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H-CLOSED AND COUNTABLY COMPACT EXTENSIONS

JOHN W. CARLSON

Nearness structures that are generated by countably
compact T: strict extensions or H-closed extensions are
characterized. For a Hausdorff topological space a compati-
ble nearness structure is given for which the completion is
the Fomin H-closed extension. A collection of compatible
nearness structures for a given Hausdorff space is isolated;
and it is shown that there exists a one-to-one correspondence
between this collection and the collection of all strict
H-closed extensions of the given space, up to the obvious
equivalence.

This paper is concerned with the study of H-closed and count-
ably compact extensions using nearness structures. A nearness
structure & on a set X is said to be generated by an extension Y
if & is precisely those collections .97 of subsets of X whose closures,
when taken in Y, meet. Bentley and Herrlich [2], have studied
this problem in general and have characterized those nearness struc-
tures that are generated by T, extensions that are compact, Haus-
dorff, regular, Lindelof, paracompact, or realcompact. This paper
characterizes those nearness structures that are generated by a
strict countably compact T, extension or an H-closed extension.

Porter and Votaw [9], show that in general a given Hausdorff
topological space X may have | &% X)| H-closed extensions and that
it is impossible to generate all of them using proximities, in the
same way one can generate all compact Hausdorfi extensions of a
completely regular space using proximities. Bently and Herrlich
[2], have shown that one can generate all T, strict extensions of a
space X by considering all compatible concrete nearness structures
on X. In this paper it is shown that all strict H-closed extensions
of a given Hausdorff space, up to the usual equivalence, are in
one-to-one correspondence with the collection of all open B-complete
concrete Hausdorff nearness structures compatible with the given
topology. For a given Hausdorff topological space X, a compatible
nearness structure £ is obtained such that (X*, £*), the completion
of (X, &), is homeomorphic to the Fomin H-closed extension of X.
The relation of (X*, £*) to the Katétov H-closed extension is noted.

2. Preliminaries. Let X be a set; then °"(X) will denote the
power set of " Y(X) for each natural number n and F%(X) = X.
Let £ be a subset of % X) and & and <# subsets of “Z(X). Let
A and B be subsets of X. Then the following notation is used.
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(1) “o7 is mear” or £ means Ac¢; and “.7 is far” or &7
means & ¢¢&.

(2) AtB means {4, B}e&.

(8) cl.A={xeX: {{z}, A} &}].

(4) Vv ={AUB: Ae &, Be &#}.

(5) &7 corefines <& means that for each Ac . there exists
a Be & such that Bc A.

DEFINITION 2.1. Let X be a set and £ c Z#%X). Then (X, &) is
called a nearness space provided:

(N1) N + ¢ implies &7 €&.

(N2) If o7 e& and for each Be <#Z there exists Ae . with
A cecl.B, then &7 cé&.

(N8) If 7 ¢& and <Z ¢& then AV & ¢¢&.

(N4) ¢e.o7 implies &7 ¢ &.
A nearness space is called a N1-space provided:

(N5) {z}&{y} implies x = y.

Given a nearness space (X, &), the operator cl, is a closure
operator on X. Hence there exists a topoplogy associated with each
nearness space in a natural way. This topology is denoted by #(g).
This topology is R,. (Recall that a topology is R, provided « € cl;{y}
implies y € eclg{x}.) Conversely, given any R, topological space (X, t)
there exists a compatible nearness structure &, given by

g = {7 c P(X): Nelps = ¢} .

To say that a nearness structure & is compatible with a topology
t on a set X means that ¢t = ¢(&). A mear filter on X is a filter
that belongs to &.

DEFINITION 2.2. Let (X, &) be a nearness space.

(1) (X, ¢&)is called topological provided .7 € & implies Nely &7 #¢.

(2) (X, &) is called contigual provided .o ¢ & implies that there
exists a finite &% . and &7 ¢&.

(8) (X,¢&) is called totally bounded provided . c Z(X) and
¥ has the finite intersection property implies &7 €&.

(4) (X, &) is called B-complete if each near ultrafilter converges.

(5) (X, &) is called open totally bounded provided every collec-
tion of ¢(&)-open subsets of X with the finite intersection property
is near.

