$, $w \geq 0$. Hence for any g in I and any $\varepsilon > 0$,

$$egin{aligned} &\int_{\mathcal{X}} |1-g|^{_{2}} \, (w+arepsilon) dm & \geqq \int_{\mathcal{X}} \exp E^{_{\mathscr{P}}} \{\log |1-g|^{_{2}} \, (w+arepsilon) \} dm \ &= \int_{\mathcal{X}} \exp E^{_{\mathscr{P}}} (\log |1-g|^{_{2}}) \exp E^{_{\mathscr{P}}} \{\log \, (w+arepsilon) \} dm \;. \end{aligned}$$

By Corollary 3,

$$\int_x |1-g|^{\mathfrak{s}} \, (w+arepsilon) dm \geq \int_x \exp E^{\mathrm{constant}} \{\log \, (w+arepsilon)\} dm \; .$$

As $\varepsilon \rightarrow 0$

$$egin{aligned} &\int_x |1-g|^2 \, w dm \geqq \int_x \exp \lim_{arepsilon o 0} E^{\mathscr{F}} \left\{ \log \left(w + arepsilon
ight\}
ight\} dm \ &= \int_x \exp E^{\mathscr{F}} (\log w) dm \end{aligned}$$

for all g in I, which is one half of theorem. Fix any $\varepsilon > 0$.

$$\inf_{g \in I} \int_{E} |1 - g|^2 (w + \varepsilon) dm >$$

0

٠

for all nonzero χ_E in $[E^{\mathscr{A}}(A)]_{\infty}$. For by the first half of theorem,

$$egin{aligned} &\inf_{g \, \in \, I} \, \int_{\mathcal{X}} \mid 1 \, - \, g \mid^{\scriptscriptstyle 2} \chi_{\scriptscriptstyle E}(w \, + \, arepsilon) dm \ & \geqq \int_{\mathcal{X}} \exp E^{\scriptscriptstyle \mathscr{D}} \{\log \chi_{\scriptscriptstyle E}(w \, + \, arepsilon)\} dm \geqq 0 \end{aligned}$$

For let $E^{\mathscr{T}_1}$ be a conditional expectation for $\chi_{\mathbb{F}}[E^{\mathscr{T}}(A)]_{\infty}$ and let $E^{\mathscr{T}_2}$ be a conditional expectation for $(1 - \chi_{\mathbb{F}})[E^{\mathscr{T}}(A)]_{\infty}$. Then

$$egin{aligned} &E^{\mathscr{T}}\{\log\chi_{\scriptscriptstyle E}(w+arepsilon)\}\ &=\lim_{\scriptscriptstyle 0<\delta o 0}E^{\mathscr{T}}[\log\left\{\chi_{\scriptscriptstyle E}(w+arepsilon)+\delta
ight\}]\ &=\lim_{\scriptscriptstyle \delta o 0}\left(\chi_{\scriptscriptstyle E}E^{\mathscr{T}}[\log\left\{\chi_{\scriptscriptstyle E}(w+arepsilon)+\delta
ight\}]+(1-\chi_{\scriptscriptstyle E})E^{\mathscr{T}}[\log\left\{\chi_{\scriptscriptstyle E}(w+arepsilon)+\delta
ight\}])\ &=\lim_{\scriptscriptstyle \delta o 0}\left[E^{\mathscr{T}_1}\{\log\left(w+arepsilon
ight)+\delta
ight\}+E^{\mathscr{T}_2}(\log\delta)
ight]\ &=\chi_{\scriptscriptstyle E}E^{\mathscr{T}_2}\{\log\left(w+arepsilon
ight)+\lim_{\scriptscriptstyle \delta o 0}\left(1-\chi_{\scriptscriptstyle E}\right)\log\delta
otin to the set of the set o$$

So $\chi_{E}(w + \varepsilon)^{1/2} \notin [(w + \varepsilon)^{1/2}I]_{2}$ for all nonzero χ_{E} in $[E^{\mathscr{F}}(A)]_{\infty}$ and hence

by Lemma 6, there exists an outer function h_{ε} in H^2 with $|h_{\varepsilon}|^2 = w + \varepsilon$. Hence if $w \in L^1$, by Corollary 3,

$$\begin{split} \inf_{g \in I} \int_{X} |1 - g|^2 w dm \\ & \leq \inf_{g \in I} \int_{X} |1 - g|^2 (w + \varepsilon) dm \\ & = \inf_{g \in I} \int_{X} |1 - g|^2 (w + \varepsilon) dm = \int_{X} |E^{\mathscr{B}}(h_{\varepsilon})|^2 dm \\ & \leq \int_{X} \exp E^{\mathscr{B}}(\log |h_{\varepsilon}|^2) dm = \int_{X} \exp E^{\mathscr{B}}\{\log (w + \varepsilon)\} dm \;. \end{split}$$

This completes the proof as $\varepsilon \to 0$.

