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CONGRUENT SECTIONS OF A CONVEX BODY

G. R. BURTON

It is shown that if all the 3-dimensional sections of a
convex body K, of dimension at least 4, through a fixed
inner point are congruent, then K is a euclidean ball. A
dual result concerning projections is also proved.

1. Introduction. W. Siiss [8] showed that if all the plane
sections of a 3-dimensional convex body passing through a fixed inner
point are congruent, then the body is a euclidean ball. P. Mani [5]
generalized this result to the case of congruent 2n-dimensional sec-
tions of a (2n + 1)-dimensional convex body. Both of these results
are deduced immediately from topological proofs that a nonspherical
2n-dimensional body cannot be completely turned in dimension 2n +1,
and the assumption that the sections fit together to form a convex body
is only used to prove continuity. However, every centrally symmetric
3-dimensional body can be completely turned in 4-dimensional euclidean
space E*, so in this case a proof using properties of convex bodies
is required; the present paper provides one. Our main results are:

THEOREM 1. Let K be a convex body of dimension at least 4,
let p be an immer point of K, and suppose that all 3-dimensional
sections of K passing through p are congruent. Then K is a
euclidean ball with center p.

THEOREM 2. Let K be a convex body of dimension at least 4,
and suppose all the 3-dimensional orthogonal projections of K are
congruent. Then K is a euclidean ball.

A result which follows directly from the work of Mani is the
following:

THEOREM 3. Letn =1, let K be a conver body of dimension at
least 2n + 1 and let p be an inner point of K. Suppose all the 2n-
dimensional sections of K passing through p are affinely equivalent.
Then K is an ellipsoid.

2. Complete turnings of 3-dimensional bodies. When 4 is a
d-dimensional convex body, a field of bodies congruent to A is a
continuous function A(u) defined for u in the unit sphere S?¢ where
A(u) is a congruent copy of A lying in a hyperplane of E¢"* perpendi-
cular to u; here A(u) is meant to be continuous in the Hausdorff
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metric. If additionally A(w) = A(—u) for each u, we say A(u) is a
complete turning of A in K¢, Clearly if all the d-dimensional
sections of a (d + 1)-dimensional convex body through a fixed inner
point are congruent, they give rise to a complete turning of some
d-dimensional body in E*". We make use of the methods of Mani
[5] and H. Hadwiger [4] to determine which 3-dimensional convex
bodies can be completely turned in E‘*. When v is a fixed unit
vector in E* and for u=(t,, t,, t,, t,) € S® we define p,(u)=(—1t,, t,,—t,, t,),
pz(u) = (tsy _‘tu "‘tn tz)y ps(u) = ("‘tu —ts, tz; tl)’ then let wu be the
orthogonal transformation such that ¥,(v) = u and 7, (p,)) = p.(u)
for 4 =1, 2,8. Notice that ¥_, = —7,.

LEMMA 2.1. Let A be a 3-dimensional convex body whose sym-
metry group s finite, and suppose A can be completely turned in
E*. Then A is centrally symmetric.

Proof. Let A(u) be a complete turning of 4 in E*. We may
assume that each A(u) has its centroid at the origin o, and that
A = A(v) for some unit vector v. Let ¥, be defined as above. Since
A(u) is a field of bodies congruent to A, the proof of Proposition 2
in [5] shows the existence of orthogonal transformations @, depending
continuously on u with @,(4) = A(w). The restriction 02.0,, is a
continuously varying symmetry of A, and by connectedness it must
be a constant 6.

The map 7;'®, preserves the linear span of A4, so consider
r;'o,(v) for a fixed veA. The mapping u+— 7,;'@0,(v) maps S°
continuously into a copy of E*, so by the Borsuk-Ulam theorem (see
[71, p. 266) it maps some pair of antipodal points into coincidence.
Thus for some u we have

oo, v = ¥.'0,0)
and since ¥_, = —¥, this yields
—0_,(v) = 0,(v)
and so —v = 0-.0,(v) = O(v). It follows that @ is a central reflec-

tion, and A is centrally symmetric.

LEMMA 2.2. Let A be a 3-dimensional convexr body whose sym-
metry group s infinite, and suppose A can be completely turned
wn E*. Then A is centrally symmetric.

