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ON HYPOELLIPTIC DIFFERENTIAL OPERATORS
OF CONSTANT STRENGTH

M. SHAFII-MOUSAVI AND Z. ZIELEZNY

A hypoelliptic differential operator P{D) with constant
coefficients has the following property: For every u e &'(Ω),
if P(D)u is in a Gevrey class in Ω then so is u (though the
two Gevrey classes are not necessarily the same).

In this paper we prove that hypoelliptic differential
operators with variable coefficients have locally the same
property, if they are of constant strength and their coef-
ficients are in a Gevrey class.

Let P(x, D) be a differential operator with C°° coefficients and of
constant strength in a neighborhood of a point x° e Rn. L. Hormander
([1], Theorem 7.3.1) proved the following local existence theorem:

There exists a sufficiently small neighborhood Ω oί x° and a
linear mapping E of &\Rn) into tf'(Rn) with the properties

(1) P(x, D)Eu = u in Ω , if u e g

(2) JEP(&, 2>)t; = v in fl , if ve if'(β) ,

and

(3) \\Eu\\p,pok^Ck\\u\\p>k, if w e ^ ' C R * ) Π ̂ , & , ke

If, in addition, the operator PO(D) = P(#°, D) is hypoelliptic, then
every solution u e 3f\Ω) of the equation

(4) P(x, D)u = i;

is in C°°(β), whenever t; 6 C°°(Ω) (see [1], Theorem 7.4.1).
But Po(D)f being hypoelliptic, is d-hypoelliptic for some d ^ 1,

i.e., every solution ue££ϊf(Ω) of the equation

PO(D)^ = v

is in the Gevrey class Γpr(Ω), when veΓp(Ω) and |θ' = max {d, |θ}.
The question arises whether the same is true for equation (4), if the
coefficients of P(x, D) are in ΓP(Ω).

In this paper we prove a theorem on Gevrey regularity for a
very wide class of operators—not necessarily differential operators.
Next we apply this general theorem to a differential operator P(x, D)
of constant strength in a neighborhood of x° eRn. We choose Ω as in
the existence theorem mentioned above. If the coefficients of P(x, D)
are in ΓP(Ω) and PO(D) is ώ-hypoelliptic, we show that every solution
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ue%"(Ω) of equation (4) is in Γdp\Ω), when v e ΓP(Ω) Π W{Ω) and
p' = max{d, p}.

Throughout the paper we use the notation of [1] and [3].

l The general theorem* We recall that, if Ώ is an open subset
of Rn and p > 0, the ^th Gevrey class ΓP(Ω) can be defined as the
set of all functions u e C°°(ί2) with the property: To every compact
set Kd Ω there exists a constant A (depending on K and u) such
that

\\Dau\\κ^Alal+1(\a\\y ,

where || | |* is the ZΛnorm over K and a is any multi-index.
Similarly, if P is a polynomial in Rn of degree m, we denote by

ΓP

P(Ω) the set of all functions u e C°°(Ω) with the property: To every
compact set Kd Ω there exists a constant B (depending on P, K and
u) such that

|| P>XD)u\\x £ B*\j\y» , j = 0, 1,•• ,

where Pj(D) is the jth power of P(D).
The polynomial P is d-hypoelliptic if and only if there is a

constant C such that, for every a,

I ξ \^d I Z)αP(f) I ̂  C(l + I P(ί) I) , ξ e Rn ,

(see [4], p. 440). Hence it follows that

( 5 ) I ξ |2 ^ C'(l + I P(ί) | 2 ) d / w

and

( 6 ) I D«P(ξ) I ̂  C"(l + I P(f) l)1-!^/-^ , f e Λ ,

where m is the degree of P and C", C" are constants.
The following theorem is a refined version of a theorem stated

in [3]; we include the proof for the sake of completeness.

THEOREM 1. If P is a d-hypoelliptic polynomial then, for any
open set Ω c Rn and any p > 0, we have

ΓP

P(Ω) c Γdp\Ω) ,

where ρr = max {d, p}.

Proof. We may assume that d is the smallest number for which
the estimate (5) holds. Then d is a rational number and we can
write d/m = μ/v, where μ and v are integers > 0. It follows that

( 7 ) I Γ P
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for some constant Ct and every a with \a\ <-v- Furthermore, the
polynomial Pμ is d-hypoelliptic, and so

( 8 ) ! DaPμ(ξ) I ^ C2(l

by (6).
Let Ω be a bounded open subset of Rn and Ωδ9 δ > 0, the set of

points « 6 Ω whose distance from CΩ is greater than δ. By a theorem
of Hormander ([2], Theorem 4.2), conditions (7) and (8) imply that,
for every s :> 0 and t > 0,

sup I D*t; | U s + r ^ CJ sup τx \\ Pμ(D)v | U s + r + \\v\\Λ , v

where | α: | ^ v, λ = m/id and C is a constant depending only on P,
μ, v, and the diameter of Ω. Hence