REMARK. We shall state Szegö's theorem in Arveson [1, pp. 611-615]. Let $w \in L^1$, $w \ge 0$. Then

$$egin{aligned} \inf\left\{ \int_x \mid u - g \mid^{\scriptscriptstyle 2} w dm; \, g \in I, \, u \in E^{\mathscr{A}}(A) \quad ext{and} \quad \int_x \log \mid u \mid dm \geq 0
ight\} \ &= \exp \int_x \log w dm \;. \end{aligned}$$

COROLLARY 4. [15, Theorem 2.5.5.] Suppose $\mathscr{B} = \{X, \phi\}$. Let $w \in L^1$, $w \ge 0$. Then

$$\inf_{g \in I} \int_X |1-g|^2 w dm = \exp \int_X \log w dm$$
 .

Proof. Since $[E^{\mathscr{B}}(A)]_{\infty}$ is the complex field, $\int_{x} \exp E^{\mathscr{B}}(\log w) dm = \exp \int_{x} \log w dm$ and so Theorem 3 implies this corollary. This corollary can be shown by Szegö's theorem in Arveson, too.

COROLLARY 5. $h \in H^1$ is outer if and only if $|E^{\mathscr{A}}(h)| > 0$ and

$$\int_{\mathbb{X}} \exp E^{\mathscr{B}}(\log \mid h \mid) dm = \int_{\mathbb{X}} \mid E^{\mathscr{B}}(h) \mid dm \;.$$

In particular, if $\mathscr{B} = \{X, \phi\}$, then $h \in H^1$ is outer if and only if

$$\exp\int_{x}\log |h|dm = \left|\int_{x}hdm\right| > 0$$
 .

Proof. If $h \in H^1$ is outer, then there exists h_1 in H^2 , which is outer, such that $h = h_1^2$. Then by Theorem 3,

TAKAHIKO NAKAZI

$$egin{aligned} &\int_X |\, E^{\mathscr{T}}(h)\,|\, dm = \int_X |\, E^{\mathscr{T}}(h_1)\,|^2\, dm = \inf_{g \in I} \int_X |\, 1 - g\,|^2\,|\, h_1\,|^2\, dm \ &= \int_X \exp E^{\mathscr{T}}(\log |\, h_1\,|^2) dm = \int_X \exp E^{\mathscr{T}}(\log |\, h\,|) dm \;. \end{aligned}$$

To prove the 'if' part, if $|E^{\otimes}(h)| > 0$, a.e. then $h = qh_1^2$ by Lemma 7 for $h_1 \in H^2$ is outer and $q \in H^{\infty}$ is uni-modular. Then our condition gives

$$egin{aligned} &\int_{X} \exp E^{\mathscr{A}}(\log \mid h \mid) dm = \int_{X} \mid E^{\mathscr{A}}(q) \mid \mid E^{\mathscr{A}}(h_{1}^{2}) \mid dm \ & \leq \int_{X} \mid E^{\mathscr{A}}(h_{1}^{2}) \mid dm = \int_{X} \exp E^{\mathscr{A}}(\log \mid h_{1}^{2} \mid) dm \;. \end{aligned}$$

Thus $|E^{\mathscr{B}}(q)| = E^{\operatorname{p}}(q)$ a.e.. Since |q| = 1 a.e.,

$$E^{\mathscr{B}}(|\,q\,-\,E^{\mathscr{B}}(q)\,|^{\scriptscriptstyle 2})=0$$
 ,

and hence $q = E^{\mathscr{B}}(q)$. This shows that h is outer. If $f \in H^{\infty}$, by (2) in Corollary 2

$$egin{aligned} &\int_{\mathcal{X}} \exp E^{\otimes}(\log |f|) dm \geq \exp {\int_{\mathcal{X}} \log |f|} \, dm \ & \geq \exp {\int_{\mathcal{X}} \log |E^{\otimes}(f)|} \, dm \end{aligned}$$

and

$$egin{aligned} &\int_{\mathbb{X}} \exp E^{\mathscr{D}}(\log |f|) dm \geq \int_{\mathbb{X}} |E^{\mathscr{D}}(f)| \, dm \ &\geq \exp\!\!\int_{\mathbb{X}} \log |E^{\mathscr{D}}(f)| dm \;. \end{aligned}$$

If f is invertible in H^{∞} , then

$$egin{aligned} &\int_{X} \exp E^{\mathscr{B}}(\log |f|) dm = \int_{X} |E^{\mathscr{B}}(f)| \, dm \ &\geq \exp \int_{X} \log |f| \, dm = \exp \int_{X} \log |E^{\mathscr{B}}(f)| \, dm \; . \end{aligned}$$

Moreover if $|E^{\mathscr{D}}(f)| = \text{constant}$ a.e., then

$$egin{aligned} &\int_{\mathcal{X}} \exp E^{\mathscr{D}}(\log |f|) dm = \int_{\mathcal{X}} |E^{\mathscr{D}}(f)| \, dm = \exp \int_{\mathcal{X}} \log |f| \, dm \ &= \exp \int_{\mathcal{X}} \log |E^{\mathscr{D}}(f)| \, dm \; . \end{aligned}$$

In general,

$$\int_x \exp E^{\mathscr{A}}(\log |f|) dm \geqq \exp \int_x \log |f| \, dm$$

504

and

$$\int_{{\mathbb X}} |E^{{\mathscr B}}(f)| \, dm \geqq \exp \int_{{\mathbb X}} \log |E^{{\mathscr B}}(f)| \, dm \; .$$

THEOREM 4.

