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CONGRUENT SECTIONS OF A CONVEX BODY

G. R. BURTON

It is shown that if all the 3-dimensional sections of a
convex body K, of dimension at least 4, through a fixed
inner point are congruent, then K is a euclidean ball. A
dual result concerning projections is also proved.

1* Introduction. W. Sϋss [8] showed that if all the plane
sections of a 3-dimensional convex body passing through a fixed inner
point are congruent, then the body is a euclidean ball. P. Mani [5]
generalized this result to the case of congruent 2^-dimensional sec-
tions of a (2n + l)-dimensional convex body. Both of these results
are deduced immediately from topological proofs that a nonspherical
2%-dimensional body cannot be completely turned in dimension 2n + l,
and the assumption that the sections fit together to form a convex body
is only used to prove continuity. However, every centrally symmetric
3-dimensional body can be completely turned in 4-dimensional euclidean
space Ei, so in this case a proof using properties of convex bodies
is required; the present paper provides one. Our main results are:

THEOREM 1. Let K be a convex body of dimension at least 4,
let p be an inner point of K, and suppose that all 3-dimensional
sections of K passing through p are congruent. Then K is a
euclidean ball with center p.

THEOREM 2. Let K be a convex body of dimension at least 4,
and suppose all the 3-dimensional orthogonal projections of K are
congruent. Then K is a euclidean ball.

A result which follows directly from the work of Mani is the
following:

THEOREM 3. Let n ^ 1, let K be a convex body of dimension at
least 2n + 1 and let p be an inner point of K. Suppose all the 2n-
dimensional sections of K passing through p are a finely equivalent.
Then K is an ellipsoid.

2. Complete turnings of 3-dimensional bodies• When A is a
eZ-dimensional convex body, a field of bodies congruent to A is a
continuous function A(u) defined for u in the unit sphere Sd

f where
A{u) is a congruent copy of A lying in a hyperplane of Ed+1 perpendi-
cular to u; here A(u) is meant to be continuous in the Hausdorff
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metric. If additionally A(u) = A( — u) for each u, we say A(u) is a
complete turning of A in Ed+1. Clearly if all the d-dimensional
sections of a (d + l)-dimensional convex body through a fixed inner
point are congruent, they give rise to a complete turning of some
d-dimensional body in Ed+1. We make use of the methods of Mani
[5] and H. Hadwiger [4] to determine which 3-dimensional convex
bodies can be completely turned in E*. When v is a fixed unit
vector in E4 and for u—{tx,12, tz, Q e S3 we define P1(u) = (—t2, tlf — t49 Q,
/>2(M) = (ί3, -tif -tl9 ί2), p3(u) = (~ί4, - ί 8 , *2, O> then let Ψu be the
orthogonal transformation such that Wu(v) = M and Wu{Pi{v)) = / (̂w)
for i = 1, 2, 3. Notice that ?F_% = - y . .

LEMMA 2.1. Lei A 6e α S-dimensional convex body whose sym-
metry group is finite, and suppose A can be completely turned in
E\ Then A is centrally symmetric.

Proof. Let A(μ) be a complete turning of A in E\ We may
assume that each A(μ) has its centroid at the origin o, and that
A = A(v) for some unit vector v. Let Ψu be defined as above. Since
A(u) is a field of bodies congruent to A, the proof of Proposition 2
in [5] shows the existence of orthogonal transformations Φu depending
continuously on u with ΦU(A) = A{u). The restriction Φzι

uΦuU is a
continuously varying symmetry of A, and by connectedness it must
be a constant Θ.

The map Ψ^ΦU preserves the linear span of A, so consider
ΨzιΦJ^) f° r a fixed v e A. The mapping u \-+ W^ΦJjί) maps S*
continuously into a copy of E\ so by the Borsuk-Ulam theorem (see
[7], p. 266) it maps some pair of antipodal points into coincidence.
Thus for some u we have

and since 3F_tt = — Ψu this yields

and so — r = Φzι

uΦu(v) = θ(ι?). It follows that Θ is a central reflec-
tion, and A is centrally symmetric.

LEMMA 2.2. Let A be a Z-dimensional convex body whose sym-
metry group is infinite, and suppose A can be completely turned
in E4. Then A is centrally symmetric.

Proof. Let A{u) be a complete turning of A. We may assume
that each A(u) has its centroid at the origin, and that A = A(v)
where v is a unit vector. Let Ψu be the map defined above. Since
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A has an infinite symmetry group, it has an axis of revolution; let
such an axis be parallel to the unit vector w.

