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DISCRETE GENERALIZED GRONWALL INEQUALITIES
IN THREE INDEPENDENT VARIABLES

B. G. PACHPATTE AND S. M. SINGARE

The objective of this paper is to establish some new
discrete inequalities of the Gronwall type in three indepen-
dent variables which can be used in the analysis of a class
of finite difference equations involving three independent
variables.

1* Introduction* The role played by the discrete inequalities
of the Gronwall type [3] in the theory of finite difference equations
and numerical analysis is well known (see, [4]-[8] and the references
therein). Recently, in a series of papers [4]-[8], Pachpatte has
established a number of new discrete inequalities of the Gronwall
type which can be used in the theory of discrete time systems
involving one independent variable. To our knowledge such in-
equalities have not been considered before and seem to have much
future in the literature.

2* Main results* Before giving the main results in this section,
we first recollect a few of the basic notions and definitions from
[4]-[8]. Let NQ = {0, 1, 2, •}. The expression u(0) + ΣΓ-o1 &(«)
represents a solution of the linear difference equation Δu(n) = b(n)
for all n e N09 where A is the operator defined by Δu(n) — u(n + 1) —
u(n). The expression u(0) Π S c(s) represents a solution of the linear
difference equation u(n + 1) = c(n)u(n) for all n e No. We use the
usual convention of writing ΣS 6Φ&(S) = 0 and ILeφφ) = 1, if Φ is
the empty set. We also use the following notions of the operators
Δux(x, y, z) = u(x + 1, y, z) — u(x, y, z), Δuy(x, y, z) = u(xf y + 1, z) —

u{xy y, z), Δuz(x, y> z) = u(x, y,z + 1) ~ u(x, y, z) and Δu2

xy(xf y, z) =

Δux(x, y + 1, z) — Δux(x, y, z) and so on. We often use the letters x,
y, and z to denote the three independent variables which are the
members of JV0. For x, y, ze No, and functions a, δ, c with domain
NQ, and p with domain N3

0, set

φ(x, y, z; a, b, e; p) = [α(0) + b(y) + φ ) ] Π Γl +
o L

Π Γl + , , Λ^ίfλ ,,=o L a(s) + 0(0) + c{z)

Σ Σ P ( β , t,r)\.
ί=0 r=0 J

A useful three independent variable discrete inequality is
embodied in the following theorem.
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THEOREM 1. Let u(x, y, z) and p(x, y, z) be real-valued nonnega-
tive functions defined for (x, y, z) e N* for which the inequality

x~l y — \ z—1

(1) u(x, y, z) ̂  a(x) + b(y) + φ ) + Σ Σ Σ p(s, t, r)u(sf t, r) ,
s=0 ί=0 r=0

holds for (x, y, z) e iV0

3, where a(x), b(y), φ ) > 0; Δa(x), Δb(y)f Δc(z) > 0
are real-valued functions defined on No. Then

( 2 ) u(x, y, z) ̂  φ(x, y, z; a, b> c; p)

for (x, y, z) e iV0

3.

Proof. Define a function m(x, y, z) by

x-l y-1 z - 1

m(x, y, z) = α(») + 6(2/) + c(«) + Σ Σ Σ 2>(s, ί, r)u(s, ί, r) ,
s=0 ί=0 r=0

so that, by definition

m(0, 2/, «) = α(0) + b(y) + c(«) ,

m(», 0, z) = α(x) + 6(0) + φ ) ,

Then

y-l 2 - 1

<-> _/ Δlllϋχ\Jj) tjy <ύj — ZJCθ\̂ tί/y Π"̂  / 1 x j JL/yjϋf V) I J(Λ/\fA/9 Oy I J j

ί=o ? =o

and from (3) we have

(4 ) Δmx(x, y + 1, z) — Δmx(x, y, z) — Σ p(x, y, r)u(x, y, r) ,

( 5 ) Δmx(x, y + l,z + ϊ) - Δmx(x, y, z + 1) = Σ ί?(a?, 2/, r ) ΐ φ , 2/, r ) .

r=0

From (4) and (5) we have

Δ2mzy(x, y, z + 1) - Δ2mxy(x, y, z) - p(x, y, z)u(x, yy z) ,

which in view of (1) implies

( 6 ) Δ2mxy(x, y,z + 1) — Δ2mxy(x, y , z) ̂  p(x, y , z)m{x, y , z) .

