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C* -ALGEBRAS ASSOCIATED WITH
FREE PRODUCTS OF GROUPS

WILLIAM L. PASCHKE AND NORBERTO SALINAS

We show that the C*-algebra of the left regular re-
presentation of the free product of two nontrivial groups,
not both of order 2, is simple and has a unique tracial state.
In the case of the free product of cyclic groups, we investi-
gate weak versus strong triviality for extensions of this C*-
algebra. One consequence of our extension-theoretic results
is that the algebras of nxn matrices (n = 1,2, •) over the
C*-algebra of the left regular representation of the free
product of two cyclic groups are pairwise nonisomorphic.

For a discrete group G, we let Cΐ(G) denote the C*-algebra
generated by the left regular representation of G on S2(G). When
G is amenable, Cf(G) is reasonably well-behaved. It coincides with
the full group C*-algebra C*(G) defined in 13.9 of [6], so that its
^-representations on Hubert space correspond precisely to the unitary
representations of G, and is nuclear. (In fact, the conditions "G
amenable", "C?(G) = C*(<?)", and "C*(G) (resp. C*(G)) nuclear" are
equivalent [7], [9], [4].) For certain nonamenable groups G, on the
other hand, Cf(G) possesses properties which in this context are
somewhat pathological and which distinguish it quite sharply from
C*(G). The latter algebra always admits a multiplicative linear func-
tional, but E. T. Powers showed in [11] that Cf(G) is simple and
has a unique tracial state when G is the free group F2 on two
generators. M. D. Choi [3] obtained the same properties for C*(G)
when G is the free product Z2*Z3 of the cyclic groups of orders 2
and 3. Choi also showed that although C*(Z2*Z3) is nonnuclear, it
(and therefore Ct{F2)) can be embedded in a nuclear C*-algebra. By
a recent result of S. Wassermann [14], however, C*(F2) is not a
C*-subalgebra of any nuclear C*-algebra.

Our main result in §1 below is that C?(Gί*G2) is simple and has
a unique tracial state whenever G1 and G2 are nontrivial groups not
both of order 2. This subsumes the cases treated in [3] and [11].
Generalizing somewhat the example in [3], we also show that if U
and V are unitary operators of orders 2 and n (^3), respectively,
for which there exists a projection P satisfying P + UPU* — I —
P+ VPV* + V2P(V*Y + . . . + V-'PiV*)*-1, then C*(U, V) is natu-
rally isomorphic to Ct{Z2*Zn). In §2, we introduce a numerical in-
variant j(A) for separable unital C*-algebras A; namely, j(A) is the
nonnegative integer that generates the subgroup of Z consisting of
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the indices of all unitaries in the Calkin algebra that commute with
the image of A under a trivial extension. We prove that j(Cf(Zn*Zn))
divides n for n = 1, 2, , and deduce from this that j(C?(F)) = 1 if
F is free on a finite or countably infinite set of generators. In other
words, all weakly trivial extensions of Cϊ(F) are strongly trivial.
Another consequence of our result for Cf(Zn*Zn) is that the C*-
algebras C?(G) (g) Mn (n — 1, 2, •) are pairwise nonisomorphic when-
ever G is the free product of two cyclic groups.

1* Simplicity and uniqueness of trace* Given a (discrete) group
G, we shall denote by /\G) the Hubert space of all absolutely square—
summable functions /: G —> C. The left regular representation of
G on s\G) is obtained by defining, for each s in G, the unitary
operator Ls by (LJ)(t) - f{s"H) (t in G). Notice that LA = δ,t,
where δt is the characteristic function of {t}. The linear span of
{Ls:seG} is a *-algebra, which we denote by A*(G). We write
Cf(G) for the norm-closure of A*(G). There is a natural faithful
tracial state τ on C?(G) defined by τ(T) = (Γδβ, δβ), where e is the
identity of G. We shall be interested in Cf(G) when G is a free
product. By definition [8], the free product G^G2 of two groups
Gx and G2 is the set consisting of the empty word (denoted by e)
together with all reduced words w = aγa2 anf where the α/s are
elements of either Gx or G2 different from the identity and satisfy
the condition: a5 e Gi implies aj+1 e Gz^ (1 ^ j <; n — 1, i — 1, 2). The
integer n = /{w) is called the length of the word w. We set /(e) =
0. The set GX*G2 becomes a group with identity e if we multiply
reduced words by juxtaposing them and then performing the obvious
simplifications required to put the product in reduced form.