Suppose that A is not centrally symmetric, so that A has only
one axis of revolution, and for some λ > 0 the two sections

{x eA: x -w = ±λ}

are discs of different radii. Any symmetry of A maps the axis onto
itself, and maps Xw onto Xw also.

It follows that for each u e S3, there is a unit vector w(μ) in
the linear span of A(u) such that Φ(w) — w{u) for every orthogonal
transformation Φ with Φ(A) — A(u). Hence w(u) is a continuous func-
tion of u and w( — u) = w(u). The mapping UΪ-+Ψ~1(W(U)) is a con-
tinuous map of Ss into a copy of E\ so by the Borsuk-Ulam theorem,
for some u we have

Ψ;\w(u)) = Ψzi(w(-u)) = -¥?(w(u))

so that w(μ) = —w(u) which is impossible. We conclude that A is
centrally symmetric.

REMARKS. Lemmas 2.1 and 2.2 show that any 3-dimensional
convex body which can be completely turned in E4 is centrally
symmetric. Conversely, the map Ψu allows every 3-dimensional
centrally symmetric convex body to be completely turned in E4.

3«. Congruent central sections of a convex body* Throughout
this section K will be a fixed 4-dimensional convex body in E4 having
the origin as center of symmetry, and such that all the 3-dimensional
central sections of K are congruent. We assume K is not a euclidean
ball, and seek a contradiction. For nonzero u and υ the hyperplane
{x e E4: x u = 0} is denoted H(u), the orthogonal projection on H(u)
is denoted πu and ΦUtV is some orthogonal transformation which maps
H(u) Π K onto Hip) Π K; clearly the choice of Φu>v may not be unique.

LEMMA 3.1. Let v e Ss. Then the section Hip) Π K is not a body
of revolution.

Proof. Suppose the lemma is false. Then since H(v) Π K is not
a euclidean ball, it has just one axis of rotation I. Consider a plane
A with laΛczHip). For any u* e I = S 3 ί l Λ there is a neighborhood
of u* in X in which ΦU)V can be chosen as a continuous function of
u. Let XQ be a compact simple arc of X containing v in its interior.
By compactness XQ can be dissected into a finite collection of interior-
disjoint arcs, on each of which Φu,v is chosen continuously; if this
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gives rise to two choices Φ'u,v and Φ",v of Φu>v at a common end u of
two such arcs, then Φ",vΦ'u~l preserves H{v) Γ) K, so by composing
Φ'UjV with a suitable orthogonal transformation we can suppose
Φ",v = Φ'u,v Hence we can choose ΦUtV continuously for u e XQ.

We claim ΦU,V(A) contains I for every u e Xo. Suppose this is
false, and let x e I Π bdK. Then as u varies on XQ, a nontrivial arc
on a sphere is described by ΦUtV(x), so H(v)ΠbdK contains a maximal
spherical cap A with pole x and at constant distance from o. Let
y and z be the points of A on the perimeter of A. Then for each
ueX0, the points Φu,v(y) and Φu,v{z) lie within <?£A and \\Φu,v(y) —
Φ^O) | | = Hif - 2r||, so Z, 0tt,vO) and Φ*,,,^) are coplanar. This con-
tradiction shows that ΦUfV(A) contains I for each u e XQ.

By composing Φtt)V with a suitable continuously varying orthogonal
transformation that acts as a symmetry on H{v) Π K we can suppose
ΦUtV(A) = A for each « G I 0 and Φw>t, is the identity map, so Φu>v(u) = v.
Since the symmetry group of A fl UL is finite, Φ ^ u is the identity
for all u e Xo. Thus I is the axis of H{u) Π £" for all u e Xo, and
hence (by letting XQ tend to X) for all u e l . Then for any s elL f]
bdK, the length ||s| | is equal to the radius of the central section of
Hiv) Π K perpendicular to ί. I t follows that IJ- n K is a euclidean
ball and so K is a euclidean ball contrary to hypothesis. This proves
the lemma.

REMARKS. From Lemma 3.1 it follows that each H(u) n K has
only a finite symmetry group. It follows from the proof of Proposi-
tion 2 in [5] that for fixed veS3 we can choose ΦUyV as a continuous
function of we S3. We can further suppose ΦV}V is the identity so
Φu,v(u) — v. When u and v are not unit vectors, we define ΦUίV —
Φu,tV, w h e r e υ! — I I M I I " 1 ^ , υ' — \\v\\~ιv.