From the definition of m(x, y, z) we observe that m(x, y. z)}^
m(x, y, z + 1), for (x, y, z) e N%. Using this fact in (6) we have

Δ 2 m x y ( x f y , z + 1) ~ Δ 2 m x y ( x , y , z) £ p ( x , y , z)m(x, y , z + ϊ) ,

i . e . ,
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( 7 ) Δ2mxy(x, y,z + l) __ /Pmxv(x, y, z) < p ^ ^ ^ ^
mix, y,z + 1) m(x, y, z + 1) ~~

From (7) we observe that

(8) Δ2mxyjx, y,z + l) __ Δ2mxyjx, y, z) < ^ ^ ^ ^
mix, y,z + ϊ) mix, y, z) ""

Now keeping x, y fixed in (8), set z = r and sum over r = 0, l ,
z — 1 to obtain the estimate

(9)
, y, z) r

From (9) and in view of the fact that m(x, y, z) ^ mix, y + 1, z) we
observe that

, y, z) ^ g
w(a?, y + ifZ) m(x, y, z)

Keeping a?, £ fixed in (10), set y — t and sum over t = 0,1, , y — 1
to obtain the estimate

mix + 1, y, z)
( 1 1 ) <S w(s, y, z)\l + . Jgg> + Σ Σ Pfe «, r)\ .

L α(») + 6(0) + c(z) *=o r=o J
Now keeping /̂, ^ fixed in (11), set x = s and substitute s = 0,1, ,
x — 1 successively in (11) to obtain the estimate

, y9 z) ^ [α(0) + b(y) + e(z)] Π Γl
o L

Π Γl + . .
=o L α(β) + 6(0) + c(»)

+ΣΣP(M,r)l
ί=0 r=0 J

= φ(x, y, z; a, 6, c; p) .

Substituting this bound for m(x, y, z) in (1) we obtain the desired
bound in (2).

REMARK 1. We note that for the method of proof to work in
Theorem 1 and all other theorems given below the following must
be satisfied:

m(xf y, z + 1) ^ m(x, y,z) > 0 and J2mxy(x, y, z + 1) ^ 0

Δ2mxy(x, y,0) = 0 , Amxix, y + 1, z) ^ 0 , Δmyixy y, z) ^ 0 .

REMARK 2. In relation to the notation φ defined in (A), we
observe that Theorem 1 have hypotheses which are symmetric in
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x, y, z as well as in α, 6, c. Hence there are 3! = 6 different con-
clusions we can state in Theorem 1 corresponding to the 6 permuta-
tions of (x, y, z) and corresponding permutations of (α, 6, c). For
example, in Theorem 1, we can conclude, in addition to (2) that

(2*) u(x, y, z) ^ φ(z, x, y; c, a, b; p)

where, by (A) above, the right side of (2*) is

[e(0) + a{x) + b(y)] Π Γ l + , . * ? * ) . , Λ + Σ Σ P ( « , t, r ) Ί .
=o L φ ) + α(0) + b(y) *=<> r=o J

Similarly we can use φ(y, x, z; 6, a, c; p) etc. We also note that a
similar permutation applies to the conclusion of Theorem 2 given
below.

Our next theorem deals with the three independent variable
generalization of the discrete inequality established by Pachpatte [5,
Theorem 1], which in turn is a discrete analogue of the integral
inequality established by Pachpatte [9, Theorem 1].

THEOREM 2. Let u(x, y, z), p(x, y, z), and q(x, yy z) be real-valued
nonnegative functions defined for (x, y, z) e Nl for which the in-
equality

(13) u(x, y, z) £ a(a) + b(y) + φ ) + Σ Σ Σ P(«, *, r)\u(s, t, r)
s=o t=0 r=Q L

+ Σ Σ Σ 9(fc. i, »)«(*, i, Λ)1 ,
k=o 1=0n=0 J

holds for (x, y, z) e N3

0> where a(x), b(y), c{z) > 0, Aa(x), Ab(y), Ac(z) ̂  0,
are real-valued functions defined on No. Then

u(x, y, z) ^ [α(0) + b{y) + φ ) ]
(ΛΛ\ x-i Γ y-ί 2-1 Ί
{ ' + Σ Δφ) + Σ Σ P(s, t, r)R(s, t,r)\,

s=0 L ί=0 r=0 J

for (x, y, z) 6 Nl, where

(15) R(x, y, z) = φ(x, y, z; a, bf c; p + q) ,

for (x, y, z) 6 No.