(6) (X,¢&) is called open B-complete provided every open near
ultrafilter converges.

(7) (X, &) is called countably bounded provided each ¥ <. Z(X)
with the countable intersection property is near.
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(8) (X, ¢&) is called countably totally bounded provided every
countable .o c &?(X) with the finite intersection property is near.

The following results (Carlson [3], [4]) are stated here for the
convenience of the reader.

THEOREM A. Let (X, &) be a nearness space.

(1) The underlying topology is compact if and only if & s
B-complete and totally bounded.

(2) The underlying topology is Lindelof if and only if & is
countably bounded and every mear filter with the countable imter-
section property clusters.

(8) The underlying topology is countably compact if and only
if & is countably totally bounded and the closure of every mnear
filter has the countable intersection property.

(4) If the underlying topology is Hausdorff then it is H-closed
if and only if & is open totally bounded and open B-complete.

DEFINITION 2.3. An extension of a topological space (X, t) is a
dense embedding e: (X, t) — (Y, s) where (Y, s) is a topological space.
It is called a strict extemsion if {clye(4): A X} is a base for the
closed sets in Y.

We will assume that the embeddings e¢: X — Y are injections
and thus not distinguish between A and e(4) for A c X.

A nearness structure & on X is said to be induced by a strict
extension Y provided:

(1) e:X— Y is a strict extension, and

(2) ¢={¥ CcPFX): Ncly & = ¢}.

In a nearness space (X, &), a nonempty collection of subsets of
X is called an X-cluster if it is maximal in & with respect to in-
clusion. The nearness space is called complete if every X-cluster
has a nonempty adherence.

Herrlich’s completion of a nearness space was presented in [7].
A brief description of it appears in [2] which we provide here for
the convenience of the reader. Let (X, &) be a nearness space and let
Y be the set of all X-clusters .& with empty adherence. Set
X*=XUY. For each ACX, define clA ={yeY:Acy}Ucl.A. A
nearness structure £* is defined on X* as follows: <& c&* provided
&7 = {A c X: there exists B= < with Bccld}es (X* &%) is a
complete nearness space with cl..X=X*. Also, for ACY, cl..A=clA.

The following important theorem is due to Herrlich and Bentley

[2].

THEOREM B. For any nearmness space (X, &) the following condi-
tions are equivalent:
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(1) ¢ is a nearness structure induced on X by a strict extension.

(2) The completion (X*, £*) of (X, &) 1s topological.

(8) Ewvery nonempty X-near collection is contained in some
X-cluster.

A nearness space satisfying the above equivalent conditions is
called concrete.

3. Countably compact extensions. The basic problem in this
section is to determine which nearness structures are generated by
countably compact strict extensions.

DEFINITION 3.1. A nearness space (X, &) is said to satisfy condi-
tion CC provided: U,y -7 ¢ & implies there exists a finite set FC N
such that U,.r ¥, ¢&.

THEOREM 3.1. Let (Y, t) be an R, topological space and XY
such that Y 1is a strict extension of X. Set &= {¥CFX):
Nely, . = ¢}, Then Y is countably compact if and only if (X, &)
satisfies condition CC.

Proof. Suppose that 'Y is countably compact. Let .o, c F#(X)
for each me N and suppose & = U{.>:neN}¢s Set S,=
N{clyA: Ae sz} and & ={S,:keN}. Now N{clyS,:ke N}=
Nelys” = ¢.  Therefore L ¢¢, ={ ¥ cF(Y): Nely, ¥ +~ ¢}, the
compatible topological nearness structure for (Y, t). By Theorem A,
since Y is countably compact, &, is countably totally bounded. Hence
there exists a finite subcollection of S, say S;,---,S,,, with
N{S;:1 =4 =n}=¢. Thus N{Neclyd: de o} 1 =17 =< n} =g
Therefore .o U4, U---U.9% ¢£. Hence £ satisfies condition CC.