L E M M A 3.2. K is smooth.

Proof. Let K* be the polar reciprocal of K relative to the
origin. Then Φu,v(πuK*) = πvK* for each u,ve S3. To prove K is
smooth, it will suffice to show K* is strictly convex. In the ensuing
argument, faces are meant to be exposed faces.

Suppose first that K* has a 2-face F, and let F be the face of
K* in the direction of i r e S\ Fix a unit vector v perpendicular to
w and the affine hull aff F. Then πJF is a 2-face of πuK* for every
u perpendicular to w and close to v, and by continuity ΦU]V(πuF) = πvF.
However, if u is chosen perpendicular to w but not perpendicular
to aff F, then πuF has smaller area than πvF. This contradiction
shows that K* has no 2-faces.

Next suppose that if* has 3-faces, and consider any 3-face G,



CONGRUENT SECTIONS OF A CONVEX BODY 307

having an outer unit normal m say at its centroid. If u is any unit
vector perpendicular to m then πuG is a 2-face of πuK*. Conversely,
suppose J is a 2-face of a projection πwK*. Then there is a face
Gf of if* such that πwG

f — J. We necessarily have dim G' ^ dim /,
and since if* has no 2-faces, G' must be a 3-face. Hence w is
perpendicular to the normal of if* at the centroid of (?'. Since the
facets of if* form a countable set, πw(K*) can only have a 2-face
when w lies in a certain countable union of hyperplanes. This is
impossible since all the 3-dimensional orthogonal projections of if*
are congruent. We conclude that if* has no 3-faces.

Finally suppose if* has an edge L, with ends x and x + Xt
where λ > 0 and t is a unit vector. Let L be the face of if*
in the direction of the unit vector p, let Θ be the plane through o
orthogonal to p and t, and let u be a unit vector in Θ. For each
w e θ n S 3 the line segment L{u) = ΦU)V(πuL) is an edge of πvK* and
has length λ; we claim that L(u) is the same edge for every ue
Θ n S3. Suppose this is false; then by continuity the region U{L{u):
ueθ n S3} contains on open neighborhood N in the relative boundary
of πvK*. Choose u e θ Π S3 such that L(u) intersects N. For every
unit vector w orthogonal to p and close to u, the segment L(w) =
Φw,v(πwL) is an edge of πvK* that intersects N, so L(w) = L(u') for
some u' eθ Γ) S3. Hence L(w) has length λ. But we can choose
w not to be orthogonal to t, in which case L{w) is shorter than L.
This contradiction shows that L(u) is the same edge for all u e θ Π S3.

It follows that Φu,v(πux) = πυ(x) and ΦUίV(πu(x + Xt)) = ττv(x + Xt)
for all w e θ n S3, and since πu and ττv fix t we find that Φu,v(t) = ί.
Further πu(p) = πv(p)=p so Φu,υ(p)=p, and it follows that Φ ^ fixes all
points of θ 1 for u e θ Π S3. Hence all sections of if parallel to θ are
circular and have centers on ΘL. It follows that if has 3-dimensional
central sections which are bodies of revolution, contrary to Lemma
3.1. We conclude that if* is strictly convex, so if is smooth.

DEFINITION. An open neighborhood A on the relative boundary
of a section H(v) Π if is said to be contoured if the intersection of
A with every sphere with center o is empty or a circular arc.

LEMMA 3.3. Let x be a boundary point of K at which the unit
outward normal n is not a multiple of x, let v be a unit vector
perpendicular to ΛΓ, and suppose relbd H(v) Π if contains no contoured
neighborhoods. Then Φu>v is a differentiate function of u for u
close to v.

Proof. Choose a neighborhood A of x in the boundary of if
such that at no point of A is the normal direction to if parallel to
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the radius vector. We show A contains a neighborhood Bd
relbd H(v) Π K so that at no point of B is the outward normal to
H(v) Π K parallel to the radius vector. Suppose this is false so by
continuity of the normal directions, the normal to H(v) n K at each
point of H(v) n A is parallel to the radius vector. Hence H(v) Π A
is a subset of a 3-sphere S with center o. For ueS3 we have
Φΰϊv(H(v) ί l i ) c S , and the regions Φ~lv(H(v) Π A) cover a neighbor-
hood of Λ: in bdK. Thus x is parallel to n contrary to hypothesis.
We deduce the existence of B as required.