Proof. Let A(u) be a complete turning of A. We may assume
that each A(u) has its centroid at the origin, and that 4 = A(v)
where v is a unit vector. Let ¥, be the map defined above. Since
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A hasg an infinite symmetry group, it has an axis of revolution; let
such an axis be parallel to the unit vector w.

Suppose that A is not centrally symmetric, so that A4 has only
one axis of revolution, and for some A > 0 the two sections

{(xed:ix -w= +\}

are dises of different radii. Any symmetry of 4 maps the axis onto
itself, and maps aw onto Zw also.

It follows that for each ueS® there is a unit vector w(w) in
the linear span of A(u) such that @(w) = w(u) for every orthogonal
transformation @ with @(4) = A(u). Hence w(u) is a continuous func-
tion of # and w(—u) = w(u). The mapping u+— ¥, (w()) is a con-
tinuous map of S® into a copy of K%, so by the Borsuk-Ulam theorem,
for some u we have

Uo(ww) = ¥ow(—w) = =¥ (w)

so that w(u) = —w(u) which is impossible. We conclude that A is
centrally symmetric.

REMARKS. Lemmas 2.1 and 2.2 show that any 8-dimensional
convex body which can be completely turned in E* is centrally
symmetric. Conversely, the map ¥, allows every 8-dimensional
centrally symmetric convex body to be completely turned in E*.

3. Congruent central sections of a convex body. Throughout
this section K will be a fixed 4-dimensional convex body in E* having
the origin as center of symmetry, and such that all the 3-dimensional
central sections of K are congruent. We assume K is not a euclidean
ball, and seek a contradiction. For nonzero u and v the hyperplane
{x € E*: x-u = 0} is denoted H(u), the orthogonal projection on H(u)
is denoted w, and @, , is some orthogonal transformation which maps
H(u) N K onto H(v) N K; clearly the choice of @, , may not be unique.

LEMMA 3.1. LetveS’. Then the section Hw) N K is not a body
of revolution.

Proof. Suppose the lemma is false. Then since H(w) N K is not
a euclidean ball, it has just one axis of rotation I. Consider a plane
A with lcA4c H(v). For any u* € X = S*N 4*, there is a neighborhood
of u* in X in which @,, can be chosen as a continuous function of
u. Let X, be a compact simple arc of X containing v in its interior.
By compactness X, can be dissected into a finite collection of interior-
disjoint arcs, on each of which @, , is chosen continuously; if this
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gives rise to two choices @, , and @, , of @,, at a common end u of
two such ares, then @, @, preserves H(@w)N K, so by composing
@, , with a suitable orthogonal transformation we can suppose
@, ,=0,, Hence we can choose @, , continuously for ue X,.

We claim @, ,(4) contains | for every uec X,. Suppose this is
false, and let x ¢l N bdK. Then as u varies on X,, a nontrivial arc
on a sphere is deseribed by @, .(x), so Hw)NbdK contains a maximal
spherical cap A with pole x and at constant distance from o. Let
y and z be the points of 4 on the perimeter of A. Then for each
uc X,, the points @,,y) and @,,z) lie within ¢/A and ||2,,,(y) —
0,2 =\ly—2=z, so l,?,,(y) and @, ,(z) are coplanar. This con-
tradiction shows that @, ,(4) contains | for each ue X,.

By composing @, , with a suitable continuously varying orthogonal
transformation that acts as a symmetry on H(v) N K we can suppose
D, ,(A)=4for each ue X, and @,, is the identity map, so @, ,(u)=v.
Since the symmetry group of 4N K is finite, @,,, is the identity
for all ue X,. Thus I is the axis of H(u)N K for all ue X, and
hence (by letting X, tend to X) for all ue X. Then for any sel' N
bdK, the length ||s|| is equal to the radius of the central section of
H(@) N K perpendicular to [. It follows that [* N K is a euclidean
ball and so K is a euclidean ball contrary to hypothesis. This proves
the lemma.

REMARKS. From Lemma 3.1 it follows that each H(u) N K has
only a finite symmetry group. It follows from the proof of Proposi-
tion 2 in [5] that for fixed ve S® we can choose @, , as a continuous
function of ueS:. We can further suppose @, , is the identity so
@, . (u) =v. When u and v are not unit vectors, we define @,, =
@, ., where u' = ||u||™'u, v = ||v||""v.

