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Ή-CLOSED AND COUNTABLY COMPACT EXTENSIONS

JOHN W. CARLSON

Nearness structures that are generated by countably
compact Ti strict extensions or H-closed extensions are
characterized. For a Hausdorff topological space a compati-
ble nearness structure is given for which the completion is
the Fomin iί-closed extension. A collection of compatible
nearness structures for a given Hausdorff space is isolated;
and it is shown that there exists a one-to-one correspondence
between this collection and the collection of all strict
H-closed extensions of the given space, up to the obvious
equivalence.

This paper is concerned with the study of ίΓ-closed and count-
ably compact extensions using nearness structures. A nearness
structure ξ on a set X is said to be generated by an extension Y
if ξ is precisely those collections j y of subsets of X whose closures,
when taken in Y, meet. Bentley and Herrlich [2], have studied
this problem in general and have characterized those nearness struc-
tures that are generated by Tι extensions that are compact, Haus-
dorff, regular, Lindelδf, paracompact, or realcompact. This paper
characterizes those nearness structures that are generated by a
strict countably compact Tx extension or an ίf-closed extension.

Porter and Votaw [9], show that in general a given Hausdorff
topological space X may have |^ 3 (X) | ίf-closed extensions and that
it is impossible to generate all of them using proximities, in the
same way one can generate all compact Hausdorff extensions of a
completely regular space using proximities. Bently and Herrlich
[2], have shown that one can generate all 2\ strict extensions of a
space X by considering all compatible concrete nearness structures
on X. In this paper it is shown that all strict iϊ-closed extensions
of a given Hausdorff space, up to the usual equivalence, are in
one-to-one correspondence with the collection of all open S-complete
concrete Hausdorff nearness structures compatible with the given
topology. For a given Hausdorff topological space X, a compatible
nearness structure ζ is obtained such that (X*9 ξ*), the completion
of (X, ξ), is homeomorphic to the Fomin iϊ-closed extension of X.
The relation of (X*, ξ*) to the Katetov ίf-closed extension is noted.

2* Preliminaries* Let X be a set; then &*n(X) will denote the
power set of &n~\X) for each natural number n and &\X) — X.
Let ξ be a subset of ^\X) and ^f and & subsets of &*(X). Let
A and B be subsets of X. Then the following notation is used.
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(1) "<$/ is near" or ζJtf means Aeζ; and " j ^ is far7' or
means j ^ ί f .

( 2 ) AξB means {A, JS} 6 ξ.
(3) cl *A = {# 6 X: {{#}, A} e f}.
(4) j ^ V ^ = {AUΰ:4ej/,ΰ6^} .
(5) j ^ corefines & means that for each A e sf there exists

such that JBCA.

DEFINITION 2.1. Let X be a set and f c ^ 2 ( I ) . Then (X, f) is
called a nearness space provided:

(Nl) r\J^^Φ implies J*f e ζ.
(N2) If j ^ e f and for each Be& there exists A e j / with

A c cl̂ .5, then & e ξ.
(N3) If j y g f and & £ ξ then A v ^ ί ? .
(N4) f i e j / implies J ^ ί f .

A nearness space is called a Nl-space provided:
(N5) {x}ξ{y} implies x = y.

Given a nearness space (X, ξ), the operator cle is a closure
operator on X. Hence there exists a topoplogy associated with each
nearness space in a natural way. This topology is denoted by t(ξ).
This topology is Ro. (Recall that a topology is Ro provided x e c\x{y}
implies y e clx{#}.) Conversely, given any Ro topological space (X, t)
there exists a compatible nearness structure ξ0 given by

f0 = {̂ f c ^ ( X ) : ΓΊ c l x j ^ Φ φ) .

To say that a nearness structure $ is compatible with a topology
U n a set X means that t = t(f). A near jftίίβr on X is a filter
that belongs to ζ.

DEFINITION 2.2. Let (X, ζ) be a nearness space.
(1) (X, ζ) is called topological provided J^ e ξ implies Π c l x j ^ ^ ^ .
(2) (X, ξ) is called contigual provided Jzf £ ξ implies that there

exists a finite ^ c j / and & £ ξ.
(3) (X, ζ) is called totally bounded provided sf c ^ ( X ) and

Jzf has the finite intersection property implies Jzfeξ.
(4) (X, ξ) is called B-complete if each near ultrafilter converges.
(5) (X, £) is called open totally bounded provided every collec-

tion of ί(f)-open subsets of X with the finite intersection property
is near.