It now follows from the Implicit Function theorem that each
set C(ά) = {y eB: \\y\\ — a} is a union of simple continuously
differentiable arcs if it is nonempty. We may suppose B is chosen
so that each C(a) is connected. Consider two curves C(ά) and C(β)
with a Φ β, and let α0 e C(a) and bQ e C(β) be two points for which
α0 — &o is not perpendicular to the tangent line of C(β) at 60. We
can continuously differentiably select fa,β(\ a) e C(β) with
\\fa,β(\ a) — a\\ = λ for ΓαeC(α) close to α0 and λ close to ||α0 — 60||,
such that fafβ(\\a0 - 60||, α0) = 60

Let us suppose there exist open neighborhoods M, N in B such
that for each a Φ β, each α0 6 C(a) Π Λf and each 60 e C(β) Π N with
α0 — &o n ot perpendicular to the tangent line of C(β) at b0, we have

for all λ and μ close to ||α0 — 60|| and a on C(α) close to α0. Addi-
tionally we may suppose that each C{a) intersects M and N in (con-
nected, but possibly empty) arcs.

Consider αoe M with ||αo|| = a. Suppose JV contains a neighbor-
hood P such that each beP satisfies ||6|| Φ a and 6 — α0 is perpendi-
cular to the tangent line of C(||6||) at 6. We can suppose the inter-
section of P with each C(β) is connected, so that each C(β) which
intersects P is at constant distance from αo; thus each such C(β)
is a circular arc, being in the intersection of two spheres. Hence
P is a contoured neighborhood contrary to hypothesis. Thus for
the given α0, for a dense set of 60 in N we have α0 — 60 not perpendi-
cular to the tangent line of C(β) at 60 and D2\\fa,β(X, a) - fa,β(μ, a)\\ =0
for all α on C(a) close to α0 and λ, μ close to \\a0 — bo\\ where β —
||60||. Consider such a 60, which we can suppose chosen so that
α0 — &o is not perpendicular to the tangent line of C(a) at α0, let
\ = ll«o - 6oll» and suppose D2\\fa,β(\ a) - fa,β(β, a)\\ = 0 for all λ
and μ in an interval J with center λ0 and all a in an arc F of
C(α) surrounding α0.

Then \\fa,β(Xf a) — fa,β(μ, a)\\ is a function only of λ and μ for
λ, μ6 J", α e ί 7 . For fixed X, μeJ, the triangles {α, /^(λ, α), fα̂ (jtί, α)}
are then all congruent for aeF. Letting μ tend to λ, the angle
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between the tangent line to C(β) at fa>β(X,a) and the vector fatβ(xfa) — a
is a function of λ only, say p(X), for λ e J and ae F. We can suppose
F and J are so short that fβta(μ, fa,β(\ a)) is defined for λ, μ e J,
aeF.

Consider aγ and α2 in the interior of F, let bt — fα,/λ0, α<) and
let #i(λ) = />,α(λ, &,) 6 C(a) for ΐ = 1, 2. We can choose an open
interval J' with λ o 6 j ' c / which is so short that gt(\) e F for all
X e J', ί = 1, 2. Then fαfj9(λ, u<(λ)) = 6,; choose unit vectors f, parallel
to the tangent lines of C(β) at bt so that (flr,(λ) — b%) f4 = λcoS|θ(λ).
There is an orthogonal transformation Ψ in H(v) with fX&J = 62,
3%) — ̂  and ^(αj = α2β The continuously varying points gt(X)
satisfy:

62|| = λ

- 6S) ίa = λ cos

and these conditions ensure Ψg^) = ur2(λ) for all λ e J'. Thus ?Γ
maps αx onto α2 and maps a neighborhood of αx in C(α) onto a
neighborhood of α2 in C(a). If F contains in its interior a point
of 2-fold differentiability of C(a), then F has constant curvature,
and since it lies on a sphere it must be an arc of a circle.

Since relbd H(v) Π K is twice differentiate almost everywhere,
C(a) Π M has a point of two-fold differentiability for a dense set of
a. If C{a) Π Λf is twice differentiate somewhere, the above argu-
ments show it contains a circular arc; choose a maximal such arc C.
Then the above arguments apply taking a0 as an end of C, and this
contradicts the maximality of C unless C = C(a) ΓΊ M. We conclude
that C(a) Π Λf is a circular arc for a dense set of α; by taking
limits M is contoured contrary to hypothesis.