LEemMMA 8.2. K 1is smooth.

Proof. Let K* be the polar reciprocal of K relative to the
origin. Then @, ,x,K*) = n,K* for each u,veS’. To prove K is
smooth, it will suffice to show K* is strictly convex. In the ensuing
argument, faces are meant to be exposed faces.

Suppose first that K* has a 2-face F, and let F be the face of
K* in the direction of we S®. Fix a unit vector v perpendicular to
w and the affine hull aff F. Then x,F is a 2-face of 7w, K* for every
u perpendicular to w and close to v, and by continuity @, (7, F) = 7, F.
However, if u is chosen perpendicular to w but not perpendicular
to aff F, then =, F has smaller area than x,F. This contradiction
shows that K* has no 2-faces.

Next suppose that K* has 38-faces, and consider any 3-face @G,
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having an outer unit normal m say at its centroid. If u is any unit
vector perpendicular to m then z,G is a 2-face of 7w, K*. Conversely,
suppose J is a 2-face of a projection 7,K*. Then there is a face
G’ of K* such that n,G’ = J. We necessarily have dim G’ = dim J,
and since K* has no 2-faces, G’ must be a 3-face. Hence w is
perpendicular to the normal of K* at the centroid of G’. Since the
facets of K* form a countable set, z,(K*) can only have a 2-face
when w lies in a certain countable union of hyperplanes. This is
impossible since all the 3-dimensional orthogonal projections of K*
are congruent. We conclude that K* has no 3-faces.

Finally suppose K* has an edge L, with ends x and x + A\t
where >0 and ¢ is a unit vector. Let L be the face of K*
in the direction of the unit vector p, let ® be the plane through o
orthogonal to p and ¢, and let v be a unit vector in @. For each
uc®n S the line segment Lu) = @, ,(x,L) is an edge of =, K* and
has length A\; we claim that L(u) is the same edge for every ue
6 N S°. Suppose this is false; then by continuity the region U{L(u):
u € 6 N S* contains on open neighborhood N in the relative boundary
of ©,K*. Choose uc® N S® such that L(u) intersects N. For every
unit vector w orthogonal to p and close to u, the segment L(w) =
D, (r,L) is an edge of 7w,K* that intersects N, so L(w) = L(u’) for
some u'e® NS Hence L(w) has length N. But we can choose
w not to be orthogonal to ¢, in which case L(w) is shorter than L.
This contradiction shows that L(u) is the same edge for all ue® n S°.

It follows that @, ,(7,x) = 7w,(x) and @, (7, (x + N)) = 7 (x + \)
for all ue® N S? and since w, and =, fix ¢ we find that @, (¢ = ¢t
Further #,(p)=x,(p)=p so @, .,(p)=p, and it follows that @, , fixes all
points of ©* for uec ® N S®. Hence all sections of K parallel to © are
circular and have centers on &*. It follows that K has 8-dimensional
central sections which are bodies of revolution, contrary to Lemma
3.1. We conclude that K* is strictly convex, so K is smooth.

DEFINITION. An open neighborhood A on the relative boundary
of a section H(w) N K is said to be contoured if the intersection of
A with every sphere with center o is empty or a circular arec.

LEMMA 8.8. Let x be a boundary point of K at which the unit
outward normal n is not a multiple of x, let v be a unit vector
perpendicular to x, and suppose relbd H(w) N K contains no contoured
neighborhoods. Then @,, 1s a differentiable function of u for u
close to v.

Proof. Choose a neighborhood A of x in the boundary of K
such that at no point of A is the normal direction to K parallel to
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the radius vector. We show A contains a neighborhood BcC
relbd H(v) N K so that at no point of B is the outward normal to
H(v) N K parallel to the radius vector. Suppose this is false so by
continuity of the normal directions, the normal to H@®) N K at each
point of H(v) N A is parallel to the radius vector. Hence H(v) N A
is a subset of a 3-sphere S with center o. For ueS® we have
O;(Hwv) N 4)c S, and the regions @;%(H(v) N A) cover a neighbor-
hood of x in bdK. Thus x is parallel to n contrary to hypothesis.
We deduce the existence of B as required.