(6) (X, ξ) is called open B-complete provided every open near
ultrafilter converges.

(7) (X, ζ) is called countably bounded provided each
with the countable intersection property is near.
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(8) (X, ξ) is called countably totally bounded provided every
countable j y c &*(X) with the finite intersection property is near.

The following results (Carlson [3], [4]) are stated here for the
convenience of the reader.

THEOREM A. Let (X, ξ) be a nearness space.
( 1 ) The underlying topology is compact if and only if ξ is

B-complete and totally bounded.
(2) The underlying topology is Lindelof if and only if ξ is

countably bounded and every near filter with the countable inter-
section property clusters.

(3) The underlying topology is countably compact if and only
if ξ is countably totally bounded and the closure of every near
filter has the countable intersection property.

( 4 ) If the underlying topology is Hausdorff then it is H-closed
if and only if ξ is open totally bounded and open B-complete.

DEFINITION 2.3. An extension of a topological space (X, t) is a
dense embedding e: (X, t) -> (Y, s) where (Y, s) is a topological space.
It is called a strict extension if {clγe(A): A c l ) is a base for the
closed sets in Y.

We will assume that the embeddings e:X-± Y are injections
and thus not distinguish between A and e(A) for A c X.

A nearness structure ξ on X is said to be induced by a strict
extension Y provided:

(1) e: X—> Y is a strict extension, and
(2) f = { J ^ c ^ ( X ) : ΠclyJ^Φφ}.
In a nearness space (X, ζ), a nonempty collection of subsets of

X is called an X-cluster if it is maximal in ξ with respect to in-
clusion. The nearness space is called complete if every X-cluster
has a nonempty adherence.

Herrlich's completion of a nearness space was presented in [7].
A brief description of it appears in [2] which we provide here for
the convenience of the reader. Let (X, ξ) be a nearness space and let
Y be the set of all X-clusters Jϊf with empty adherence. Set
X* = X U Y. For each 4 c l , define cLi = {y e Y: A e y) U cleA. A
nearness structure ζ* is defined on X* as follows: & e ξ* provided
j / = { 4 c l : there exists B = & with £cclA}ef. (X*,ξ*) is a
complete nearness space with clf*X=X*. Also, for 4 c 7 , clξ*A=dA.

The following important theorem is due to Herrlich and Bentley

[2].

THEOREM B. For any nearness space (X, ξ) the following condi-
tions are equivalent:
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(1) ξ is a nearness structure induced on X by a strict extension.
(2) The completion (X*, £*) of (X, ζ) is topological.
(3) Every nonempty X-near collection is contained in some

X-cluster.

A nearness space satisfying the above equivalent conditions is
called concrete.

3* Countably compact extensions* The basic problem in this
section is to determine which nearness structures are generated by
countably compact strict extensions.

DEFINITION 3.1. A nearness space {X, ξ) is said to satisfy condi-
tion CC provided: \JkeN <J^k&ξ implies there exists a finite set FdN
such that UfceF J^i ί ί

THEOREM 3.1. Let (Y, t) be an Ro topological space and XaY
such that Y is a strict extension of X. Set ξ = { J ^ c ^ ( X ) :
Π cl F J^ Φ φ). Then Y is countably compact if and only if (X, ξ)
satisfies condition CC.

Proof. Suppose that Y is countably compact. Let
for each neN and suppose Jϊf = U {JK neN} gξ. Set Sk =
Π {clFA: A 6 j*;} and Sf = {Sk: keN}. Now n {clFSfc: keN} =
Π clFStf = φ. Therefore S? ί ξt = {Jtf c ^ ( Y): Π c l F j ^ Φ φ}, the
compatible topological nearness structure for (Y, t). By Theorem A,
since Y is countably compact, ξt is countably totally bounded. Hence
there exists a finite subcollection of S, say S/Cι, , Skn, with
Π {Sk.: 1 ^ i ^ w} = ί5. Thus fl {ΓΊ clFA: A e J^k.}: 1 ^ i ^ n} = φ.
Therefore j#Z1 U JK2 U U S/kn g f. Hence f satisfies condition CC.