It follows that our supposition (*) is false. Thus for a dense of
(α0, 60) in B x JS, for α = ||αo | | and β = ||60|| we find that the tangent
line of C(β) at 60 is not perpendicular to α0 — 60 and D2\\fatβ(\, a) —
fa,β(μ, «)ll ^ 0 for (λ, μ, a) arbitrarily close to (λ0, λ0, α0) in R x R x
C(α) where λ0 = ||α0 — 60||- We can therefore choose λ, μ, v, α0, b09

c0 with ||αo | | = a, \\bo\\ = /3, 60 = «̂f/j(λ, α0), c0 = fa,β(μ, α0), j ; = ||60 - co||,
such that the tangent lines of C(α) at 60 and c0 are not prependi-
cular to 60 - α0 and c0 - α0 respectively, D2\\fatβ(\ α0) - fα>̂ (iW, αo)|| ̂  0,
and by choosing λ, μ and v small with 60 — α0 not too nearly parallel
to the tangent line of C(β) at 60 we can also ensure that {α0, b0, c0}
is linearly independent.

We can write K — {y: h(y) <̂  1} where h is a positive-homogene-
ous continuously differentiable convex function. Regarding points
of E4 as column matrices, for points a,b, c,u Φ o define



310 G. R. BURTON
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where Fh is the gradient of h; notice that if y is a boundary point
of \K then Fh(y) is a nonzero multiple of the unit normal to K at
y. We will show that

( 1 ) rank DabcF

a0

- 1 2

To this end define m(x) to be the orthogonal projection of Fh(x)τ on
H(v), and let
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mτ(a0)
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aϊ-
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We first prove rank Qf = 9.
Let s*, t*, w* be unit vectors parallel to the tangent lines of

C(a) at α0, of C(β) at b0 and of C(β) at c0 respectively.
Suppose that there are points s, t, weH(v) such that

Q'l t

w

— o .

Then α0 s = 0 and ιw(α0) s = 0 which ensures that s is a multiple
of s*. Similarly t and α? are multiples of ί* and u?* respectively.
By choice of α0, 60> and c0 we have

(α0 - 60) t* Φ 0 , (α0 - c0) ιr*

and this ensures that the equations

( 2 ) (α0 - 60) (σs* - τt*) = 0

( 3) (α0 - c0) (as* - ω i O = 0

0

have a one-dimensional space of solutions (σ, r, α>). We can choose
numbers τ* and ω* such that

τ*ί* = JD/βt^(λ, α0)

6e)*u?* = D2fa,β(μ, α0)

if we take σ* = 1 then (σ*9 τ*9 ω*) is a solution of (2) and (3) since
\\f*,β(\ α) — α|| = λ and ||/*α,^(^, α) — a\\ = j« for α on C(α) close to α0.
Also if χ is the projection on the 8th coordinate of R12 we have

XQ' τ*t* , α0) - fatβ(μ, αo)||2 ^ 0 .

Thus

ωw*

= o implies σ = r = α) = 0 ,

which shows that rank Qr = 9.
Suppose p, q, and r are vectors in E* for which

( 4 ) D

α0

Co

P~

q

r _

= o .
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By considering the last 3 components in (4) we find that v p — v q —
v r = 0, so if coordinates are chosen such that v is on the xi axis,
we have p = (/>', 0), q = (q'f 0), r = (r', 0). Also the 4th, 8th and 12th
columns of Qr are zero, (4) show that

Q' — o

and since rank Q' = 9 it follows that p' — qf = r' = o. Hence /? =
q — r = o which proves (1). Now it follows from the Implicit Func-
tion theorem that in a certain neighborhood of (α0, bQ, c0), for each
M close to v the equation

a
b

c

u

a0

bo

Co

17

has a unique solution (α, 6, c), and α, 6, and c are differentiate func-
tions of u. Roughly, we can say that no tetrahedron close to
(o, α, 6, c) with o as a vertex and 3 vertices on H(u) Π 6c2iΓ is
congruent to (o, α, 6, c). It follows that Φu>(,(α) = α0, Φπ,,,(6) = 60 and
ΦU}V(c) = c0. Thus Φu>υ is a difFerentiable function of u near ι\

LEMMA 3.4. Some Z-dimensional central section of K has a con-
toured neighborhood on its relative boundary.