Now suppose (X, &) satisfies condition CC. It suffices to show
that &, is countably totally bounded. Let & = {S;:7e¢ N} be a
countably collection of subsets of Y. Let 9 = {T.:T.=cl,S}.
Suppose &~ ¢&,, then 9 ¢§&,. Since Y is a strict extension of X
there exists a collection &7 of subsets of X for each i€ N such
that T, = N{cl,4: Ae 7). Now & = U{¥:ie N}e¢g if and only
if Nely” #¢. But 7 ¢¢&, and thus Nely,.” = N{N{cl,4: Ae .7}
1eN} = N{Ty:ke N} =¢. Therefore & = U . ¢¢& and since ¢
satisfies condition CC, there exists finitely many .94, say %%, -+, 4,
such that N7, 94, ¢&. Thus N, cl; .4, = ¢; that is N, T, = ¢ and
consequently N, S; = ¢. Thus &, is countably totally bounded. ¢, is
topological and thus the closure of each near filter has the count-
able intersection property. Hence by Theorem A, (Y, &,) is count-
ably compact.
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The following theorem characterizes the 7T, nearness structures
that are generated by a countably compact striect T, extension.

THEOREM 3.2. Let (X, &) be a T, nearness space. The following
are equivalent:

(1) & 1is a mearness structure induced on X by a countably
compact strict T, extension.

(2) The completion (X*, &*) of (X, &) is topological and count-
ably compact.

(8) (X, &) satisfies condition CC and each &7 €& is contained
wn a X-cluster.

Proof. (1) implies (3). (X, &) satisfies condition CC by Theorem
3.1. That each Acé is contained in a X-cluster follows from
Theorem B. (8) implies (2). By Theorem B, (X*, £*) is topological
and X* is a strict extension of X. By Theorem 3.1, (X* &%) is
countably compact. (2) implies (1). This follows from Theorem B.

4. H-closed extension.

THEOREM 4.1. Let (Y, t) be a Hausdorff topological space with
dense subspace X. Define by &£ = {& CFP(X): Nely, .7 +~ ). Then
the following are equivalent:

(1) (Y,t) is H-closed.

(2) (X, &) is open totally bounded.

Proof. (2) implies (1). Let <& = {0,.acI) be an open cover
of Y such that & = {cl,0,:acI} has no finite subcover. Then
& ={Y — cl;0,: aeI} is a collection of open sets in Y with the
finite intersection property. Now &' ={XN(Y —cl;0,): acl} is a
collection of open sets in X with the finite intersection property
since ¢l X = Y. Since £ is open totalley bounded, %’ e€&. There-
fore &’ cé&,; that is N{cl;(XN(Y—cl;0,): a e I}D{x}, for some xc Y.
There exists a’el such that £{€0,. But zeecl,(XN (Y — cl,0,)).
Therefore O, N(XN(Y — cl;0,)) # ¢; that is O, N (Y — cl;0,) # ¢
which is impossible. Hence <7 must have a finite subcover and
thus (Y, ¢t) is H-closed.

(1) implies (2). Suppose (Y, t) is H-closed. Let & = {0, acI}
be a collection of open sets in X with the finite intersection pro-
perty. Suppose Nely, =¢. Set & ={Y — cl;,0,:acI}. Then .&¥
is an open cover of Y. Since Y is H-closed there exists a, -+, a, eI
such that Y = U{c(Y —cl;0,):1 =4 =n}. Now there exists
re N{0.:1 =1 =mn} with xe X since < has the finite intersection
property. Also there exists ¢, with 1<%, <n, such that
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reel, (Y — cly0,,). Now there exists @, open in Y, such that
QNX = Ou, Then x€@Q and since xe€cl,(Y — cl,0,,) we have that
P=@Qn(Y -cl,0,)#¢ and P is open in Y. Since X =17,
PN X # ¢; that is, XN (QN (Y — cly0.;)) # ¢, and Oy N (Y — ¢l;0,,) ¢
since O,,= XN Q. But this is impossible and thus Nel,& = g.
Hence (X, &) is open totally bounded.

DEFINITION 4.1. Let (X, & be a nearness space. A collection
&7 . P(X) is called micrometric provided the collection of all sub-
sets of X which meet every member of .&7 is a near collection.
(X, & is called Hausdorff if for each micrometric . c¢& then
P ={BcX: & U{B}eg}et.

Theorems C and D stated below are found in Bentley and Her-
rlich [2]. They will be needed in the proof of our next theorem.