It now follows from the Implicit Function theorem that each
set Cl@)={yeB:|lyl =a} is a union of simple continuously
differentiable arcs if it is nonempty. We may suppose B is chosen
so that each C(a) is connected. Consider two curves C(a) and C(B)
with a # £, and let a,€ C(a) and b,e C(B) be two points for which
a, — b, is not perpendicular to the tangent line of C(g) at b,. We
can continuously differentiably select £, ,(», @)cC(B) with
[Ife.sON, @) — all =\ for ‘ae C(a) close to a, and \ close to |la, — b,
such that £, ,(||la, — b,||, @;) = b,.

Let us suppose there exist open neighborhoods M, N in B such
that for each a # B, each a,€ C(a) N M and each b, C(8) N N with
a, — b, not perpendicular to the tangent line of C(B) at b,, we have

(*) Dzllfa,ﬂo\" a) - a,ﬂ(#; a)” =0

for all » and g close to [|a, — || and a on C(a) close to a,. Addi-
tionally we may suppose that each C(a) intersects M and N in (con-
nected, but possibly empty) ares.

Consider a,€ M with ||a,]| = . Suppose N contains a neighbor-
hood P such that each be P satisfies ||b|| # @ and b — a, is perpendi-
cular to the tangent line of C(||b]|) at b. We can suppose the inter-
section of P with each C(B) is connected, so that each C(8) which
intersects P is at constant distance from a,; thus each such C(B)
is a circular arc, being in the intersection of two spheres. Hence
P is a contoured neighborhood contrary to hypothesis. Thus for
the given a,, for a dense set of b, in N we have a, — b, not perpendi-
cular to the tangent line of C(g8) at b, and D, ||f,,,(\, @) — F, (¢, a)]| = 0
for all a on C(a) close to a, and N, ¢ close to |la, — b,|| where g =
[|bo]]. Consider such a b,, which we can suppose chosen so that
a, — b, is not perpendicular to the tangent line of C(a) at a,, let
N = |lag — b||, and suppose D, ||fa (N, @) — Fos(tt, @) =0 for all A
and ¢ in an interval J with center )\, and all @ in an arc F of
C(e) surrounding a,.

Then [|f, s\, @) — f,p(t, @)]| is a function only of X and g for
N, ped, acF. For fixed A, ¢ € J, the triangles {a, £, ;(\, a), . (¢, a)}
are then all congruent for ac F. Letting g tend to A, the angle
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between the tangent line to C(B) at £, (A, a) and the vector £, (A, a)—a
is a function of \ only, say p(\), for neJ and ae F. We can suppose
F and J are so short that £, (u, f,.;(\, @) is defined for », pteJ,
ackF.

Consider a, and a, in the interior of F, let b, = £, ,(\, a;) and
let g.(\) = fs.\, b,)eCla) for 1 =1,2. We can choose an open
interval J' with »,eJ’ CJ which is so short that g.\)e F for all
rved’, 1 =1,2. Then f,,(\, g;(\)) = b,; choose unit vectors ¢, parallel
to the tangent lines of C(B) at b, so that (g.(\) — b,) - £, = A cos p(\).
There is an orthogonal transformation 7 in H(v) with 75, = b,,
i) =1t and ¥(a,) =a, The continuously varying points g,(\)
satisfy:

gl = [[Fa.0)]| =
9.0 — bill = [[Tg,(0) — byl| = x
(6,00 — b))+ &, = (FG\) — b) - &, = A cos p(\)

and these conditions ensure Tg,(\) = g,(\) for all xeJ’. Thus ¥
maps @, onto a, and maps a neighborhood of @, in C(a) onto a
neighborhood of a, in C(a). If F contains in its interior a point
of 2-fold differentiability of C(a), then F' has constant curvature,
and since it lies on a sphere it must be an arc of a circle.

Since relbd H@) N K is twice differentiable almost everywhere,
C(e) N M has a point of two-fold differentiability for a dense set of
. If Cl@) N M is twice differentiable somewhere, the above argu-
ments show it contains a circular arc; choose a maximal such arc C.
Then the above arguments apply taking a, as an end of C, and this
contradicts the maximality of C unless C = C(@) N M. We conclude
that Cla) N M is a circular arc for a dense set of «; by taking
limits M is contoured contrary to hypothesis.