Proof. Define a function mix, y, z) by

m(x, y, z) = a(x) + b(y) + c(z)

+ Σ Σ Σ P(8, ί, r{u(8, t, r) + Σ Σ Σ QΦ, I, n)u{k, I, n)\ ,
s=0 ί=0 r=0 L k=0l=0n=0 J

so that, by definition
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m(0, y9 z) = α(0) + b(y) + c(z) ,

m{x, 0, z) = a(x) + b(c) + c(z) ,

m(x, y, 0) = α(a?) + b(y) + c(0) .

Then by following the same steps as in the proof of Theorem 1 we
have

Δ%mxy(x, y, z + 1) - Δ2mxy(xf y, z)

[ x-l y-1 z-1 η

u(x, !/f2) + Σ Σ Σ Q(k, I, n)u(k, I, n)
which in view of the definition of m(x, y, z) implies

Δ*mxy{x, y, z + 1) - Δ2mxy(x, y, z)

(16) Γ ar-l y-1 z~l ~]

^ p(x, V, z)\ m{x, i/,2) + Σ Σ Σ Q(k, I, ri)m(k, I, n) .

If we put
35 — 1 V — l Z — l

(17) v(x, y, z) = m(x, 1/,̂ ) + Σ Σ Σ ^(^, I, n)m{k, I, n) ,

so that

v(0, y, z) = α(0) + b(y) + c(») ,

v(x, 0, ^ - α(α ) + 6(0) + c(z) ,

9 y, 0) = α(ίc) + b(y) + c(0) .

Then by following the same argument as in the proof of Theorem 1
we obtain

J2vxy(x, y,z + 1) - Δ2vxy(x, y , z)
\JLO)

= A2mxy(x, y,z + 1) - Δ2mxy(x, y, z) + q(x, y, z)m(x, y, z) .

Using the facts that Δ2mxy(x, y, z-\-l) — Δ2mxy(x, yy z) ^ p(x, yf z)v(x, y, z)

from (16) and m(x, y, z) <£ v(x, y, z) from (17) in (18) we have

Λ2vxy(x, y , z + l ) - Δ2vxy{x, y , z) ^ [p(x, y , z) + q(x, y , z)]v(x, y , z) .

Now by following the same argument as in the proof of Theorem 1

we obtain the estimate

, V, z) £ [α(0) + b{y)
h 6(0) + c{z)

y-1 z-1 - |

+ Σ Σ IP(S> *> r) + 0(β> tf r)] = Λ(ίc> 2/> ^)
ί=0 r=0 J

Substituting this bound for v(x, y, z) in (16) and following the last

argument as in the proof of Theorem 1, we obtain the estimate
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m(x, y, z) ^ [α(0) + b(y) + e(z)] + Σ Γiα(s) + Σ Σ ί>(«, t, r)R(s, t, r)Ί .

Substituting this bound for m(x, y, z) in (13) we obtain the desired
bound in (14).

REMARK 3. We note that, if (13) holds then from the definitions
of m(x, y, z) and v(x, y, z) we have

(14*) u(xf y, z) ^ R(x, y, z) ,

on NB

Q, where R(x, y, z) is defined by (15). Certainly (14*) is less
work to compute in any given case. On the other hand, in the
special case that α, 6, c are constant (>0), and p Ξ= pOf q ΞΞ qQ are
also constants (>0), then we find

R(x, y,z) = (a + b + c)[l + (p0 + qo)yz]x ,

while the bound in (14) is, say

R(x, y, z) - (a + b + β)jl + Σ Σ Σ Po[l + (p0 + qo)tr]'\

< (a + b + c)\l + PoVzΣ, [1 + (Po +

= (α + 6 + c) | l + Po ([1 + to + qo)yz]* -

< JB(a?, y, z) .