THEOREM C. (1) A topological nearness space 1s Hausdorf in
the mearmness space semnse if and only if it s Hausdorff in the
topological space sense.

(2) Every mnearness subspace of a Hausdorff nearness space is
Hausdorff.

(8) The completion of a Hausdor[f nearness space is Hausdorf.

THEOREM D. Let (X, &) be a mnearness space. The following
are equivalent:

(1) € is a mearness structure induced on X by a Hausdorf
extension.

(2) & 18 a nearness structure induced on X by a strict Haus-

dorff extension.
(8) (X, &) is comcrete and Hausdorf.

In Theorem 4.1 we did not require that Y be a strict extension
of X as we did in Theorem 3.1. Theorem D, however indicates
that in the presence of the Hausdorff condition the nearness struec-
ture induced will be concrete.

THEOREM 4.2. Let (X, &) be a Hausdorff nearness space. The

following are equivalent.
(1) £ is a nearness structure induced on X by a strict H-closed

extension.
(2) £ 1s a mearmess structure induced on X by an H-closed

extension.
(8) The completion X* of X is H-closed and topological.
(4) & is open totally bounded, concrete and Hausdorff.

Proof. (1) implies (2) is clear and (3) implies (1) follows from
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Theorem B. (2) implies (3). By Theorem 4.1, £ must be open total-
ly bounded. Now the H-closed extension is Hausdorff and thus by
Theorem D, & is both concrete and Hausdorff. By Theorems B and
C, X* is Hausdorff and topological, and by Theorem 4.1 X* is
H-closed. (3) implies (4). & is open totally bounded by Theorem 4.1,
and concrete by Theorem B, and Hausdorff by Theorem C. (4)
implies (3). By Theorems B and C, X* is topological and Hausdorff
by Theorem 4.1, X* is H-closed.

5. Katétov and Fomin H-closed extensions. Let (Y, %) be a
topological space and cl,X = Y. #(X) will denote the subspace topo-
logy on X. For each yeY, set Zy={0NX:yeOect}. Then
{7y:ye Y} is called the filter trace of Y on X.

Let t(strict) be the topology on Y generated by the base
{0*: 0et(X)} where O* ={yec Y:0e”y}. Let t(simple) be the
topology on Y generated by the base {OU{y}: Oe ~y, yc Y}. Then
t(strict) and t(simple) are such that Y with either of these topo-
logies is an extension of (X, t(X)), called a strict extension, or
simple extension of X, respectively. Note that

t(strict) < ¢t < t(simple) .

Moreover; a topology s on Y with the same filter trace as ¢, forms
an extension of (X, t¢(X)) if and only if it satisfies the above in-
equality. (See Banaschewski [1]).

Let (X, t) be a Hausdorff topological space. Let M be the col-
lection of all free open ultrafilters on X. Set Y= X U M. Let X
be the set Y with the topology generated by the base {U: Uect}U
U zZYUU:. #eM and Ue._#}. Then £X is called the Katétov
H-closed extension of (X, t),[9]. Let 6X be the set Y with the
topology generated by the base {U*:Uect} where U* = UU
{(# eM: Ue _#}. Then oX is called the Fomin H-closed extemsion
of (X, ¢t), [6].

Note that £X and ¢X have the same underlying set and note
that £X is a simple extension and ¢X is a strict extension. In the
notation of Banaschewski, the underlying set Y in both cases cor-
responds to the collection of all open ultrafilters on X; those that
converge correspond to the points of X, those that do not are the
points in M.

THEOREM 5.1. Let (X, t) be a Hausdorff topological space. Set
&G ={ ¥ PX): N #¢ or there exists a free open ultrafilter
A on X such that

ANO=+#¢ for each Ae. . and Oe _Z}.
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Then:

(1) &, is the nearness structure induced on X by the Katetov
H-closed extension kX.

(2) &, is the mearmness structure induced on X by the Fomin
H-closed extension oX.

(8) &, 18 a compatible mearmess structure on (X, t) that is
concrete, Hausdorff and open totally bounded.

(4) (X* &), the completion of (X, &,), is homeomorphic to the
Fomin H-closed extemsion of (X, t).

(5) (X,t) is homeomorphic to the Katétov H-closed extemsion
of (X, t), where t' is the simple extension topology corresponding to
the extension topology t(&r).