(1) Every f in H^1 with $\int_E \exp E^{\mathscr{B}}(\log |f|) dm > 0$, for any $\chi_E \in [E^{\mathscr{B}}(A)]_{\infty}$ so that $\chi_E f \neq 0$, is a product of two H^2 functions.

(2) A function f in H^1 is a product $\chi_{E(f)}qF$ of an inner function q (i.e., $q \in H^{\infty}$ with |q| = 1 a.e.) and an outer function F if and only if $\int_{E} \exp E^{\mathscr{B}}(\log |f|) dm > 0$ for any $\chi_{E} \in [E^{\mathscr{B}}(A)]_{\infty}$ so that $\chi_{E}f \neq 0$. (3) A nonnegative function w in L^1 is of the form $\chi_{E(w)} |h|$ for

(3) A nonnegative function w in L^{r} is of the form $\lambda_{E(w)} | h |$ for some outer h in H^{1} if and only if $\int_{E} \exp E^{\mathscr{F}}(\log w) dm > 0$ for any $\chi_{E} \in [E^{\mathscr{F}}(A)]_{\infty}$ so that $\chi_{E}f \neq 0$.

Proof. (1) By Theorem 3, for every nonzero $\chi_{_E} \in [E^{\mathscr{B}}(A)]_{_{\infty}}$ so that $\chi_{_E}f \neq 0$,

$$egin{aligned} &\inf_{g\in I}\int_{X}|1-g|^{z}\,\mathcal{X}_{\scriptscriptstyle E}\,|f|\,dm=\int_{X}\exp\,E^{\mathscr{B}}(\log\mathcal{X}_{\scriptscriptstyle E}\,|f|)dm\ &=\int_{E}\exp\,E^{\mathscr{B}}(\log|f|)dm>0 \;. \end{aligned}$$

Hence if $M_w = [wA]_2$ and $w = \sqrt{|f|}$, then M_w is an invariant subspace of type I. By Theorem 1, $M_w = \chi_{E(w)}qH^2$ and so $|f| = w^2 = \chi_{E(f)}q^2h^2$ where |q| = 1 a.e. and $h \in H^2$. This implies (1). (2) and (3) follows as in the proof of [15, Theorem 2.5.9] and (1).

We can write Theorem 4 in another form.

THEOREM 4'.

(1) Every f in H^1 with $\chi_{E(f)} E^{\mathscr{B}}(\log |f|) > -\infty$ a.e. on E(f), is a product of two H^2 functions.

(2) A function f in H^1 is a product $\chi_{E(f)}qf$ of an inner function q and an outer function F if and only if $\chi_{E(f)}E^{\mathscr{R}}(\log |f|) > -\infty$ a.e. on E(f).

(3) A nonnegative function w in L^1 is of the form |h| for some outer h in H^1 if and only if $\chi_{E(w)}E^{\mathscr{D}}(\log w) > -\infty$ a.e. on E(w).

If $\mathscr{B} = \{X, \phi\}$, then Theorems 4 and 4' implies [15, Theorem 2.5.9].

5. Some theorems concerning L^p . We wish to extend some of our theorems in §§ 3, 4 from L^2 to L^p to general p, i.e., Theorems 1, 3, and 4. However if we use the method of Srinivasan and Wang [15, pp. 242-247], they follow easily. So we omit the proofs. But

we shall give two important invariant subspace theorems, known when $\mathscr{B} = \{X, \phi\}$ [12, Lemma 1].

THEOREM 5. Suppose $1 \leq p < q \leq \infty$. There is a one-to-one correspondence between invariant subspaces M_p of L^p and (weak-*closed for $q = \infty$) invariant subspaces M_q of L^q , such that $M_q = M_p \cap L^q$, and M_p is the closure in L^p of M_q .

Proof. If $w \in L^1$, $w \ge 0$ and $\log w \in L^1$, then $w = |g|^2$ with outer g in H^2 . For then $E^{\mathscr{D}}(\log w) > -\infty$ a.e. and so we can apply Theorem 4'. We shall show that $M_p \cap L^\infty$ is dense in M_p . Let f be in M_p . We shall use the well known method [6, p. 12]. For each n let $k_n = \min(1, n |f|^{-1})$, then $0 \le k_n \le 1$, $k_n \le k_{n+1} \le \cdots \to 1$ a.e., and $\log k_n \in L^1$. For each k_n , there exists an outer g_n in H^∞ with $k_n = |g_n|$. Moreover we can assume that $E^{\mathscr{D}}(g_n) > 0$ a.e.. For $|E^{\mathscr{D}}(g_n)| > 0$ a.e., let $q_n = \operatorname{sgn} E^{\mathscr{D}}(g_n)$, then $E^{\mathscr{D}}(\bar{q}_n g_n) = \bar{q}_n E^{\mathscr{D}}(g_n) > 0$ a.e.. Again $\bar{q}_n g_n$ is outer with $k_n = \bar{q}_n g_n$. Write $\bar{q}_n g_n$ as g_n again. We shall show that g_n tends to the constant function in norm, and on a subsequence almost everywhere. Fix n, then for any $\varepsilon > 0$, there exists a h in I such that

$$egin{aligned} &\int_{\mathcal{X}} E^{\scriptscriptstyle{(\mathcal{S})}}(g_n) dm + arepsilon &= \inf_{g \, \in \, I} \int_{\mathcal{X}} |\, \mathbf{1} - g\, |^{\scriptscriptstyle 2} \, |\, g_n \, |\, dm + arepsilon > \int_{\mathcal{X}} |\, \mathbf{1} - h\, |^{\scriptscriptstyle 2} \, |\, g_n \, |\, dm \ &\geq \exp\!\int_{\mathcal{X}} \log |\, \mathbf{1} - h\, |^{\scriptscriptstyle 2} \, dm imes \exp\!\int_{\mathcal{X}} \log |\, g_n \, |\, dm \, \, . \end{aligned}$$

By Theorem 2 and as $\varepsilon \to 0$, for each n,

$$\int_{\mathbb{X}} E^{\mathscr{B}}(g_n) dm \ge \exp \int_{\mathbb{X}} \log |g_n| dm$$
 .