Proof. Suppose the lemma is false. Since K is assumed not
to be a euclidean ball, there is a point x on the boundary of K at
which the unit outward normal vector n is not parallel to Λ\ Let
i? be the unit vector perpendicular to ΛΓ and which is coplanar with
n and x having n v > 0. Then Φu>v is a differentiate function of
u by Lemma 3.3 for u close to v. For real θ let u = u(θ) = —θx + v,
let y = y(θ) = Φ^(x) and let f = #'(0). We have #(0) = x and y(θ)
ιι(0) = o. Since |||f(0)|| is constant we have y y'= 0 so x f = 0.
Thus

whence

(X + fθ + 0(0)) (-0JC + 17) = 0

-0ΛΓ ΛΓ + ΛΓ 17 - 0 V ΛΓ + 0 f 17 = θ(0)

so that
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— ΛΓ ΛΓ + f 'V = θ(l)

as 0 -> 0. It follows that f i? = ΛΓ x > 0.
We can write n — ax + βv where β — n v > 0, and then

n-y-n-x = n-(y-x)=: (ax + /Sr) (0/* + o(0))

= θax f + θβv f + o(0)

= θβv /* + o(0)

which is positive for small positive 0. This is impossible since
n>x ^> n* z for all zeK. We conclude that some JEΓ(U?) Π K has a
contoured neighborhood on its relative boundary.

LEMMA 3.5. No ^-dimensional central section of K has a con-
toured neighborhood on its relative boundary. Our assumption that
K is not a euclidean ball is therefore untenable.

Proof. Suppose v is a unit vector and that relbd H(v) Π K contains
a contoured neighborhood A. Define C(a) = {xe A: \\x\\ = a}. First
consider the possibility that all of the circular arcs C(a) are parallel
to a certain plane A through © in H(v). Let θ be a plane through
o in H(v) which intersects A and which makes a positive angle 7
with A. Then θ Γ) K is not circular, for then A would contain a
spherical region which is impossible since A is contoured. The
symmetry group of θ Π K is therefore finite.

Suppose that Φu,v(θ) = Θ for every M e θ 1 Π S3; then Φu,υ]θ would
be a continuously varying symmetry of θ Π K, and since #„,„ is the
identity we find ΦUtV]θ is the identity for all u e Θ1 Π S\ It follows
that every section of K parallel to Θ1 is circular with center on Θ.
Hence some 3-dimensional central sections of K are bodies of revolu-
tion, contrary to Lemma 3.1.

Therefore there exists some u such that ΦU>V(Θ) Φ Θ. Choose
distinct numbers a and β such that C(a) and C(β) both intersect Θ.
There is arc Γ of ΘL Π S3 which has v as one end, such that ΦU)V{Θ)
intersects C(a) and C(β) for every u e Γ but ΦU>V(Θ) Φ Θ for some
ueΓ. For all ueΓ we have Φu>v(C(a) f)Θ) = C(a) C)ΦU,XΘ) and
Φu,υ(C(β) n θ) = C(β) n Φu,v(β)f so Φ%tV(θ) makes an angle 7 with A.
Hence for every x in ΘΓϊbdK, the arc {Φu>υ(x):ueΓ} is a compact
circular arc in H(v) f] bdK, is parallel to A and has its center on the
the line I in H(v) through o perpendicular to A. By taking various
values of 7, it follows that for any plane A' in H(v) parallel to A
but distinct from A, the closed curve A' Π bdK is a union of compact
circular arcs centerd on I. We can express A' Π bdK as the union of
a countable collection &~ of interior-disjoint maximal compact circular
arcs with centers on I. The end-points of the arcs in J^ form a
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compact countable set g7. If gf is nonempty, it follows from the
Baire Category theorem that some point of g7 is isolated; such an
isolated point is a common end-point of two members of ,^7 which
cannot exist. We conclude that g7 is empty so that Λr n bdK is a
circle with its center on ί. It follows that H(v) n K is a body of
revolution contrary to Lemma 3.1.

We may therefore assume that not all of the arcs C{a) are
parallel to one plane. We can then chose distinct numbers a and β
and a plane A through o in H(v) such that A intersects each of C(a)
and C(β) in two points, and C(a) is not in a plane parallel to the
plane of COS). For no plane Af through o in H(v) close to A are the
configurations (o, A Π C(α), Λ Π C(/3)) and (o, 4' n C(α), A' Π C(/3)) con-
gruent, so it follows that ΦU,V(A) = Λ for all W G ^ Π S\ Further,
AΠ K is not circular so ΦUtV\Λ is the identity for all ueΛL Γ\ S\ It
follows as in the case considered above that K has 3-dimensional
central sections which are bodies of revolution contrary to Lemma
3.1.