Now suppose (X, ς) satisfies condition CC. It suffices to show
that ξt is countably totally bounded. Let Sf — {S^. i e N} be a
countably collection of subsets of Y. Let J7~ = {T^: T4 — clFSJ.
Suppose Sf £ ξt, then ^~ £ ξt. Since Y is a strict extension of X
there exists a collection ^ of subsets of X for each i e N such
that T* = Π {elyA: A e J^J . Now J ^ = U {J^J: ieN}eξ if and only
if n c l F j ^ ^ ^ . But ^~&ζt and thus Π c l F J ^ = Π {Π {clFA: Ae j ^ } :
ieiV} = ΠtΓibiA eiSΓ} = φ. Therefore J / = U J ^ ί f and since ξ
satisfies condition CC, there exists finitely many J*J/β, say J^ χ , , J^ίΛ,
such that Γ\i=i ^Kt i ί Thus fl?=i clFJ^. = Φ; that is Π?=i ϊ7* = Φ and
consequently Π?=i St = φ. Thus f β is countably totally bounded. ζt is
topological and thus the closure of each near filter has the count-
able intersection property. Hence by Theorem A, (Y, ξt) is count-
ably compact.
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The following theorem characterizes the 2\ nearness structures
that are generated by a countably compact strict 2\ extension.

THEOREM 3.2. Let (X, ξ) be a 2\ nearness space. The following
are equivalent:

(1) ξ is a nearness structure induced on X by a countably
compact strict Tx extension.

(2) The completion (X*, ξ*) of (X, ξ) is topological and count-
ably compact.

(3) (X, ξ) satisfies condition CC and each Szf eξ is contained
in a X-cluster.

Proof. (1) implies (3). (X, ξ) satisfies condition CC by Theorem
3.1. That each Aeξ is contained in a X-cluster follows from
Theorem B. (3) implies (2). By Theorem B, (X*, £*) is topological
and X* is a strict extension of X. By Theorem 3.1, (X*, ξ*) is
countably compact. (2) implies (1). This follows from Theorem B.

4* ίf-closed extension*

THEOREM 4.1. Let (Y,t) be a Hausdorff topological space with
dense subspace X. Define ξ by ξ = { J ^ c ^ ( X ) : Πcl F j ^ Φ φ}. Then
the following are equivalent:

(1) (Γ, t) is H-closed.
( 2 ) (X, ζ) is open totally bounded.

Proof. (2) implies (1). Let ^ = {Oα: α e /) be an open cover
of Y such that & = {clF0α: a el} has no finite subcover. Then
£f — {Y — clF0Λ: a el} is a collection of open sets in Y with the
finite intersection property. Now £ff = {XΓ\(Y — clγθa):ael} is a
collection of open sets in X with the finite intersection property
since clFX = Y. Since ζ is open totalley bounded, Sf' e ξ. There-
fore SS'eζt; that is n{clF(Xn(Γ-clF0α)): ael}z){x}, for some x e Y.
There exists a'el such that teθa,. But xeclF(Xn ( Y - clF0α,)).
Therefore Oa, n (X ΓΊ (Y - clr0β,)) Φ Φ; that is Oa. n (Y - clT0a,) Φ φ
which is impossible. Hence & must have a finite subcover and
thus (Y, t) is jff-closed.

(1) implies (2). Suppose (Γ, ί) is iϊ-closed. Let έ? = {Oa:ael}
be a collection of open sets in X with the finite intersection pro-
perty. Suppose Π c l F ^ = φ. Set S? = {Y - clΓ0α: a el}. Then Sf
is an open cover of Y. Since Y is iί-closed there exists a19 , an e I
such that Y = U {&Y(Y — dY0a.): 1 <^i <* n}. Now there exists
x 6 n {Oα.: 1 ̂  i ^ }̂ with x e X since ^ has the finite intersection
property. Also there exists i0 with I ^io^n, such that
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xeolγ(Y — c\FOaio). Now there exists Q, open in Y, such that
QC)X = Oaio. Then x e Q and since x e clF( Y — clγ0aίo) we have that
P = Q Π (Y - cly0αio) ^ 0 and P is open in Y. Since X = Y,
P Π X ^ φ; that is, Xn (QΠ (Γ - clFOαio)) =* 0, and Oαίon (Γ - cl F O α ί o )^
since OaiQ = X Π Q. But this is impossible and thus n c l F ^ ^ φ.
Hence (X, ζ) is open totally bounded.

DEFINITION 4.1. Let (X, ζ) be a nearness space. A collection
j ^ c ^ ( X ) is called micrometric provided the collection of all sub-
sets of X which meet every member of ό^ is a near collection.
(X, ξ) is called Hausdorff if for each micrometric Szf e £ then
& - {.β cX: j * - U {5} 6 £} 6 ς.

Theorems C and D stated below are found in Bentley and Her-
rlich [2]. They will be needed in the proof of our next theorem.