It follows that our supposition (*) is false. Thus for a dense of
(ay, b,) in B X B, for a = ||a,|| and g = ||b,|| we find that the tangent
line of C(B) at b, is not perpendicular to a, — b, and D,||f, (\, @) —
f. (¢, @))| = 0 for (\, ¢, @) arbitrarily close to (A, N, @) in R X R x
C(x) where \, = |l@, — by||. We can therefore choose \, f, v, a,, b,
¢, with Jla|| = , [|b]| = B, b, = f.i(\, @), ¢, = o5ty @), v = [|b, — ¢,
such that the tangent lines of C(a) at b, and ¢, are not prependi-
cular to b, — a, and ¢, — a, respectively, D,||f. (N, a,) — . 5(tt, a))|| # 0,
and by choosing \, ¢ and v small with b, — a, not too nearly parallel
to the tangent line of C(B) at b, we can also ensure that {a,, b, ¢}
is linearly independent.

We can write K = {y: h(y) < 1} where h is a positive-homogene-
ous continuously differentiable convex function. Regarding points
of E* as column matrices, for points a, b, ¢, u # o define
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where Ik is the gradient of %; notice that if y is a boundary point
of |K then /h(y) is a nonzero multiple of the unit normal to K at
y. We will show that

(1) rank D, F

To this end define m(x) to be the orthogonal projection of Fi(x)” on
H(v), and let

Q =(af i
m’(a,)
by
m”(b,)
cl
m’(c,)
a; — by b —af
b — ¢l ¢ — b;
al —cf ci —aji |
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We first prove rank @ = 9.

Let s*, t*, w* be unit vectors parallel to the tangent lines of
Cla) at a,, of C(B) at b, and of C(RB) at ¢, respectively.

Suppose that there are points s, ¢, w e H(v) such that

s
Qtt =o0.

w

Then a,-s8 = 0 and m(a,) -8 = 0 which ensures that s is a multiple
of s*. Similarly ¢ and w are multiples of #* and w* respectively.
By choice of a,, b,, and ¢, we have

(a, — b))« t* =0, (a,— ¢c) -w*+#10
and this ensures that the equations
(2) (@, — by) « (o8* — 7t*) =0
(3) (ay — ¢) « (08* — ww*) = 0

have a one-dimensional space of solutions (o, 7, ). We can choose
numbers z* and @* such that

T*t* = D,f, (N, a,)

W*w* = sza,ﬁ()u: ao) ’
if we take ¢* = 1 then (¢*, v*, ®*) is a solution of (2) and (8) since

[|fa, (N, @) — a@]] = N and |[|f,, (¢, @) — a|| = ¢ for a on C(a) close to a,.
Also if y is the projection on the 8th coordinate of R“ we have

o*s*
XQ| et | = ZDlFash @) = Futy @ 0.
o*w*
Thus
os*
Q| 7t* | =0 implies 6 =7 =w =0,
ow*

which shows that rank @ = 9.
Suppose p, q, and r are vectors in E* for which

a,

p
(4> Dach q|=o0.
r
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By considering the last 3 components in (4) we find that v-p =v-q =
v-r =0, so if coordinates are chosen such that v is on the x, axis,
we have p = (p', 0), ¢ = (¢/, 0), r = (o, 0). Also the 4th, 8th and 12th
columns of @ are zero, (4) show that

D
Qlgq|=o0
r

and since rank Q@ =9 it follows that p' = ¢ =r' = 0. Hence p =

= r = o which proves (1). Now it follows from the Implicit Func-
tion theorem that in a certain neighborhood of (a,, b,, ¢,), for each
u close to v the equation

a a,
b b,
F = F
c c,
u v

has a unique solution (a, b, ¢), and a, b, and ¢ are differentiable func-
tions of u. Roughly, we can say that no tetrahedron close to
(0,a,b,c¢) with o as a vertex and 3 vertices on H(u) N bdK is
congruent to (o, a, b, ¢). It follows that o, . (a) = a, 9, () = b, and
@, (¢) = ¢,. Thus @,, is a differentiable function of u near v.