Thus, in this case (14*) gives the simpler but not necessarily smaller
bound than (14).

REMARK 4. It is interesting to note that the bounds obtained
in (2) and (14) are independent of the unknown function u(xf y, z).
The estimates in (2) and (14) have interesting applications to uni-
queness, boundedness, continuous dependence and other problems in
the analysis of a class of finite difference equations involving three
independent variables. Some of these applications are given in §4.

3. Furthermore inequalities* In this section we wish to
establish some interesting and useful nonlinear discrete inequalities
in three independent variables of the Bihari [2, pp. 8-9] and Pachpatte
[4]-[8] type which can be used in the theory of finite difference
equations involving three independent variables. In Theorems 3 and
4 given below we use the following notation. For x, y, z e N09 and
functions α, b, c with domain No, and p with domain iVg, and Ω, V
with domain (0, oo), set
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(B) Ψ(x, y, z; a, b, c; Ω, V(u), p) = Ω[a(0) + b(y) + c(z)]

ψ Γ Ms)
-oL V[a(s) +6(0) + φ ) ]

V - l z - 1 - I

+ Σ Σ P(s, ί, r) .
ί=0 r=0 J

THEOREM 3. Lei u(x, y, z) ^uo> 0 and p(x, y, z) ^ 0 6e reαί-
valued functions defined for (x, y, z) e N$ and let W be continuous,
positive, strictly increasing function on I = [uQ, °o), %0 > 0. Suppose
further that the inequality

x-l y-l 2 - 1

(19) %(#, ?/, s) ^ α(a?) + b(y) + φ ) + Σ Σ Σ P(s> £, ̂ ) W(w(e, ί, r)) ,

is satisfied for (x, y, z) 6 Nl, where a{x), b(y), c(z) > 0, Δa(x), Δb(y),
Δc(z) ̂  0, are real-valued functions defined on NQ. Then for 0^x^x19

(20) u(x, y, z) £ Ω~ψ{x, y, z; a, b, c; Ω, W(u), p)} ,

where

(21) Ω(r) = Γ
Jr0

with rft > uaW(s) '

Ω~ι is the inverse of Ω and x19 y19 z1 are chosen so that

Ψ(x, y, z; a, b, c; Ω, W(u), p) e Dom (Ω~ι) ,

for all x, y, z lying in the subintervals 0 <; x <; xί9 0 ^ y <̂  yu

0^z£zlOf No.

Proof. Define a function m(x, y, z) by the right member of (19)
so that m(0, y9 z) = α(0) + b(y) + c(z), m(x, 0, z) = a(x) + 6(0) + φ ) ,
m(x, y, 0) = a(x) + b(y) + c(0). Then by following the same argument
as in the proof of Theorem 1 we obtain

Δ2mxy(x, y, z + 1) - Δ2mxy(x, y9 z) = p(x, y, z) W(u(x, y9 z)) ,

which in view of the definition of m(x9 y, z) and the fact that
m(x, y, z) ^ m(x, y, z + 1) implies

Δ2mxy{x, y, z + 1) - Δ2mxy(x, y, z) <> p{x, y, z) W(m(x, y, z + 1)) ,

i.e.,

(x, y,z + ΐ) Δ2mxy(x, y, z)
W(m(x, y,z + 1)) W(m(x, y,z + 1))
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From (22) we observe that

(23) Λ2mxy(x, y,z + l) _ 4>mΛV(x, y, z) < ( ,
W(m(x, y, z + 1)) W(m(x, y, z)) = PK ' UJ } '

Now keeping x, y fixed in (23), set z = r and sum over r = 0, 1, ,
z — 1 to obtain the estimate

(24) fff>

From (24) and in view of the fact that m(α?, y, z) S m{%, y + 1, z) we
observe that

W(m{x, y + 1, z)) W(m(x, y, z)) ~ - o pκ ' y> J m

Keeping x, z fixed in (25), set y = t and sum over t = 0,1, , 7/ — 1
to obtain the estimate