Proof. (1) Let &, denote the nearness structure generated by
the Katétov H-closed extension. Let.o” €&,. Theneither Nely. o7 %4
and &7 €é&,y, or Ncly” = ¢ and there exists a free open ultrafilter
# on X such that AN O =#¢ for each Oc_# and Ac.®”. Then
# ecl,yA for each Ae.» and thus Necl,yA4 # ¢ and therefore
M € SKX'

Now suppose .7 €&,x. Then Nel, ;.7 D{p}. If pe X then pe
Nely.” and o7 eé,. If pexX — X then p = .+ for some free
open ultrafilter .# on X. Now _#Z enecl,.% implies that
A cel. A for each Ae.o7; that is ({#Z}UO)N A+#¢ for each
Oc. . Thus ONA =+ ¢ foreachOe.# and Aec .. Hence .7 €&,

Proof of (2). Let ¢X denote the Fomin H-closed extension of
(X, t) and &,; the nearness structure induced by oX. Let &7 €é,,.
Then Nel,x D{p}. If peX then Nely. #¢ and ¥ eg,. If
pcoX — X then p = _#, a free open ultrafilter on X. Now .# ¢
cl, A foreach Ae.o/. LetOec_#; then O* =0U{ + c€aY:0e_ 717}
is an open set in ¢X. Now O* is an open set containing .~ and
thus O*N .7 # ¢, and consequently ON A = ¢ for each Ae.%”. Since
this holds for each Oe_# it follows that .o~ €¢&,.

Let .7 ¢&,. Either Necly.o” == ¢ and .97 €&, or there exists a
free open ultrafilter .# such that ON A = ¢ for each Oec._#, and
Ae.o7. Let O* be a basic open set containing .#. Then Oe¢ #
and O* N A # ¢ for each Ae.o. Thus .# € Nel,;x. and ¥ €&,

Proof of (3). This follows by either (1) or (2) and Theorem 4.1.

Proof of (4). By Bentley and Herrlich [2], any strict extension
Y of X that generates the nearness structure &, must be equivalent
to the strict extension (X*, £*). Now the Fomin H-closed extension
is strict and it generates the nearness structure &, on X. Therefore
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the Fomin H-closed extension ¢X is homeomorphic to (X*, &).

Proof of (5). The Katétov H-closed extension can be obtained
by taking oX, the Fomin H-closed extension, and replacing the
topology on the Fomin extension with the corresponding simple ex-
tension topology, [10]. The result holds then by (4).

COROLLARY 5.2. Let (X, t) be a Hausdorff topological space. If
&, has only finitely many X-clusters with empty adherence then:

(1) kX=0X.

(2) X has a finite cover of almost H-closed subspaces.

(38) X s locally H-closed.

Proof. In Porter and Votaw [10], (1) and (2) are shown to be
equivalent and imply (38). The hypothesis and Theorem 5.1 imply
that ¢ X — X is finite. Flachsmeyer [5] shows that this implies (1).

THEOREM 5.3. Let (X, t) be a Hausdorff topological space. Then
there exists a one-to-ome correspondence between the collection of all
strict H-closed extensions of X, up to the obvious equivalence, and
the collection of all compatible mearness structures on X that arve
Hausdorff, concrete and open totally bounded.

Proof. Let % denote the collection of all strict H-closed ex-
tensions of X, with equivalent extensions identified. Let &=
{fc.g?(X): t = t(&), & is Hausdorff, concrete, and open totally bound-
ed}. Define a mapping T:& — & by T(Y) =& ={¥wvcFX):
Nel,.%” = ¢}. Since Y is an extension of X it follows that T(Y) = &,
is compatible with (X, ¢). Since Y is H-closed it follows by Theorem
4.1 that 5, ¢.$”. To see that T is one-to-one, let Y and Z belong
to & and &, = £,. Since Y and Z are strict extensions of (X, &)=
(X, &,) then Y and Z are both equivalent to (X*, &) and thus are
equivalent. (See Bentley and Herrlich [2].) Now 7 is onto since
£e.%” implies (X* &*) belongs to & by Theorem 4.2 and thus
T(X*) = &.
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