LEMMA 8.4. Some 3-dimensional central section of K has a con-
toured neighborhood on its relative boundary.

Proof. Suppose the lemma is false. Since K is assumed not
to be a euclidean ball, there is a point x on the boundary of K at
which the unit outward normal vector n is not parallel to x. Let
v be the unit vector perpendicular to x and which is coplanar with
n and x having n-v > 0. Then @,, is a differentiable function of
u by Lemma 3.3 for u close tov. For real §let u = u(¥) = —6x + v,
let y = y(@) = @;'(x) and let £ = y’(0). We have y(0) = x and y(6)-
u(® = 0. Since ||y(8)|| is constant we have y-y' =0 so x-f =0.
Thus

(x +f0+00)-(—0x +v)=0
whence
—Oxx+xv—0F-x+ 0f-v =000
so that
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—x+x +f-v=0(1)

as § — 0. It follows that f-v=x-x>0.
We can write n = ax + Bv where 8 =n-v > 0, and then

n.y—n-x=n-y—x) = (ax + Bv)-(0f + o(f))
= fax-f + 0Bv-f + o(f)
= 6Bv-f + o(6)

which is positive for small positive 8. This is impossible since
n-x=n-z for all ze K. We conclude that some H(w) N K has a
contoured neighborhood on its relative boundary.

LeMMA 3.5. No 3-dimensional central section of K has a con-
toured neighborhood on its relative boundary. Our assumption that
K is not a euclidean ball is therefore untenable.

Proof. Suppose v is a unit vector and that relbd H(v) N K contains
a contoured neighborhood A. Define Cla) = {x € A: ||x|| = a}. First
consider the possibility that all of the circular arcs C(a) are parallel
to a certain plane A through o in H(v). Let ® be a plane through
o in H(v) which intersects A and which makes a positive angle v
with 4. Then & N K is not circular, for then A would contain a
spherical region which is impossible since A is contoured. The
symmetry group of © N K is therefore finite.

Suppose that @, ,0) = 6 for every uc®* N 8% then @, ,, would
be a continuously varying symmetry of ® N K, and since @, , is the
identity we find @, ,, is the identity for all ue®+ N S:. It follows
that every section of K parallel to @ is circular with center on 6.
Hence some 3-dimensional central sections of K are bodies of revolu-
tion, contrary to Lemma 8.1.

Therefore there exists some u such that @,,0) %= 6. Choose
distinet numbers @ and B such that C(a) and C(8) both intersect O.
There is arc I" of @+ N S*® which has v as one end, such that @, ,(0)
intersects C(a) and C(B) for every uel but @,,0)+~ 6@ for some
ucl'. For all uel’ we have 9,,C@) Nn0O) =Ca)na,,0) and
2,.,CB)NBO)=CPB NI, 0), so ?,,0) makes an angle v with 4.
Hence for every x in ® N bdK, the arc {0, ,(x):ucl} is a compact
circular arc in H(v) N bdK, is parallel to 4 and has its center on the
the line ! in H(v) through o perpendicular to 4. By taking various
values of v, it follows that for any plane 4’ in H(v) parallel to 4
but distinet from 4, the closed curve 4’ N bdK is a union of compact
circular arcs centerd on I. We can express A’ N bdK as the union of
a countable collection # of interior-disjoint maximal compact circular
arcs with centers on I. The end-points of the arcs in # form a
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compact countable set . If & is nonempty, it follows from the
Baire Category theorem that some point of & is isolated; such an
isolated point is a common end-point of two members of &, which
cannot exist. We conclude that & is empty so that 4/’ NbdK is a
circle with its center on [. It follows that H(w)N K is a body of
revolution contrary to Lemma 3.1.

We may therefore assume that not all of the ares C(a) are
parallel to one plane. We can then chose distinct numbers a and g
and a plane 4 through o in H(v) such that 4 intersects each of C(a)
and C(B) in two points, and C(a) is not in a plane parallel to the
plane of C(8). For no plane A’ through o in H(v) close to A are the
configurations (o, 4 N C(@), 4 N C(B)) and (o, 4’ N Cla), A’ N C(B)) con-
gruent, so it follows that @, ,(4) = 4 for all ue 4 N S% Further,
AN K is not circular so @, ,,, is the identity for all ue 4+ N S%. It
follows as in the case considered above that K has 3-dimensional
central sections which are bodies of revolution contrary to Lemma
3.1.