By Fatou's lemma, it follows that $\exp \int_{\mathcal{X}} \log |g_n| dm \to 1$ and hence $\int_{\mathcal{X}} g_n dm = \int_{\mathcal{X}} E^{\mathscr{F}}(g_n) dm \to 1$. Therefore

$$egin{aligned} &\int_{X} \mid g_n - 1 \mid^2 dm = \int_{X} \mid g_n \mid^2 dm + 1 - 2 \operatorname{Re} \int_{X} g_n dm \ & \leq 2 - 2 \int g_n dm \longrightarrow 0 \;. \end{aligned}$$

There exists a subsequence $\{g_{n_k}\}$ such that $g_{n_k} \to 1$ a.e.. Since $g_{n_k}f \in M_p \cap L^{\infty}$, f is a limit of bounded functions in M_p . Since $M_p \cap L^{\infty}$ is dense in M_p , it is clear that $M_p \cap L^q$ is dense in M_p . By the first half of theorem, as in the proof of [6, p. 12], we can show that $[M_q]_p \cap L^q = M_q$.

PROPOSITION 6. If M is an invariant subspace of $L^{p}(m)$ $(1 \leq p)$

 $\leq \infty$), then $\chi_{\mathcal{E}(M)}q \in M$ for some unimodular q and the support set E(M) of M. Moreover

$$|M| = \chi_{_{E_0}} \cdot \chi_{_{E(M)}} |H^p(m)| + (1 - \chi_{_{E_0}}) \chi_{_{E(M)}} |L^p(m)|$$
 ,

where $\chi_{E_0}M$ is the largest subspace that contains no nontrivial reducing subspace of L^{∞} and $\chi_{E_0}M \subseteq M$ and $|M| = \{|f|; f \in M\}$.

Proof. By Theorem 4, if u is a real-valued function in L^{∞} , then there is $h \in H^{\infty}$ such that $e^{u} = |h|$ and $h^{-1} \in H^{\infty}$. Hence by [14, Theorem] and Theorem 5, the former half of this proposition follows. The latter half can be shown as in the proof of [14, Corollary 5].

6. Weak-*Dirichlet algebras. Let A be a weak-*Dirichlet algebra of L^{∞} , i.e., it is an extended weak-*Dirichlet algebra with respect to $E^{\mathscr{B}}$ which is a conditional expectation for \mathscr{B} with $\mathscr{B} = \{X, \phi\}$. Then m is multiplicative on A. Suppose B^{∞} is any weak-*closed subalgebra of L^{∞} which contains A. The measure m was called in [12] quasi-multiplicative on B^{∞} if $\int_{x} f^{2}dm = 0$ for every f in B^{∞} such that $\int_{\mathbb{B}} fdm = 0$ for all χ_{E} in B^{∞} . It is a consequence of the definition of a weak-*Dirichlet algebra that if f is in H^{∞} and $\int_{\mathbb{B}} fdm = 0$ for all χ_{E} in H^{∞} , then $\int_{x} f^{2}dm = 0$. Let

$$B_0^{\infty} = \left\{ f \in B^{\infty} : \int_{\mathcal{X}} f dm = 0 \right\}$$

and let I_B^{∞} be a maximum weak-*closed ideal of B^{∞} in B_0^{∞} [12, Lemma 2]. I_B^{∞} is given by $\{f \in B^{\infty}: \int_x fgdm = 0 \text{ for all } g \text{ in } B^{\infty}\}$. Let \mathscr{L}_B^{∞} be a self-adjoint part of B^{∞} . Suppose $E^{\mathscr{R}}$ is a conditional expectation for \mathscr{L}_B^{∞} .

PROPOSITION 7. Suppose B^{∞} is any weak-*closed subalgebra of L^{∞} which contains A. Then the following are equivalent.

- (1) m is quasi-multiplicative on B^{∞} .
- (2) $[B^{\infty} \cap \overline{B}^{\infty}]_2 = [B^{\infty}]_2 \cap [\overline{B}^{\infty}]_2.$
- (3) $E^{\mathscr{B}}$ is multiplicative on B^{∞} .

(4) B^{∞} is an extended weak-*Dirichlet algebra with respect to E^{*} .

Proof. (1) \Leftrightarrow (2) is known in [12, Theorem 4]. Since $B^{\infty} + \overline{B}^{\infty}$ is weak-*dense in L^{∞} , (3) \Leftrightarrow (4) is clear.