( 9 ) || D*v \\Ω,+t ̂  C{\\ P»{D)v \\Ωs + t'λ || v IUJ , v e C~(Ω8) .\Ω,+t ^ C{\\ P»{D)v \\Ωs

Given an integer k >̂ 1 and a <5 > 0, we apply (9) with s = (1
ί = δ/fc and v = Dβu, where | /31 = (k — l)p. Next (if jfc > 1) we apply
again (9) to both terms on the right-hand side with s = (1 — 2/&)<5,
ί = ί/fc and either v = DrPμ{D) or t; = Drw, where 171 = (fc - 2)v.
After fc such steps we obtain

(10) m a x || Dau \\Ωδ £ Ck Σ

On the other hand, for each multi-index a with
there is a multi-index /5 with | β \ = v such that

Therefore, by the same theorem of Hormander, there is a constant
C such that

(11) \\D*v,\\Ωu^C'\muL\\D>u\\Ωi + \\u\\Λ , ueC°°(Ωδ) ,

where | a | ^ v — 1; the constant C may depend on δ.
If a is an arbitrary multi-index and kv ^ | α | < (k + l)y, we

choose another multi-index /S so that | a — β \ ^ v — 1 and | £ | = to.
Then condition (11) yields

\\D*v,\\Ωu£C'\ max || D*u\\Ωi + max || D'u\\Ω\ ,

Combining this estimate with (10), we obtain
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(12)

Suppose now that u e Γp

P{Ωf), where Ωf is an arbitrary open set
in Rn. If K is a compact subset of Ω', there exists a bounded open
set Ω and a δ > 0 such that Ka Ωu c Ω c c Ω\ It follows that, for
some constant B,

\\P%D)u\\Ω^Bi+Himp , i = 0,l, . . . .

Note that in the definition of ΓP(Ω) the terms (j I ) m p can be replaced
by jjmp, by the Stirling formula. This leads to

(13) kn i| P{k~i}P(D)u \\Ω ^

^ [(B

i — 0, 1, , k, where p' = max {d, p}. Applying the estimates (13)
to the righ-hand side of (12) we can find two constants B1 and B2

such that

I D a u \\Qiδ ^ a
\a\mμρ'/v

a\\«\dP>

Thus ueΓdp\Ωf) and the proof is complete.
We are now in a position to prove the general theorem. We

denote by || || the ZΛ-norm over Rn.

THEOREM 2. Let Ω be an open subset of Rn and let T be a
mapping of C™(Ω) into C°Z(Ω) whose powers Tj, j = 1, 2, , have
the following properties:

(tj) There exists a d-hypoelliptic polynomial P such that

\\Pj(D)u\\ ^Aj\\Pu\\ , ueC%Q) , j = 1, 2, . -. ,

where A is a constant independent of j.
(ί2) For some p > 1,

|| Tjv !| ^ Bj+1Uirp , v e ΓP(Ω) n &\Ω) , i = 1, 2, • ,

where m is the degree of P and B is a constant independent of j.
Then every solution u e C™(Ω) of the equation

(14) Tu = v

is in Γdp\Ω), when v e ΓP(Ω) Π C£\Ω)\ here, as before, ρf = max {d, p}.
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Proof. The theorem follows immediately from Theorem 1. In
fact, let u 6 C o(β) be a solution of equation (14) with v e ΓP(Ω) Π

Making use of conditions (ίx) and (t2) we then have

\\P'(D)u\\£A'\\T'u\\

i ! ) ^ , i = 1, 2, • .

This proves that ueΓp

P(Ω). Since P is ώ-hypoelliptic, it follows that
ueΓdp'(Ω), by Theorem 1.

2* Differential operators of constant strength* The following
lemma is essential for the proof of our next theorem.

LEMMA. Let Po be a hypoelliptic polynomial of degree m and
set k = P o . Then

(15) ku(ξ) = sup k(ζ + $ , v > 0 ,

is α function in J2Γ with the properties

(16) k(ξ) £ K(ξ) £ k(ξ)(l + CuT , feΛ ,

(17) (fcO* = (fc.)y , i = 1, 2, - ,

(18) ^ ( f ) = s u p ^ f . ' t / ^ α + C\ξ\r , feΛ ,

where C is a constant, and

(19) M^ —> 1 uniformly on compact subsets of Rn as v —> °o.

Proof. The properties (16)—(18) follow immediately from (15)
and the inequality

which is valid for k = Po. We prove the convergence (19).