THEOREM C. (1) A topological nearness space is Hausdorff in
the nearness space sense if and only if it is Hausdorff in the
topological space sense.

(2) Every nearness subspace of a Hausdorff nearness space is
Hausdorff.

( 3 ) The completion of a Hausdorff nearness space is Hausdorff.

THEOREM D. Let (X, ξ) be a nearness space. The following
are equivalent:

(1) ξ is a nearness structure induced on X by a Hausdorff
extension.

(2) ξ is a nearness structure induced on X by a strict Haus-
dorff extension.

(3 ) (X, ξ) is concrete and Hausdorff.

In Theorem 4.1 we did not require that Y be a strict extension
of X as we did in Theorem 3.1. Theorem D, however indicates
that in the presence of the Hausdorff condition the nearness struc-
ture induced will be concrete.

THEOREM 4.2. Let (X, ξ) be a Hausdorff nearness space. The
following are equivalent.

(1) ξ is a nearness structure induced on X by a strict H-closed
extension.

(2) ξ is a nearness structure induced on X by an H-closed
extension.

(3) The completion X* of X is H-closed and topological.
(4) ξ is open totally bounded, concrete and Hausdorff.

Proof. (1) implies (2) is clear and (3) implies (1) follows from



iί-CLOSED AND COUNTABLY COMPACT EXTENSION 323

Theorem B. (2) implies (3). By Theorem 4.1, ξ must be open total-
ly bounded. Now the if-closed extension is Hausdorff and thus by
Theorem D, ξ is both concrete and Hausdorff. By Theorems B and
C, X* is Hausdorff and topological, and by Theorem 4.1 X* is
if-closed. (3) implies (4). ξ is open totally bounded by Theorem 4.1,
and concrete by Theorem B, and Hausdorff by Theorem C. (4)
implies (3). By Theorems B and C, X* is topological and Hausdorff
by Theorem 4.1, X* is ϋ-closed.

5* Katetov and Fomin iί-closed extensions* Let (Y, t) be a
topological space and clFX = Y. t(X) will denote the subspace topo-
logy on X. For each yeY, set έ?y = {0 Γi XiyeOet). Then
{^y: yeY} is called the filter trace of Y on X.

Let ί(strict) be the topology on Y generated by the base
{O*:Oeί(X)} where O* = {yeY:Oe<S?y}. Let ί(simple) be the
topology on Y generated by the base {O[j{y}:Oe ^y, yeY}. Then
t(strict) and t(simple) are such that Y with either of these topo-
logies is an extension of (X, t(X)), called a strict extension, or
simple extension of X, respectively. Note that

t(strict) <i t <; t(simple) .

Moreover; a topology s on Γ with the same filter trace as t, forms
an extension of (X, t{X)) if and only if it satisfies the above in-
equality. (See Banaschewski [1]).

Let (X, t) be a Hausdorff topological space. Let M be the col-
lection of all free open ultrafilters on X. Set Y= X\J M. Let tcX
be the set Y with the topology generated by the base {U: Uet}Ό
{{^}UU:^eM and Ue^£}. Then tcX is called the Katetov
H-closed extension of (X, t), [9]. Let σX be the set Y with the
topology generated by the base {U*:Uet} where U* = UU
{^y£ eM\ Ue^/£}. Then σX is called the Fomin H-closed extension
of (X, t), [6].

Note that tcX. and σX have the same underlying set and note
that icX is a simple extension and σX is a strict extension. In the
notation of Banaschewski, the underlying set Y in both cases cor-
responds to the collection of all open ultrafilters on X; those that
converge correspond to the points of X, those that do not are the
points in M.

THEOREM 5.1. Let (X, t) be a Hausdorff topological space. Set
ξh = {J^/c ̂ {X)\ ΐλSzfΦφ or there exists a free open ultra filter

on X such that

A Π O Φ φ for each A e J%? and 0 e
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Then:
( 1 ) ξh is the nearness structure induced on X by the Katetov

H-closed extension tcX.
(2) ξh is the nearness structure induced on X by the Fomin

H-closed extension σX.
(3) ξh is a compatible nearness structure on {X, t) that is

concrete, Hausdorff and open totally bounded.
(4) (X*, ζ*), the completion of (X, ξh), is homeomorphic to the

Fomin H-closed extension of {X, t).
(5) (X, tr) is homeomorphic to the Katetov H-closed extension

of (X, t), where tr is the simple extension topology corresponding to
the extension topology t(ζΐ).