(2) \Leftrightarrow (3). Let $K = L^2 \bigoplus [B^{\infty}]_2$, then $[I_B^{\infty}]_2 = \overline{K}$ by [12, Lemma 2] and so $K \subset [B^{\infty}]_2$. Proposition 2 implies this equivalence.

By Proposition 7, [12, Theorem 2] is a corollary of Theorem 1. For w in L^1 with $w \ge 0$, log $w \in L^1$ if and only if w = |g| for some outer function g in H^1 [15, Theorem 2.5.9]. Since g is outer, $\exp \int_x \log |g| dm = \left| \int_x g dm \right| > 0$. We want to know when $\log w \notin L^1$. Suppose B^{∞} is any weak-*closed subalgebra of L^{∞} which contains H^{∞} properly and on which $E^{\mathscr{F}}$ is multiplicative. Even if $\log w \notin L^1$, it can happen that $E^{\mathscr{F}}(\log w) > -\infty$ a.e.. Then by Theorem 4', w = |g| for some g in $[B]_1$ with $[gI_B^{\infty}]_1 = [I_B^{\infty}]_1 \subset H^1$. If $g \in H^1$,

$$0 = \left| \int_{\mathcal{X}} g dm \right| = \exp \int_{\mathcal{X}} \log |g| \, dm = \exp \int_{\mathcal{X}} E^{\mathscr{F}}(\log |g|) dm$$
$$\rightleftharpoons \int_{\mathcal{X}} \exp E^{\mathscr{F}}(\log |g|) dm = \int_{\mathcal{X}} |E^{\mathscr{F}}(g)| \, dm ,$$

and $[gA]_{h} \subsetneqq H^{1}$. In general, $[gA]_{h} = q[B^{\infty}]_{h}$ for some unimodular q in H^{∞} or $H^{\infty} = \{h \in L^{\infty}: h[gA]_{h} \sqsubseteq [gA]_{h}\}$ and $[gA]_{h}$ is type III for H^{∞} . Set $A_{0} = \{f \in A: \int fdm = 0\}$, then Szegö's theorem implies

(1)
$$\inf_{g \in A_0} \int_x |1 - g|^2 w dm = \inf_{g \in H_0^\infty} \int_x |1 - g|^2 w dm$$
$$= \exp \int_x \log w dm.$$

When $B^{\infty} \supseteq H^{\infty}$ and $E^{\mathscr{A}}$ is multiplicative on B^{∞} , $H_{0}^{\infty} \supseteq I_{B}^{\infty}$. By Theorem 3

(2)
$$\inf_{g \in I_B^{\infty}} \int_{\mathcal{X}} |1 - g|^2 w dm = \int_{\mathcal{X}} \exp E^{\mathscr{B}}(\log w) dm .$$

If $f \in \mathscr{L}^{\infty}_{B} \cap H^{\infty}$ and $g \in I^{\infty}_{B}$, then by Theorem 2,

$$\int_x \log |f + g| \, dm \ge \int_x \log |f| \, dm \ge \log \left| \int_x f dm \right| \, .$$

Now we shall show other versions of Szegö's theorem.

$$(3) \qquad \inf_{u \in H_0^\infty \cap \mathscr{S}_B^\infty} \int_X |1-u|^2 w dm = \exp \int_X \log |E^{\mathscr{R}}(w)| dm .$$

For since $H^{\infty} = H^{\infty} \cap \mathscr{L}^{\infty}_{B} + I^{\infty}_{B}$ [12], it follows that $H^{\infty} \cap \mathscr{L}^{\infty}_{B}$ is a weak-*Dirichlet algebra of \mathscr{L}^{∞}_{B} . Thus

$$\begin{split} \inf_{u \in H_0^\infty \cap \mathscr{L}_B^\infty} & \int_X |1 - u|^2 w dm \\ &= \inf \int_x E^{\mathscr{T}}(|1 - u|^2 w) dm = \inf \int_x |1 - u|^2 E^{\mathscr{T}}(w) dm \\ &= \exp \int_x \log E^{\mathscr{T}}(w) dm \;. \end{split}$$

Fix $v \in \mathscr{L}^{\infty}_{B}$ with v^{-1} in \mathscr{L}^{∞}_{B} .

$$(2)' \qquad \inf_{g \in I_B^{\infty}} \int_X |v - g|^2 w dm = \int_X \exp E^{x} (\log w) |v|^2 dm.$$

For the $L^2(|v|^2 wdm)$ -closure of $v^{-1}I_B^{\infty}$ contains I_B^{∞} and so by (2)

$$\begin{split} \inf_{g \in I_B^{\infty}} \int_X | \, \mathbf{1} - v^{-1}g \, |^2 \, | \, v \, |^2 \, w dm \\ &= \inf_{g \in I_B^{\infty}} \int_X | \, \mathbf{1} - g \, |^2 \, | \, v \, |^2 \, w dm = \int_X \exp \, E^{\mathscr{D}}(\log | \, v \, |^2 \, w) dm \\ &= \int_X \exp \, E^{\mathscr{D}}(\log \, w) \, | \, v \, |^2 \, dm \, \, . \end{split}$$

The following is Szegö's theorem by Arveson [1, pp. 611-615]. We shall give another proof to connect (4) with (2) and (2)'.