The proof of the following theorem is based on the techniques
of [11], and generalizes the results of [11] and [3].

THEOREM 1.1. Let G = GX*G2, where Gt and G2 are nontrivίal
groups not both of order 2. Then

(a) C*(G) is nonnuclear;
(b) Cΐ(G) is simple)
(c) τ is the only tracial state on C?(G).

Proof. For definiteness, assume that G2 has order greater than
2. Let a in Gt and 6, c in G2 be such that none of the elements α,
b, c, b~λc is the identity. Part (a) follows from the simple observation
that G contains a copy of F2. Indeed, let r — ab and s = ac. It
readily follows that r2 and s2 generate a copy of F2. Therefore, we
deduce that G is nonamenable, and from [9] we conclude that Cf(G)
is nonnuclear. Now, as in [11], parts (b) and (c) are direct conse-



FREE PRODUCTS OF GROUPS 213

quences of the following lemma.

LEMMA 1.2. Let G = GX*G2 as above, and let S be a self-adjoint
operator in C?(G). Then τ(S)I belongs to the norm closure of the
convex hull of the unitary orbit of S.

Proof. As in [11], it suffices to prove the lemma when S belongs
to A*(G) and τ(S) = 0. In this case, S can be written as

S =
i=l

where the a/s are scalars and each xt is different from e. We set
r = ab as above and j = 1 + max {s(xύ, , /(#«)}• Consider rixϊxr~*
for 1 <* i <^ w. If ί̂ i is a power of r, then of course rjxiιr~j = ccr1.
Otherwise, it is easy to see that rjxjιr~~j begins with a positive
power of r and ends with a negative power of r, that is, rjx^r~j

can be written as rt and as ί'r"1, where t begins with an element
of G\{e} and t' ends with an element of G\{e). For k = 1, 2, •••,
let 2fc = rks2rj, where s = αc is as before. Further, let Ak be the
set of all reduced words w such that (the reduced form of) r~kw
begins with α, but a~ιr~kw does not begin with &. One readily
checks that the Ak's are pair wise disjoint. We claim also that if
y 6 G\Ak, then s~xr~ky begins with an element of G2\{e}. (If r~ky does
not begin with α, then s~ιr~ky — c~γa~xr~ky begins with c~ι. If a~ιr~ky
begins with 6, then s~ιr~ky begins with c~ιb.) Hence, s~2r~ky begins
with c"1 for all y in G\Ak. We let Pk be the projection of s\G) onto
the subspace Mk consisting of all those functions / whose support
supp (/) is contained in Ah. Because the Aks are disjoint, the Pks
are orthogonal to one another. We claim that the compression of
LZkSLz-ί to 90ΐfc is zero for ά ^ l . To see this, it suffices to show that
(J — Pk)LZkX.z-i(I — Pk) — 0 for 1 <; i ^ n. Thus, given a function
/ in /\G) supported in G\Ak, we must show that f(zkxϊ1zk~

1y) = 0 for
every y in G\Ak. This is the case if for y in G\Ak, we have
zkxτxzιιy in Ak. But this follows easily from our observation above
that s~2r~ky begins with c"1, for if xτι is a positive power of r, the
only cancellation that occurs in zkxiιzk

xy = rVicr1^""2^"*!/ is at and
possibly to the left of the final b in xϊ1. Otherwise, rjxiW~ά is either
a negative power of r or begins with a positive power of r and
ends with a negative power of r; in these cases, no cancellation can
occur in z^z^y = rfcs(sr%~V~0(̂ ~2^~fcl/) except strictly inside the
expressions sr^x^r"3' and s~2r~ky. This establishes our claim about
LzκSLz-κ Our next observation is that if P is any projection
and T any bounded operator on a Hubert space § such that
(/ - P)T(I - P) = 0, then | (Γ/, /) | ^ 2 || Γ| | || Pf\\ for all / in φ with
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I I/I I £ 1. Indeed,

I (Tf, /) I £ I (Tf, P/) I + I (Γ/, (/ - P)f) I

= | (Γ/,P/) | + I (TPf, (I - P)f) I

We apply this remark to our operator <S and the projections Pk to
deduce that for every / in the unit ball of s\G), we have

/ / 1 9

-Σ.L..SL,-Λf,f
9 ίfti *4 "• '

1 y {L,kSL.-if,f)\

1/2

Since

(*)

z-^ is self adjoint, we obtain the following inequality:

9

Now by iterating (*) as many times as necessary, we can produce
a self adjoint operator of trace zero in the convex hull of the unitary
orbit of S whose norm is arbitrarily small.