Proof. (1) Let ξκX denote the nearness structure generated by
the Katetov U-closed extension. Let Jzf e ξh. Then either Π clxSzfφφ
and S^ e ξκX, or Π clx*$/ — φ and there exists a free open ultrafilter

on X such that A Π 0 Φ φ for each O e ^ and A e s$?. Then
e clκXA for each A e J^ and thus Π c\κXA Φ φ and therefore
e ζκX.
Now suppose J^eξκX. Then Π c L x j ^ z> {p}. If p e X t h e n pe

n c l x j y and j^eξh. If peicX— X then p = ,^£ for some free
open ultrafilter ^/£ on X. Now ^/ί e Π cϊκXj^ implies that
^edκXA for each Ae,W; that is ({^T}Dθ)nAΦφ for each
0 6 ^t. Thus O n l ^ ^ f o r each 0 e ^ ^ and A e jy\ Hence J ^ G ξh.

Proof of (2). Let σX denote the Fomin ίί-closed extension of
(X, t) and ζσX the nearness structure induced by σX. Let Szf e ζσX.
Then Γ\clσXJ^iD{p}. If p e X then Π c l ^ j ^ ^ ^ and j^eξh. If
p 6 6rX — X then p = -^> a free open ultrafilter on X. Now ^*f e
clσXA for each A e J ^ . Let 0 e ^ T then 0* - 0 U { ^ e(77:0e /̂̂ }
is an open set in σX. Now 0* is an open set containing ^f and
thus 0* Π J ^ ^ ^? and consequently 0 n A ^ Φ for each A e jy\ Since
this holds for each 0 e ^f it follows that j / 6 f A .

Let JXfeξh Either n c l z j ^ ^ ^ and j / e f ^ or there exists a
free open ultrafilter ^ f such that On Aφφ for each Oe^€% and
A 6 j y . Let 0* be a basic open set containing ^ C . Then 0 e ^ "
and 0* f] Aφ φ for each A e JV. Thus ^ ^ 6 Π cUx J ^ and j y e ξσX.

Proof of (3). This follows by either (1) or (2) and Theorem 4.1.

Proof of (4). By Bentley and Herrlich [2], any strict extension
Y of X that generates the nearness structure ξ, must be equivalent
to the strict extension (X*, ξ*). Now the Fomin iί-closed extension
is strict and it generates the nearness structure ξh on X. Therefore
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the Fomin iϊ-closed extension σX is homeomorphic to (X*, £?).

Proof of (5). The Katetov iϊ-closed extension can be obtained
by taking σX, the Fomin iϊ-elosed extension, and replacing the
topology on the Fomin extension with the corresponding simple ex-
tension topology, [10]. The result holds then by (4).

COROLLARY 5.2. Let (X,t) be a Hausdorff topological space. If
ξh has only finitely many X-clusters with empty adherence then:

(1) /cX = σX.
( 2 ) X has a finite cover of almost H-closed subspaces.

( 3 ) X is locally H-closed.

Proof. In Porter and Votaw [10], (1) and (2) are shown to be
equivalent and imply (3). The hypothesis and Theorem 5.1 imply
that σX — X is finite. Flachsmeyer [5] shows that this implies (1).

THEOREM 5.3. Let (X, t) be a Hausdorff topological space. Then
there exists a one-to-one correspondence between the collection of all
strict H-closed extensions of X, up to the obvious equivalence, and
the collection of all compatible nearness structures on X that are
Hausdorff, concrete and open totally bounded.

Proof. Let g7 denote the collection of all strict iϊ-closed ex-
tensions of X, with equivalent extensions identified. Let S^ =
{ξ(Z^\X): t = ί(£), ξ is Hausdorff, concrete, and open totally bound-
ed}. Define a mapping Γ: gf-> ̂  by T(Y) = ζγ = { j^cz^(X):
Π c l Γ j ^ Φ φ). Since Y is an extension of X it follows that T(Y) = ξγ

is compatible with (X, t). Since Y is iϊ-closed it follows by Theorem
4.1 that ξγ 6 Sf. To see that T is one-to-one, let Y and Z belong
to & and ζγ = ξz. Since Y and Z are strict extensions of (X, ξγ) =
(X, ξz) then Y and Z are both equivalent to (X*, ξγ) and thus are
equivalent. (See Bentley and Herrlich [2].) Now T is onto since
ξeSf implies (X*, £*) belongs to gf by Theorem 4.2 and thus
T(X*) - ξ.
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