$$\inf \left\{ \int_{x} |v - g|^{2} w dm; g \in I_{B}^{\infty}, v \in \mathscr{L}_{B}^{\infty} \text{ and} \right.$$
$$\left. \int_{x} \log |v| dm \ge 0 \right\}$$
$$= \inf \left\{ \int_{x} \exp E^{\mathscr{D}}(\log w) |v|^{2} dm; v \in \mathscr{L}_{B}^{\infty} \text{ and} \right.$$
$$\left. \int_{x} \log |v| dm \ge 0 \right\}$$
$$= \exp \int_{x} \log w dm .$$

For

$$\exp \int_x \log w dm \ = \inf \left\{ \int_x e^u w dm; \, u \in L^\infty_{\scriptscriptstyle R} \, \, ext{and} \, \, \int \!\!\!\! u dm = 0
ight\} \, .$$

By Lemma 7 and Theorem 2, there exists f in $(H^{\infty})^{-1}$ such that $E^{\mathbb{F}}(\log |f|) = p^{-1}E^{\mathbb{F}}(u) = \log |E^{\mathbb{F}}(f)|$ and so $\int_{X} \log |E^{\mathbb{F}}(f)| dm = 0$. So

$$\begin{split} \exp \int_{X} \log w dm \\ &= \inf \left\{ \int_{X} |f|^{2} w dm; f \in (H^{\infty})^{-1} \text{ and } \int_{X} \log |E^{\mathscr{P}}(f)| \, dm = 0 \right\} \\ &\geq \inf \left\{ \int_{X} |v - g|^{2} w dm; \, g \in I^{\infty}_{B}, \, v \in \mathscr{L}^{\infty}_{B} \text{ and } \int \log |v| \, dm \ge 0 \right\} \\ &= \inf \left\{ \int_{X} \exp E^{\mathscr{P}}(\log |v - g|^{2}) \exp E^{\mathscr{P}}(\log w) dm; \, g \in I^{\infty}_{B}, \\ &v \in \mathscr{L}^{\infty}_{B} \text{ and } \int \log |v| \, dm \ge 0 \right\} \end{split}$$

$$\geq \inf \left\{ \int_{x} \exp E^{\mathscr{B}}(\log w) \cdot |v|^{2} dm; \ v \in \mathscr{L}_{B}^{\infty} \text{ and} \right. \\ \left. \int_{x} \log |v| dm \geq 0 \right\}$$

$$\geq \inf \left\{ \exp \int_{x} \log w dm \exp \int_{x} \log |v|^{2} dm; \ v \in \mathscr{L}_{B}^{\infty} \text{ and} \right. \\ \left. \int_{x} \log |v| dm \geq 0 \right\}$$

$$\geq \exp \int_{x} \log w dm .$$

7. Applications.

(I) Let G be a compact abelian group dual to a discrete group Γ . The Haar measure m on G is finite, and normalized so that m(G) = 1. Suppose a semigroup P is given in Γ such that $\Gamma = P \cup (-P)$, i.e., P orderes Γ . Let A be the set of all trigonometric polynomials f on G the form $f = \Sigma a_2 \chi_2$ ($\lambda \in P$). Let \mathscr{L}^{∞} be the weak-*closed linear span of $\Sigma a_2 \chi_2$ ($\lambda \in P \cap (-P)$) and let $E^{\mathscr{P}}$ be the conditional expectation for \mathscr{L}^{∞} . Then A is an extended weak-*Dirichlet algebra with respect to $E^{\mathscr{P}}$.

In particular, when $P \cap (-P) = \{0\}$, it is called that P orders Γ totally. Then A is a weak-*Dirichlet algebra. Let P_{α} be a semigroup of Γ which contains P properly. Let H_{α} be the weak-*closed linear span of all trigonometric polynomials f on G of the form $f = \Sigma a_{\lambda} \chi_{\lambda}$ ($\lambda \in P_{\alpha}$). Define $\mathscr{L}^{\infty} = \mathscr{L}^{\infty}_{\alpha}$ and $E^{\mathscr{F}} = E^{\mathscr{F}(\alpha)}$ as the above. Then H_{α} is not a weak-*Dirichlet algebras, but it is an extended one with respect to $E^{\mathscr{F}}$. Let I_{α} be the weak-*closed linear span of all trigonometric polynomials f on G of the form $f = \Sigma a_{\lambda} \chi_{\lambda}$ ($\lambda \notin - P_{\alpha}$). Then $I_{\alpha} = \ker E^{\mathscr{F}} \mid H_{\alpha} = I^{\infty}_{H_{\alpha}}$.

(II) Let (X, \mathcal{M}, m) be a probability measure space and $\{T_t; t \in R\}$ be a flow. Suppose *m* is invariant under T_t . The action of *R* on *X* induces a weak-*continuous, one-parameter group $\{T_t\}_{t \in R}$ of automorphism of $L^{\infty} = L^{\infty}(m)$. They are defined by

$$\int_{\mathcal{X}} T_{t}f(x)g(x)dm(x) = \int_{\mathcal{X}} f(T_{-t}x)g(x)dm(x)$$

for f in L^{∞} and g in L^{1} . For each element f in L^{∞} and a function ϕ in $L^{1}(R)$, we define the convolution $f * \phi$ in M by

$$f*\phi = \int_{-\infty}^{\infty} \phi(t) T_t f dm$$
 .