REMARK 1.3. (a) We are indebted to Vern Paulsen for a helpful
comment that enabled us to reduce our original constant 79/81 to
2/3 in the above estimate (*). Indeed, we could have taken only
five terms in the above argument and ended up with a constant
2/i/5 which is still less than 1 and suitable for our purpose.

(b) It is easy to see that the converse of Theorem 1.1 also
holds. That is, if G = Z2*Z2, then G is not i.c.c. and hence Gt(G)
has nontrivial center. This means that Cϊ(β) can neither be simple
nor have a unique tracial state. Furthermore, it can be easily seen
that Z2*Z2 is an amenable group and hence C*(Z2*Z2) is a nuclear
C*-algebra.

(c) The fact that C?(G1*G2) is simple (for GL and G2 as in
Theorem 1.1) implies that Ct(G^G2) cannot coincide with the C*-
algebraic free product of C?(GX) and C*(G2) (cf. [1]). On the other
hand, full group C*-algebras satisfy C*(Gi*G2) = C*(G1)*C*(G2) be-
cause of the naturality of both free products.

(d) Since F2 coincides with Z*Z, Theorem 1.1 generalizes the
result of [11]. Moreover, the group G considered in [3] can also be
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defined as G = Z2*Z3f so Theorem 1.1 also extends the result of [3].
Notice that one can generalize the C*-algebra C*(u, v) considered

in [3] as follows. Let π1 and π2 be ^-representations of the matrix
algebras M2 and Mn(n ̂  3) on an infinite-dimensional Hubert space
for which the projection

P=7Γ1

coincides with the projection

7ΓS

1 0

0 0

ό ό

1 0

0 0

Let

0 1

1 0
and V = π,

,0

1 0 •••

0 1 0

0 1

o i

0

0/

Then

(**)

U* = IT v* = v- = 1= Vn , and

P + UPU* = I = Σ V'PiV*)1 .
ι=0

From [10], it follows that C*(P, U, V) is isomorphic to ^ ^ (x) M2,
where ^k (for k ^ 2) is the C*-algebra generated by k isometries
studied in [5]. Since this identification is a natural one, it also follows
that C*(U, V) is algebraically unique in the sense that if P ' is any
other projection and Ur and V are any other two operators satisfy-
ing (**), then there is a ^-isomorphism of C*(U', V) with C*(U, V)
sending Uf to U and V to V. In particular, U and V can be re-
presented spatially as described in [10].

Another consequence of the C*-algebra uniqueness of C*(U, V)
is the following theorem.

THEOREM 1.4. Let U and V be as above. Then C*(U, V) is
"-isomorphic to C?(Z2*Zn)f and hence is nonnuclear and simple, and
has a unique tracial state.

Proof. Let G = Z2*Zn, and let a in Z2, b in Zn be the basic
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generators. Let A be the subset of G consisting of all words that
begin with α. Then G is the disjoint union of A and a A, and the
sets A,bA, •- ,bn~1A are pairwise disjoint. Furthermore,

U bxA = {e, b, , bn~x} .

Now let φ = /\G), Ό! = La, V = Lb, and let P' be the projection
on the subspace of $Q consisting of all those functions / such that
supp (/) £ A. Then all of the requirements of (**) are satisfied except
the last. Indeed, I - Σ?=i* (V'γP(V'*y is the ^-dimensional projec-
tion onto the subspace of functions supported in {e, 6, •••,&*~1}.
Therefore, all the properties of (**) actually hold in the Calkin
algebra. The restriction of the Calkin map to C*(U'9 V

f) is an
isomorphism, so C*(U', V) = Cf{Z2*Zn) is canonically isomorphic to
C*(U, V) (via the Calkin algebra).