If I ξ I ̂  μ, then

k(ξ' +
(20)

We claim that the right-hand side of (20), which is ^ 1 , converges
to 1 as v->oo, uniformly for ξ'eRn.

Assume the contrary. Then there exist ε > 0, a sequence {vά} c R,
Vj~* °°> and sequences {̂ }, {̂ }, {ηf

0}c:Rn such that

(21) k{ξ) + ηi) = sup k{ξ'ό + η) , k{ξ] + 3?;) - sup fc(£ + 7 ) ,
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and

(22) ΐί?VJ> =1 + £' i = l,2,....
# Iw + Vi)

Obviously we have

(23) Vj < I VJ i ^ μ + ^i

and

(24) k(ζ'5 + %) ^ fc(ίί - VJ) > 0 = 1, 2, .

But, for each i , one of the inequalities

(25) I ξ'ά + % I > vs or I f J - η, \ > vά

must be satisfied. For, otherwise we could write

which contradicts the first inequality in (23). Since P o is a hypo-
elliptic polynomial, it follows from (24) and (25) that | £J + % | -> °°.

On the other hand, if vy > jtβ/2, then

(26)

in view of (21), (22) and (23). Furthermore, since k2 is a polynomial
of degree 2m,

(27) £ 2 ( ί + % - Aij^|) ^ ^2(ί; + %) - Σ iD«k\£ + % ) i - ( 1 ^ ^ ) 2 m ,

by Taylor's formula. But we assumed that the polynomial Po is
hypoelliptic and therefore

0 , if a Φ 0 and | ξ \

(see [1], p. 99, Theorem 4.1.3). Hence it follows that

0 , if a Φ 0 and | ξ
^ (ί)

If now I ξ'j + yjj \ is sufficiently large, we obtain from (27) the estimates

ξ'f + ηs

which contradict the inequalities (26), when ε < 1.
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The contradiction proves the desired convergence of the right-
hand side of (20). The property (19) is an immediate consequence of
that fact.

We remark that the weight function kδ defined in [1] (see p. 35,
Theorem 2.1.2) cannot be used for our purpose.

THEOREM 3. Let P(x, D) be a differential operator of constant
strength in a neighborhood of x° and let Ω be a sufficiently small
open neighborhood of x° for which the local existence theorem is
valid. If the coefficients of P(x, D) are in Γp(Ω)f p > 1, and if the
operator PO(D) — P(x°, D) is d-hypoelliptic, then every solution ue
gf'(42) of equation (4) is in Γdp\Ω), whenever veΓp(Ω) Π ίf'(i2).

Proof. Since P{x, D) is of constant strength in Ω and PO(D) is
hypoelliptic, every solution ue&'(Ω) of equation (4) is in C™(Ω),
whenever veC^(Ω) (see [1], p. 176, Theorem 7.4.1). For the proof
of Theorem 3 it now suffices to show that P(x, D) satisfies the con-
ditions imposed on T in Theorem 2.

We first observe that, by the lemma, we can replace in the proof
of the local existence theorem the function kδ by our function kv.
Next we recall that condition (3) is derived from the estimate

II Ef\\p.p.kδ ^ Co I I / I U fe gf'CR ) n <&Ptk,

where Co is a constant independent of /, k and δ (see [1], p. 176).
Hence, if p = 2, k — Po and ku is as in our lemma, we obtain

(28) \\®u\\2Mk^)v ^A\\E^u\\2ΛkJ-% , ueC-(Ω) ,

where A is a constant independent of j and u. But, in view of (16)
and (17), there is a constant B independent of j and u such that

(29) || E^u||2>(JkJ-i)y ^ B || E^u\\2Mk^)v , ueCΐ(Ω) .

Condition (16) and repeated application of (28) and (29) gives

(30) || Eju\\2,kj £ || E>'u\\ith{kj-i)it £ (ABY \\u\\, ueCΐ(Ω) .

Substituting now P(x, D)u in place of u in (30) and observing that

| | P ^ ) / | | ^ | | / l k f c i , feC"(Ω),

we obtain

| | Pi(D)E*pt(x, D)u\\£ (ABY \\ P>\χ, D)u \\ .

Hence we conclude that

(31) 11 Pi(D)u 11 ̂  (ABY 11 P'(x, D)u\\ , ue C?(0) ,
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because of (2), where Po is a cf-hypoellptic polynomial.
On the other hand, if v e i>(42) Π %"(Ω), we have

(32) i I P % , D ) v \ \ £ σ+\j I ) " " , j = 1, 2, . ,

since the coefficients of P(x, D) are in ΓP(Ω).
By Theorem 2, conditions (31) and (32) imply that every solution

ueC~(Ω) of equation (4) is in Γdp'(Ω), when veΓp(Ω) n g"(β). The
theorem is thus established.
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