(2Q) Amx{x9 y, z) Aajx) ψ ψ ( % ,
W(m(x, y, z)) ~ W(a(x) + 6(0) + φ ) ) έί ίέί ^ v ' '

From (21) and (26) we have

m(x,y,z) W(s)

^ W(m(x, y, z))

^ Aa(x) , ^ ^

^ W[a(x) + 6(0)

Now keeping y, z fixed in (27), set x = s and sum over β = 0,1, ,
α? — 1 to obtain the estimate

Ω(m(x, y, z)) - Ω(a(Q)

s=o L T7[α(s) + 6(0) + c(z)] *=o r=o J

The desired bound in (20) now follows by substituting the bound
for m(x, y, z) from (28). The subintervals of No for x, y and z are
obvious.

REMARK 5. The estimate in (20) is independent of the choice of
uoe I used in defining Ω. One can use this fact to show that the
case u0 *> 0, W(u) > 0 on (u0, oo) and W(u0) = 0 can be obtained as
a limiting case from the theorem. This will allow W(u) = u on
(0, oo). For details, see Bessack [2, pp. 8-9].
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REMARK 6. If we compare Theorem 3 with W{u) Ξ U for u ^ 1,
with Theorem 1 we see that the hypotheses (1) and (19) are then
the same, but the bounds are now (2) and

(20*) u(x, y, z) ^ [α(0) + b(y) + φ ) ] Π exp Γ / α ( s )

=o La(s) + 6(0) + φ )

+ Σ Σ P(s, t, r)Ί .
ί=0 r=0 J

Using the fact that expu ^ 1 + u for all ueR, it follows that (2)
gives the better bound than (20*).

Our next result is a three independent variable discrete genera-
lization of the integral inequality recently established by Pachpatte
[10, Theorem 2].

THEOREM 4. Let u(x, y, z), p{x, y> z) and W satisfy the hypotheses
of Theorem 3, and suppose further that the inequality

x-l y-1 z-l Γ

u(x, y, z) <: a(x) + b(y) + c{z) + Σ Σ Σ 3>(β, t, r)\ u{s, t, r)
(29) ::::::::: L

is satisfied for (x, y} z) 6 Nl, where a(x)f b(y), c(z) > 0, Δa{x), Δb(y),
Δc(z) ̂  0, are real-valued functions defined on No. Then for 0 ^
x ^ x2, 0 <^ y <^ y2, 0 <^ z ^ z2,

(30) w(a?, y, z) ̂  [α(0) + 6(») + c(«)] + Σ Γ^α(«) + Σ Σ P(s, t, r)Q(s, t, r)Ί ,
s-0 L ί=0 r=0 J

(31) Q(x, yy z) - G~ψ(x, y, z; a, 6, c; G9 u + W(u), p)} ,

in which

(32) G(r) = Γ L ^ T 7 / , r £ r0 ^iίΛ r0 ^ ^0

G"1 is ίfce inverse of G and xi9 y2, z2, are chosen so that

Ψ(x, y, z; a, b, c;G,u + W(u), p) e Dom (G'1) ,

for all Xy y, z lying in the subintervals 0 ^ x ^ x29 0 ^ y ^ y29

0 ^z^z2 of No.

Proof. Define a function m(x, y, z) by the right member of (29),
so that m(0, yf z) = α(0) + 6(2/) + c(z)9 m(x, 0, «) = a(x) + 6(0) + φ ) ,
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m(x, y, 0) = a(x) + b(y) + c(0). Then by the same argument as in the
proof of Theorem 2 we obtain

Δ2mxy(x, y,z + ϊ) — Δ2mxy(x, y, z) ^ p(x, y, z)\m(x, y, z)

( 3 3 ) s-1 y-l z-l "I

+ Σ Σ Σ P(k, I, n)W(m(k, I, n)) .

If we put

x—l y-l z-l

(34) vix, y, z) = mix, y, z) + Σ Σ Σ P(k, I, n) W(m(Jc, I, n)) ,

so that

v(0, y, z) = α(0) + b(y) + c(z) ,

v(x, 0, z) = a(x) + 6(0) + c(z) ,

v(x, y, 0) = a(x) + b(y) + c(0) .