REMARK 1.5. (a) With a small extra effort, one can actually
construct a subset A oί G{— Zz*Zn) in the above proof so that the
projection P' defined from A together with the unitaries Ur and V
satisfy all of the requirements of (**). Indeed, one can define such
a set A by induction on the length of reduced words in G as follows.
Start with eg A; inductively, if w — xz is a reduced word with
s(w) — n + 1 and s(z) = n, then we A if and only if zg A and x is
either a or &.

(b) One can actually define intrinsically the trace τ on C*(U, V).
In fact, we first notice that every operator in A*(G) can be written
as T — aol + Σ?=i GiLxi where sc4 Φ e for 1 ̂  ί <; n and aQ is uniquely
determined by aQ — τ(Γ). Let φ be the isomorphism from the group
{Lx: xeG} onto the group generated by U and V determined by
φ(La) = U and φ(Lb) = V. Then the correspondence

establishes a ^-isomorphism from A*(G) onto the *-algebra generated
by U and V. This isomorphism extends to the canonical isomorphism
from Cf(G) onto C*(Z7, F). Thus, one can define, on the *-algebra
generated by U and V, & trace τ by

τ(aj + Σ ^φ(Lx.)) = aQ,

which determines the trace on C*(U, V).
(c) As in [3], it can be proved that every operator in C*(E7, V)

is quasi-triangular, but U and V are not simultaneously quasi-tri-
angular.
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When G is as in Theorem 1.1, one can show without much dif-
ficulty that the conjugacy class of every element in G\{e} contains
two elements which generate a copy of F2 in G. Thus, G has no
nontrivial amenable normal subgroups. The following proposition
shows that conclusions (b) and (c) of Theorem 1.1 fail for groups G
which do have a nontrivial amenable normal subgroup.

PROPOSITION 1.6. Let G be a group with amenable normal sub-
group H. There is a tracial state τ1 on Cΐ(G) such that r^LJ = 1
for every x in H.

Proof, First, let H be any subgroup of G. The decomposition
of G into right H-cosets decomposes the representation x(in H)-^
Lx(m J^{/\G))> the algebra of bounded operators on s\G)) into the
direct sum of copies of the left regular representation, whence it
follows that the C*-subalgebra of Cf(G) generated by {Lx: x e H) is
*-isomorphic to Cΐ{H). We shall thus regard Cf{H) as a *-subalgebra
of C?(G). Let S be a finite linear combination of Lx'& (x in H) and
T a finite linear combination of Ly's (y in G\H). If / and g are
unit vectors in /\G) supported in H, then (Tf, g) = 0 and || S + T\\ ^
I ((S + T)f flf) I = I (S/, g) I, so we have || S + Γ|| ^ \\S\\. It follows
that there is a conditional expectation E: C?(G) —> Ct(H) such that
E(LX) = Lx (resp. 0) when xeH (resp. xeG\H). Now suppose that
H is an amenable normal subgroup of G. By 3.5.2 of [7], every
unitary representation of H extends to a ""-representation of Ct(H).
In particular, the trivial representation of H on C extends to a
multiplicative linear functional φ on Gΐ{H) such that φ(Lx) = 1 for
every x in H. Let τ1 = φ°E, so τx is a state of C?(G) with τx{Lx) = 1
for every α; in iϊ. For s, ί in G, we have steH \ί and only if tseH
(since i ϊ is a normal subgroup) and hence τ^LsLt) = r^LtLs) = 1
(resp. 0) if steH (resp. st&H). It now follows easily that τγ is
tracial.

We have shown that the natural trace is not the only tracial
state on C?(G) when G contains an amenable normal subgroup H
different from {β}. Notice also that {Te C*(G): τ^T^T) = 0} is a
proper ideal of C*(G) containing 1 — Lx for every x in H, so C?(G)
is not simple under these circumstances either.