The above integral exists in the sense that

$$egin{aligned} &\int_{\mathcal{X}} f * \phi g dm \, = \, ig< f * \phi, \, g ig> \, = \, \int_{-\infty}^{\infty} \phi(t) \Big(\int T_i f g dm \, \Big) dt \ &= \, \int_{-\infty}^{\infty} \phi(t) ig< T_i f, \, g ig> dt \end{aligned}$$

for g in L^1 [2, Proposition 1.6]. Define the ideals of $L^1(R) J(f)$ by

$$J(f) = \{\phi \in L^1(R) : f * \phi = 0\}$$

The hull of the ideal J(f) is said to be the spectrum of f and is denoted by $\operatorname{sp} f$. A is defined to be the set of all f in L^{∞} with $\operatorname{sp} f \subseteq [0, \infty)$.

Let $d\nu = dt/\pi(1 + t^2)$ and $L^{\infty}(R \times X) = L^{\infty}(\nu \times m)$, where $\nu \times m$ is a completion of the product measure of ν and m. Set $F(t, x) = T_t f(x)$ for f in L^{∞} , then $F(t, x) \in L^{\infty}(R \times X)$. Set $q = (1 - it)(1 + it)^{-1}$, then $q \in H^{\infty}(R)$ and there exists $\sum_{n=1}^{+} f_n^n q^n$ such that

$$\iint \left| F(t, x) - \sum_{-N}^{N} f_n^{(N)} q^n \right|^2 d\nu dm \longrightarrow 0 ,$$

where $f_n^N \in L^{\infty}(m)$ and $H^{\infty}(R)$ is the class of all functions ϕ in $L^{\infty}(R)$ such that sp $\phi \subseteq [0, \infty)$. If sp $f \subseteq [0, \infty)$, then it is easy to show that $\int_x T_t fgdm \in H^{\infty}(R)$ for every g in L^1 and hence it follows that

$$\iint \left| F(t, x) - \sum_{0}^{N} f_{n}^{(N)} q^{n} \right|^{2} d\nu dm \longrightarrow 0 .$$

Thus $T_t f(x) = F(t, x) \in H^{\infty}(R)$ a.e. x(m). If $T_t f(x) = F(t, x) \in H^{\infty}(R)$ a.e. x(m), then it is clear that $\int_x T_t fgdm \in H^{\infty}(R)$ for every g in L^1 and hence $\operatorname{sp} f \subseteq [0, \infty)$. This implies that A is a weak-*closed subalgebra of L^{∞} which contains the constants. Let $\mathscr{L}^p = \{f \in L^p:$ $T_t f = f\}$ for $1 \leq p \leq \infty$ and $E^{\mathscr{B}}$ be a conditional expectation for \mathscr{L}^{∞} .

THEOREM 6. [11] [8]. A is an extended weak-*Dirichlet algebra with respect to $E^{\mathscr{P}}$. If the flow is ergodic, then A is a weak-*Dirichlet algebra.

We shall give the proof in which spectral condition (cf. [2] [8]) is not used but Proposition 2 is used.

LEMMA 8 [11]. Suppose
$$1 \leq p \leq \infty$$
. Then
 $\{f \in L^p: \operatorname{sp} f \subseteq \{0\}\} = \{f \in L^p: T_t f = f \text{ a.e.}\}$

Proof. If $T_t f = f$, since $\langle f * \phi, g \rangle = \langle f, g \rangle \hat{\phi}(0)$ for every g in L^q , then $\operatorname{sp} f \subseteq \{0\}$. If $\operatorname{sp} f \subseteq \{0\}$, set $F(t) = \int_{-\infty}^{\infty} T_t fg dm$. Then we can

show as in the proof of [4, p. 50] that sp $F \subseteq -\text{sp} f$. Hence F is a constant a.e. on R and $T_i f = f$ a.e..

LEMMA 9 [4, Proposition 2]. Suppose $1 \leq p \leq \infty$. Then if $f \in L^p$

$$\int_{X} fgdm = 0$$
 for all g in A,

then $\operatorname{sp} f \subseteq [0, \infty)$.

Proof. For any h in L^{∞} and any ϕ in $L^{1}(R)$, $\langle f * \phi, h \rangle = \langle f, h * \tilde{\phi} \rangle$ where $\tilde{\phi}(t) = \phi(-t)$. Hence if $\hat{\phi}(s) = 1$ for s < 0 with $\operatorname{supp} \hat{\phi} \subseteq (-\infty, 0)$, it follows that $f * \phi = 0$. This implies $\operatorname{sp} f \subseteq [0, \infty)$.