Then by following the same argument as in the proof of Theorem 2
we obtain

A2vxy{x, y, z + 1) - A2vxy(x, y, z) ^ p(x, y, z)[v(x, y, z) + W(v(x, y, z))] .

[Now by following the same steps as in the proof of Theorem 3 we
obtain the estimate

v(x, y, z) ^ G~λ\ G(α(0) + b(y) + φ ) )

ίΞoLα(β) + 6(0) + φ ) + W(a(s) + 6(0) + φ ) )

Substituting this bound for v(x, y, z) in (33) we have

Δ2mxy{xy y,z + ΐ) ~ Δ2mxy(x9 y, z) £ p(x, y, z)Q{x, y, z) ,

which implies the estimate

mix, yf z) ^ [α(0) + b(y) + c(z)] + Σ \ΔO(S) + Σ Σ P(s91, r)Q(s, t, r)Ί .
s=0 L t=0 r=0 J

Substituting this bound for mix, y, z) in (29) we obtain the desired
bound in (30). The subintervals of No for x, y, and z are obvious.

REMARK 7. As pointed out in Remark 2 there are five other
alternative conclusions corresponding to permutations of (x, y, z),
{a, 6, c), in addition to the conclusion (20) of Theorem 3. The same
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is true in case of the conclusion (30) of Theorem 4. Further we
note that, if (29) holds then from the definitions of m(x, y, z) and
v(x, y, z) we have

(30*) u(x, y, z) ^ Q(x, y, z) ,

on Nl, where Q(x, y} z) is defined by (31). In this case (30*) gives
the simpler but not necessarily smaller bound than (30). If we
compare Theorem 4 with W(u) — u for u ^ 1 with Theorem 2 with
p ΞΞ q we see that (13) and (29) coincide. In this case a simple
analysis shows that R(x, y, z) ^ Q(x, y> z) so that the bound obtained
in (14) is better than (30).

4* Some applications. In this section, we present some appli-
cations of our results to the boundedness, uniqueness, and continuous
dependence of the solutions of discrete versions of hyperbolic partial
differential equations involving three independent variables. It
appears that these inequalities will have many applications for finite
difference equations involving three independent variables, but those
presented here are sufficient to convey the importance of our results.

EXAMPLE 1. As a first application, we obtain a bound on the
solution of a summary difference equation

[ x-1 y-1 2 - 1 Π

x, | / , ^ , % , Σ Σ Σ &(a, y, z, s, t, r,u)\,
s=0 ί=0 r=0 J

with given boundary conditions at x — 0, y = 0, z = 0, where all
the functions are defined on their respective domains of definitions
and

(36) \f[x, y, z, u, v]\ ^ p(x, y, z)[\u\ + \v\] ,

(37) \h(x, y, z, β, ί, r,u)\<, q(s, t, r) \u\ ,

where p and q satisfy the hypotheses of Theorem 2. By using the
given boundary conditions, equation (35) can be represented by the
equivalent summary difference equation

at—1 y-1 z-l

u(x, y, z) = g(x, yt z) + X Σ Σ
(38) ί=ot=or=°

Σ Σ Σ Hs, t, r, k, I, n, u{k, I, n))Ί ,

where g(x, y, z) depends on the given boundary conditions. If
\g(x, y, z)\ ̂  a(x) + b(y) + φ ) , where a(x), b(y), and e(z) are as defined
in Theorem 2, then using (36), (37) in (38) and then applying Theorem
2, we obtain a bound on the solution u(x, y, z) of (35).
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EXAMPLE 2. As a second application we establish the uniqueness
of solutions of (35) with the given boundary conditions. We assume
that the functions h and / in (35) satisfy

(39) \h{x, y, z, s, t, r , u) - h(x, y, z, s, t, r,ΰ)\^ q(s, t, r) \u - ΰ\ ,

(40) \f[χ, y, z, u, v] - f[x, y, z, ΰ, v\\ ̂  p(x, y, z)[\u - ΰ\ + \v - v\] ,

where p and q are as in Example 1. The problem (35) is equivalent
to the equation (38). Then for any two solutions u and ΰ of (35)
we have

u-U = g(x, y, z) - g(x, y, z)