2. Weakly trivial extensions* By an extension of a separable
unital C*-algebra A, we mean a unital *-monomorphism from A into
the Calkin algebra ^ ( φ ) of a separable infinite-dimensional Hubert
space Q. Two extensions σ, τ: A —• ^ ( φ ) , &{§') are said to be
strongly equivalent if there is a unitary U: ξ> —> -ξ)' such that r is the
composition of σ with the ^isomorphism from ^ ( φ ) to ^(φ ' ) induced
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by U. (The corresponding notion of weak equivalence requires only
that U be a partial isometry with finite-dimensional kernel and co-
kernel.) We write [τ] for the strong equivalence class of the exten-
sion τ. Let A be faithfully and unitally represented on & with A
containing no nonzero compact operators, and for r = 0,1,2, , let
τr: A —> &($r) be the extension of A obtained by compression to a
closed subspace φ r of codimension r in § followed by the Calkin
map J*f(ίQr) —> <&($r) For each r, the strong equivalence class [τr]
is independent of the representation of A on φ by 1.5 of [13] and
independent of the choice of § r by elementary arguments. In par-
ticular, τ0 is, up to strong equivalence, the only extension of A that
factors through a ^-representation of A on the underlying Hubert
space. We call such extensions strongly trivial. Each of the τ r 's
is weakly equivalent to τ0, that is, weakly trivial. Together with
their inverses relative to the usual semigroup operation " + " on
strong equivalence classes, the [τr]'s comprise all of the weakly
trivial classes.

We let j(A) be the smallest positive integer j such that τd is
strongly trivial, setting j(A) = 0 if τi is not strongly trivial for any
j >̂ 1. It is clear from our comments above that j(A) is an algebraic
invariant of A.

REMARKS 2.1. (a) We have τk strongly trivial if and only if
j(A) divides k. (This is because [τr] + [τs] = [τr+s] for every r, s ^ 0.)

(b) If B is a unital C*-subalgebra of A, then j(B) divides j(A).
(This follows from the observation that τr (for B) is just the restric-
tion of τ r (for A) to B.)

(c) If u is a unitary in <^(φ) of index r ( ^ 0), then τ r is strongly
equivalent to the extension uτQ(-)u*. In order for this extension to
be strongly equivalent to r0, there must be a unitary v of index 0
in ^ ( φ ) such that vuτo(-)u*v* = ro( ) Hence, j(A) is the nonnegative
generator of the subgroup of Z consisting of the indices of all
unitaries in the Calkin algebra which commute with the image of A
under a trivial extension.

By way of examples, we mention that j(A) — 1 whenever A is
commutative (1.5 of [2]) and that j{Mn) = n by Remark 2.1 (c) above.
More generally, it follows from 3.3 of [12] that if A has an n-
dimensional irreducible representation, then j(A) divides n. Thus
for full group C*-algebras C*(G) (when G is countable), we have
j(C*(G)) = 1. On the other hand, j(έ?n) = 0 (n ^ 2) [10], where &„
is the algebra studied in [5]. One of our results in this section is
that j(C?(F)) = 1 whenever F is the free group on a finite or counta-
bly infinite set of generators. We will show this by showing that
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j(Cf(Zn*Zn)) divides n for n^2 and then observing that C*(F)
embeds unitally in (for instance) C*(Z3*Z3) and Cί(Z4*Z4).

THEOREM 2.2. Let G = Zn*Zn, where n^2. The extension of
Cί{G) obtained by compression to a subspace of S\G) of codίmension
n followed by the Calkin map is strongly trivial. Thus, j(Cf(G))
divides n.

Proof. Let & and c in G be the generators of the two copies
of Zn of which G is the free product. For a reduced word w in
G\{e], let D(w) be the set of all reduced words of the form yw where
y is either e or a word ending in a nonzero power of b (resp. c) if
w begins with a nonzero power of c (resp. δ). Said another way,
D(w) is the set of all words that "end in w". Let

E = U {D(bkcj): 1 £k^n-1,0 £ j £n-l} ,

and let $ be the subspace of s\G) consisting of the functions sup-
ported in E. Since G\E = {e, c, c2, - , c*"1}, the subspace ίΐ has
codimension n. We will exhibit a ^representation θ of C?((?) on
$ such that θ{Lb) and Θ(LC) differ finite-dimensionally from the com-
pressions of Lb and Le to $, thereby establishing the strong triviality
of the extension of C?(G) obtained from compression to B. For 1 <̂
3 ^ n — 1, consider

E3 = D(&0 u U {£>(&V): l^k^n-1}

and let ^ be the subspace of /\G) consisting of functions supported
in Ej. Since E is the disjoint union of the i?/s, §t is the direct sum
of the ®/s. Further, let

B - U {Dφk): l ^ k ^ n - 1 } and

C = {*} U U ( W ) : 1 ^ ί ^ " - 1} >

so that G is the disjoint union of B and C For 1 ^ j ^ n — 1,
multiplication on the right by e3' maps B onto