The proof of Theorem 6. If $f \in L^1$, $\int_X f(k + \bar{h}) dm = 0$ for all h, kin A, then $\operatorname{sp} f \subseteq \{0\}$ by Lemma 9. By Lemma 8, $T_t f = f \in \mathscr{L}^1$ and f annihilates $A \cap \bar{A} = \mathscr{L}^\infty$. Since \mathscr{L}^∞ is dense in \mathscr{L}^1 , f = 0 a.e.. Thus $A + \bar{A}$ is weak-*dense in L^∞ . In order to prove that E^{\otimes} is multiplicative, by Proposition 2, it is sufficient to show that K = $L^2 \bigoplus H^2 \subset \bar{H}^2$ and $[A \cap \bar{A}]_2 = H^2 \cap \bar{H}^2$. Set $\mathscr{H}^2 = \{f \in L^2: \operatorname{sp} f \subseteq [0, \infty)\}$, then $\mathscr{H}^2 \supseteq H^2$. Since $\mathscr{H}^2 \cap \bar{\mathscr{H}}^2 = \mathscr{L}^2$ and $A \cap \bar{A} = \mathscr{L}^\infty$, it is clear that $[A \cap \bar{A}]_2 = H^2 \cap \bar{H}^2$. By Lemma 9, $K \subset \tilde{\mathscr{H}}^2$. So if $H^2 = \mathscr{H}^2$, the proof is complete. If $f \in \mathscr{H}^2 \bigoplus H^2$, then $\operatorname{sp} f \subseteq \{0\}$ and hence $f \in \mathscr{L}^2$. While $\mathscr{L}^2 \subset H^2$, this implies f = 0 a.e..

(III) Let $C(X_1)$ be the set of all continuous complex-valued functions on a compact Hausdorff space X_1 and let A_2 be a function algebra on a compact Hausdorff space X_2 . Moreover let A_2 be a Dirichlet algebra of $C(X_2)$, i.e., $A_2 + \overline{A}_2$ is uniformly dense in $C(X_2)$. Suppose A is the set of all functions of the form; for $u, v \in C(X_1)$ and $f \in A_2$, u + vf. Then A is an subalgebra of $C(X_1 \times X_2)$.

Let m_1 be any probability measure on X_1 and m_2 be a nontrivial representing measure of any complex homomorphism of A_2 . Let \mathscr{M} be the σ -algebra of all Borel sets of $X_1 \times X_2$ and m be the completion of $m_1 \times m_2$. Let \mathscr{B} be the σ -subalgebra of \mathscr{M} consisting of all Borel sets of the form $E_1 \times X_2$ where E_1 is a Borel set of X_1 . Let $E^{\mathscr{A}}$ denote the conditional expectation for \mathscr{B} . Then A is an extended weak-*Dirichlet algebra of $L^{\infty}(m)$ with respect to $E^{\mathscr{B}}$. For it is clear that (i) the constant functions lie in A; (ii) $A + \overline{A}$ is weak-*dense in L^{∞} ; (iv) $E^{\mathscr{A}}(A) \subseteq A \cap \overline{A}$. For $u, u', v, v' \in C(X_1)$ and $g, g' \in A_2$,

$$egin{aligned} &E^{\, arsigma}(\{u\,+\,vg\}\{u'\,+\,v'g'\})\ &=uu'\,+\,u'v \int_{x_2}gdm_2+\,uv'\int_{x_2}g'dm_2+\,vv'\int_{x_2}gdm_2 imes\int_{x_2}g'dm_2\ &=E^{\, arsigma}(u\,+\,vg)E^{\, arsigma}(u'\,+\,v'g)\;. \end{aligned}$$

This implies that (iii) for all f and g in A, $E^{\mathscr{T}}(fg) = E^{\mathscr{T}}(f)E^{\mathscr{T}}(g)$. Then $I = \{f \in A \colon E^{\mathscr{T}}(f) = 0\} = \{u + vg \colon \int_{X_2} gdm_2 = 0 \text{ and } v \in C(X_1), g \in A_2\}.$

References

1. W. B. Arveson, Analyticity in operator algebras, Amer. J. Math., 89 (1967), 578-642.

2. _____, Operator algebras and measure preserving automorphism, Acta Math., **118** (1967), 95-109.

3. A. Browder, Introduction to Function Algebras, W. A. Benjamin, New York, 1969.

F. Forelli, Analytic and quasi-invariant measures, Acta Math., 118 (1967), 33-59.
 T. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, N. J., 1969.

6. H. Helson, Analyticity on Compact Abelian Groups, Algebras in analysis, Williamson, J. H., Academic Press, London, New York, San Francisco, 1975, 1-62.

7. K. Hoffman, Analytic functions and logmodular Banach algbras, Acta Math., 108 (1962), 271-317.

8. S. Kawamura and J. Tomiyama, On subdiagonal algebras associated with flows in operator algebras, J. Math. Soc. Japan, **29** (1977), 73-90.

9. H. König, On the Marcel Riesz estimation for conjugate functions in the abstract Hardy algebra situation, Commentationes Math., (to appear).

10. S-T. C. Moy, Characterization of conditional expectation as a transformation on function spaces, Pacific J. Math., 4 (1954), 47-63.

11. P. S. Muhly, Function algebras and flows, Acta Sci. Math., 35 (1973), 111-121.

12. T. Nakazi, Invariant subspaces of weak-*Dicichlet algebras, Pacific J. Math., 69 (1977), 151-167.

13. _____, Quasi-maximal ideals and quasi-primary ideals of weak-*Dirichlet algebras, (in preprint).

14. ____, Helson's existence theorem of function algebras, (in preprint).

15. T. P. Srinivasan and Ju-Kwei Wang, *Weak-*Dirichlet algebras*, Proc. Internat. Sympos. On Function Algebras (Tulane Univ., 1965), Scott-Foresman, Chicago, III., 1966, 216-249.

Received August 17, 1978.

Research Institute of Applied Electricity Hokkaido University Sapporo, Japan