(41) + Σ Σ Σ \f\s, t, r, u, Σ Σ Σ λ(β, t, r, k, I, n, u)~\
s=0 ί=0 r=0 L L Λ=0 ί=0 n=0 J

[ s-1 ί-1 r-1 "~|\

s, ί , r ,%,ΣΣΣ h(s, t, r, k, I, n, u) \\ ,
&=0 1=0 n=0 J)

where g(x, y, z) and g(x, y, z) depends on the given boundary condi-
tions. Using (39) and (40) in (41) and further assuming \g — g\ <̂  ε,
for arbitrary ε > 0, we have

| w - δ | ^ f i + Σ Σ Σ p(β, ί, r)\\u - ΰ\ + Σ Σ Σ ?(*, i, w) |% - ΰ\].

Now a suitable application of Theorem 2 (with α + b + c = ε) gives

x—l y~l 2 — 1

| ιφ, y, z) - 5(a, |/,2)|^ε + e Σ Σ Σ P(s, t, r)K(s, t, r) ,
s=0 ί=0 r=0

where

K(8, t, r) - Π Γl + Σ Σ (P(k, I, n) + q{k, lf n)) Ί ,
fc=o 1_ i=o %=o J

Since ε > 0 is arbitrary we have u = u, i.e., there is at most one
solution of the equation (35).

We note that, here is a case where the simpler bound \u — ΰ\ t£.
R = εk(x, y, z) gives the conclusion u Ξ ΰ more easily.

EXAMPLE 3. Our third application is an example of continuous
dependence of the solution on the equation and boundary data.
Consider the boundary value problem (35) given in Example 1 and

(42) A*Uxyz = FΪx, y, z, U, Σ Σ ΣH(x, y, zy s91, r, U)] ,
[__ s=0 ί=0 r=0 J

with given boundary conditions at x = 0, y = 0, z = 0, where all the
functions are real-valued and defined on their respective domains of
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their definitions and

/Γs, t, r, U, Σ Σ Σ H(8, t, r, fc, Z, n, 17) Ί

- f[β, ί, r, U, Σ Σ Σ ΰ(β, ί, r, fc, ί, w, £/)]| ^ ε ,

and suppose further that the functions h and / in (35) satisfy the
conditions (39) and (40) with q(s, t, r) = M2 and p(x, y, z) = Mu where
ε, Mίf and M2 are positive constants. The equations corresponding
to (35) and (42) are (38) and

U(x, y, z) - G(x, y, z) + Σ Σ Σ F\S9 t, r, U(s, t, r),
s—0 ί=0 r=0 L

Σ Σ Σ H{8, t, r, h, I, n, U(fc, I, n))] ,

where G(x, y, z) depends on the given boundary conditions for the
equation (42). From (38) and (44) we have

u - U = (g - (?) + Σ Σ Σ ί/Γs- *, r, u, Σ Σ Σ h(s, t, r, k, I, n, u)~]
s = o t=0 r=ϋ I L k=0 1=0 n=0 _J

- FΪs, t, r, U, Σ Σ Σ His, t, r, k, I, n, U)\ .
L k=0 1=0n=0 J)

By subtracting and adding

/Γs, ί, r, Z7, Σ Σ Σ Λ(β, *, ̂  ^. h n, U)~]

in the braces of the above equation, and further assuming \g — G\ ^ ε
and using (43), (39), and (40) as mentioned above we obtain

\u- U\ ^e + ΣΣΣ{ΛΓi[|w- U\ + Σ Σ Σ ^ I ^ - ^l] + ej .

A suitable application of Theorem 2, on the compact set 0 <̂  x, y, z <̂  C,
yields

|% - Ϊ7| ^ Λfejl + Afx Σ Σ Σ Π [1 + iM1 + M2)tr]\ £ M*e
V s=0 ί=0 r=0 &=0 /

where M — 1 + C3, and Λf* is obtained by replacing x, y, z by C
in the expression in brackets. Thus the solution of the given
boundary value problem (35) depends continuously on / and the
boundary values. If ε —> 0, then \u — U\ —> 0 on the set.

In concluding this paper we note that the inequalities and their
applications presented here can be extended very easily to n inde-
pendent variables. We omit the details.
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