Lemma 3.5 contradicts Lemma 8.4, so we conclude that K is a
euclidean ball.

We have now proved:

PROPOSITION. If K is a centrally symmetric 4-dimensional con-
vex body and all the 3-dimensional central sections of K are congru-
ent, then K is a euclidean ball.

4, Proof of the theorems.

Proof of Theorem 1. Let d denote the dimension of K, and
consider first the case when d = 4. For ue S°®let A(u) be the section
of K through p which is perpendicular to the direction u. Then
A(u) is a complete turning of some 3-dimensional body A in E*, so
by Lemmas 2.1 and 2.2, 4 is centrally symmetric. Hence A(u) is
centrally symmetric for each ue S Consider an orthogonal projec-
tion K, of K on a 3-flat through p. Then every 2-dimensional section
of K, through p is a projection of a 3-dimensional section of K
through p. Thus all 2-dimensional sections of K, through p are
centrally symmetric, and it follows from a result of Rogers [6] that
K, is centrally symmetric. Every 2-dimensional orthogonal projection
of K is a projection of some 3-dimensional projection, and so is
centrally symmetric. It follows from another result of Rogers [6]
that K is centrally symmetric.

If p is the center of K, it follows immediately from the
Proposition above that K is a euclidean ball with center p. Suppose
therefore that the center of K is a +# p, and consider a 3-dimensional
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orthogonal projection 7 with n(a)%7(p). As we have seen above, every
2-dimensional section of #w(K) through =n(p) is centrally symmetrie,
but z(a) is the center of #(K). It follows from the False Center
theorem of Aitchison, Petty and Rogers [1] that z(K) is an ellipsoid.
Since 7(a) # n(p) for almost all projections m, by taking limits we
find that every 3-dimensional projection of K is an ellipsoid, so K
is an ellipsoid by the dual of a result of Busemann [2, p. 91]. The
3-dimensional central sections of K are all similar, and it is easily
shown that K must therefore be a euclidean ball. Since the 3-
dimensional sections of K through p are all congruent, p must be
the center of K.

In the case d >4, it follows from the 4-dimensional case
considered above that every 4-dimensional section of K through p
is a euclidean ball with center p, so K is a euclidean ball with
center p.

Proof of Theorem 2. We may assume that the centroid of K
is 0. Consider an orthogonal projection K, of K on a 4-flat through
0. The 8-dimensional orthogonal projections of K, are all orthogonal
projections of K and are therefore congruent. So the 3-dimensional
orthogonal projections of K, give rise to a complete turning of some
3-dimensional convex body in 4 dimensions, and by Lemmas 2.1 and
2.2 they are all centrally symmetric. Hence K, is centrally sym-
metric. It follows that K is centrally symmetric with center o,
using a result of Rogers. Let K* be the polar reciprocal of K about
o. Then all the central 3-dimensional sections of K* are congruent
so by Theorem 1, K* is a euclidean ball with center o. Hence K
is a euclidean ball.

Proof of Theorem 3. First consider the case when the dimension
of K is 2n + 1. For each unit vector u let K(u) be the 2n-dimen-
sional section of K through p perpendicular to u, and let F(u) be
the 2n-dimensional ellipsoid of least volume containing K(u); the
uniqueness of F'(u) was proved by Danzer, Laugwitz, and Lenz [3].
The affine transformation @, which maps F(u) onto a 2n-dimensional
euclidean unit ball B(u) in the hyperplane of F(u) by dilating its
principal axes is a continuous function of u. Then all ¢,K(u) for
u € S® are congruent, so ®,K(u) is a field of congruent 2n-dimensional
bodies in E***', A result of Mani [5] shows that each ¢,K(u) is a
euclidean ball, so K(u) is an ellipsoid. It follows from a theorem
of Busemann [2, p. 91] that K is an ellipsoid.

Now suppose the dimension of K is greater than 2n + 1. From
the case already considered it follows that every (2n + 1)-dimensional
section of K through p is an ellipsoid, and Busemann’s result then
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shows that K is an ellipsoid.
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