U {D(bkcj): l ^ k ^ n - l ) ,

while right multiplication by bj maps C onto D(b'). We may thus
define unitaries Vό: s\G) -> βy on basis vectors by setting Vβw — δwcj
(resp. dwbj) iί weB (resp. weC). These give rise to ^representa-
tions θά: C*(G) -> ̂ ( ^ ) defined by 0/Γ) = F. ΓFf. Let ^ be the
direct sum of the θ/s, so # is a ^-representation of C?(G) on $. We
claim that Θ^L^Vβ^ = Lft^A for every w in G\{e, 6, 52, , 6""1}.
If such a w belongs to B (that is, w ends with a nonzero power of
b preceded by a nonzero power of c), then so does bw and hence
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θό(Lb)Vάδw = Vβhw = δbwcj = LhVβw. If, on the other hand, w belongs
to C (that is, w ends with a nonzero power of c), then bw belongs
to C also and we have Vόδbw = δbwbj = LbVβw. It follows that θ(Lb)
differs from the compression of Lb to & by a finite-dimensional
operator of rank (at most) n(n — 1). In similar fashion, one checks
that θ(Le) Vβw = Lc V3-δw for every w in G, using the observation
that cw eB if and only if w eB. This shows that θ(Le) coincides
with the compression of Lc to $ϊ, completing the proof of the lemma.

We now explore some consequences of this theorem.

THEOREM 2.3. Let F he the free group on a finite or countably
infinite set of generators. Then j(C?(F)) = 1, that is, all weakly
trivial extensions of C*(F) are strongly trivial.

Proof. Let F be freely generated by the (finite or countably
infinite) set {aly a2, •}. Take n ^ 3 and let b and c be the generators
of the copies of Zn of which Zn*Zn in the free product. We may
embed F in Zn*Zn by (for example) sending each ak to (cb)kc(cb)k,
so as in the proof of Proposition 1.6 above, Cΐ(F) embeds unitally
in C*(Zn*Zn). The theorem now follows from Theorem 2.2 and
Remark 2.1 (b).

Since j(Mn) •= n, the theorem above and Remark 2.1 (b) imply
that C*(F) cannot unitally contain a copy of Mn for any n JΞ> 2. (It
has long been conjectured, at least for F — F2, that in fact Ct(F)
contains no projections except 0 and /.) One consequence of the
following proposition is that the C*-algebras Cί(F) (x) Mn(n = 1, 2, •)
are pair wise nonisomorphic.

PROPOSITION 2.4. Let A be a separable unital C*-algebra. For
every n >̂ 1, we have j(A (x) Mn) = j(A)n.

Proof. Let τ0: A —> <̂ (̂ >) be a strongly trivial extension of A.
Then τ0 (x) in: A(g)Mn-^ &(§) (x) Mn = &(§ (x) Cn) is a strongly trivial
extension of A (x) Mn, where in: Mn —> Mn is the identity map. The
unitaries v in £?(§) (x) Mn that commute with (τ0 (x) ΐn)(A (x) Mn) are
precisely those of the form v = u(x) In, with In the identity of Mn

and ^ a unitary in <̂ p(̂ >) commuting with ro(A). Since the index of
v is n times the index of u, the proposition follows from Remark
2.1 (c).

COROLLARY 2.5. Let G be the free product of two cyclic groups.
Then the C*-algebras Cf(G) (x) Mn(n = 1, 2, •) are pairwise non-



FREE PRODUCTS OF GROUPS 221

isomorphic.

Proof. One checks easily that G can be embedded in Zp * Zp for
some positive integer p. (The case G = Z*Z2 requires somewhat
special treatment. Here, we may embed G in Z4*Z4 as the subgroup
generated by bcb and c2, where b and c are the basic generators of
Z4*Z4.) This means that Cϊ(G) embeds in C*(ZP*ZP), so j(C*(G))
divides p by Theorem 2.2. In particular, j(Cϊ(G)) Φ 0 and the corol-
lary follows from Proposition 2.4.

It would be of some interest to compute j(C?(Zm*Zn)) for m,
n ^ 2. Since Zm*Zn embeds in ZP*ZP, where p is the least common
multiple of m and n, we know that j(Cΐ(Zm*Zn)) divides p. Is
j(C*(Zm*Z%)) equal to pΊ
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