Lemma 3.5 contradicts Lemma 3.4, so we conclude that K is a
euclidean ball.

We have now proved:

PROPOSITION. If Kis a centrally symmetric ^-dimensional con-
vex body and all the ^-dimensional central sections of K are congru-
ent, then K is a euclidean ball.

4* Proof of the theorems*

Proof of Theorem 1. Let d denote the dimension of K, and
consider first the case when d = 4. For we S* let A(u) be the section
of K through p which is perpendicular to the direction u. Then
A(u) is a complete turning of some 3-dimensional body A in E\ so
by Lemmas 2.1 and 2.2, A is centrally symmetric. Hence A(μ) is
centrally symmetric for each u e S3. Consider an orthogonal projec-
tion KQ of K on a 3-flat through p. Then every 2-dimensional section
of Ko through p is a projection of a 3-dimensional section of K
through p. Thus all 2-dimensional sections of Ko through p are
centrally symmetric, and it follows from a result of Rogers [6] that
KQ is centrally symmetric. Every 2-dimensional orthogonal projection
of K is a projection of some 3-dimensional projection, and so is
centrally symmetric. It follows from another result of Rogers [6]
that K is centrally symmetric.

If p is the center of K, it follows immediately from the
Proposition above that K is a euclidean ball with center p. Suppose
therefore that the center of K is a Φ p, and consider a 3-dimensional
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orthogonal projection π with π(a)Φπ(p). As we have seen above, every
2-dimensional section of π(K) through π(p) is centrally symmetric,
but π{a) is the center of π{K). It follows from the False Center
theorem of Aitchison, Petty and Rogers [1] that τc(K) is an ellipsoid.
Since π(a) Φ π(p) for almost all projections π, by taking limits we
find that every 3-dimensional projection of K is an ellipsoid, so K
is an ellipsoid by the dual of a result of Busemann [2, p. 91], The
3-dimensional central sections of K are all similar, and it is easily
shown that K must therefore be a euclidean ball. Since the 3-
dimensional sections of K through p are all congruent, p must be
the center of K.

In the case d > 4, it follows from the 4-dimensional case
considered above that every 4-dimensional section of K through p
is a euclidean ball with center p, so K is a euclidean ball with
center p.

Proof of Theorem 2. We may assume that the centroid of K
is o. Consider an orthogonal projection Ko of if on a 4-ίlat through
o. The 3-dimensional orthogonal projections of KQ are all orthogonal
projections of K and are therefore congruent. So the 3-dimensional
orthogonal projections of Ko give rise to a complete turning of some
3-dimensional convex body in 4 dimensions, and by Lemmas 2.1 and
2.2 they are all centrally symmetric. Hence Ko is centrally sym-
metric. It follows that K is centrally symmetric with center o,
using a result of Rogers. Let K* be the polar reciprocal of K about
o. Then all the central 3-dimensional sections of K* are congruent
so by Theorem 1, if* is a euclidean ball with center o. Hence K
is a euclidean ball.

Proof of Theorem 3. First consider the case when the dimension
of K is 2n + 1. For each unit vector u let K(u) be the 2^-dimen-
sional section of K through p perpendicular to u, and let F(u) be
the 2w~dimensional ellipsoid of least volume containing K(u); the
uniqueness of F(u) was proved by Danzer, Laugwitz, and Lenz [3].
The affine transformation Φu which maps F(u) onto a 2%-dimensional
euclidean unit ball B(ύ) in the hyperplane of F(u) by dilating its
principal axes is a continuous function of u. Then all ΦuK(u) for
u e S3 are congruent, so ΦuK(u) is a field of congruent 2%-dimensional
bodies in E2n+1. A result of Mani [5] shows that each ΦuK(u) is a
euclidean ball, so K(u) is an ellipsoid. It follows from a theorem
of Busemann [2, p. 91] that K is an ellipsoid.

Now suppose the dimension of K is greater than 2^ + 1. From
the case already considered it follows that every (2n + l)-dimensional
section of K through p is an ellipsoid, and Busemann's result then
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shows that K is an ellipsoid.
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