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ON UNITARY AUTOMORPHISMS OF
SOLVABLE LIE ALGEBRAS

OLDRICH KOWALSKI

Let 7 be a finite dimensional vector space over real
numbers. An automorphism A of V is called unitary if it
is semisimple and all its eigenvalues are complex units.
Particularly, all periodic automorphisms, i.e., such that Tk—
identity for some integer k, are unitary. The aim of this
paper is to prove the following Theorem. Let Q be an
^-dimensional real Lie algebra admitting a unitary auto-
morphism without nonzero fixed vectors. Then g admits a
periodic automorphism without nonzero fixed vectors and of
order k, where &<5n/4 for n even, and &:g2.5(7l~1)/4 for n
odd.

The proof is based upon the detailed study of possible eigen-
values of admissible automorphisms of g. Yet our method is purely
combinatorial—we do not make use of the Jacobi identities in g.
Thus, the same method can be applied to nonassociative algebras
or, more generally, to various tensor structures on vector spaces.
As concerns applications to the differential geometry (generalized
symmetric Riemannian spaces), see note at the end of this paper.

Comments:
(a) Obviously, an automorphism A of V is unitary if and only

if V admits a scalar product < , > such that (Tu, Tv) = (u, v) for
all u, v 6 V.

(b) It is well-known ([1], [3]) that a finite dimensional Lie
algebra admitting an automorphism without nonzero fixed vectors
is solvable. Thus our theorem is essentially a result on solvable
Lie algebras.

(c) For the validity of our theorem, it is not necessary to
assume that the initial automorphism is semisimple. For, let A be
an automorphism of g and A = S U the Jordan decomposition into
the semisimple and the unipotent part. Then S is an automorphism
of g possessing the same eigenvalues as A. Particularly, if A is
fixed-point free then so is S, and if all eigenvalues of A are complex
units then S is unitary.

(d) The fact that g admits a fixed-point free automorphism of
finite order can be proved directly as follows (cf. also [2]): Let A
be the given unitary, fixed-point free automorphism of g; then A
can be represented by a diagonal matrix (βu •••,#«) belonging to
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the torus Tn. Denote by G the closed subgroup of Tn generated
by the powers of A. Then G is a product of a torus and a finite
group. Hence the elements of finite order of G are dense and the
result follows.

Thus the principal result of our theorem is not the existence
part but the given inequalities.

1* The space o£ eigenvalues—multiplicative theory* Let &n

denote the set of all ^-tuples (θ19 , θn) of complex units such that
θtΦl for i = 1, •••,%. (Thus, as a submanifold of Cn, &n is
diffeomorphic to an open unit cube of Rn). A characteristic variety
of &* is a hypersurface Y* c &n defined by any of the following
relations:

θi θj = 0k (iφ j Φ k; i, j, k = 1, , n)

( 1 ) θfθj = l ( i , i = l , * -,n)

θt = θs (i Φ j) .

For a permulation π eΣn of the indices 1, , n and for a subset
y / c , # we put

If ^ is a characteristic variety then so is IJ$r') for each πeΣ%.
Finally, put

^ ( - ^ ) - U ίτ(-^) for all ^/f c ^ » .

By a θ-variety of ^ * we mean a 'nonempty set of the form
i ( ^ n ίl 5^), where Tu •••, 3^ are characteristic varieties.
Obviously, we have only finite number of /^-varieties in 3gn\ they
form a partially ordered set with respect to the inclusion map.
Let r^n c &n be the union of all characteristic varieties of ^ n .
For (θi) e ctfn we shall denote by W"(βύ the intersection of all
characteristic varieties containing (θt). Finally, we put <W*(θi) =
Σ(^(θi)). Then ^/"*(0ί) is the minimum ^-variety containing (^).
It is easy to see that, for each ^-variety W~ of ,^ % , there is (θt) e
<W such that Ύ/^ = ^ ^ ( ^ ) .

Now, let j y n denote the subset of all elements (^) e ^ % with
the following property: if 6> is among θu - -, θn with the multiplicity
m then so is its conjugate θ. Equivalently: (θi) e c^n belongs to
j%?n if and only if there is a permutation p e Σn such that p2 = id,
and θi = θp{i) for i = l, •••,?&. Obviously, if S is a real unitary
automorphism without nonzero fixed vectors of a real vector space
Vn, then the system of eigenvalues (θi) of S belongs to *S>/n.
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For (0<) 6 j y * we always have 3^*(0<) c J ^ Λ . In fact, because
and Σ{Jtfn) = J^*, it is sufficient to prove

Suppose ( ^ ) e J / Λ , and let j o e ί , be a permutation
such that <o2 = id, and 0* = θp[t) for i = 1, , w. Then ^ ^ ( ί ) = 1
for i = 1, , n. In other words, ^ ( 0 , ) c ^ Π Π ^^» where
^^i denotes the characteristic variety of ^ w given by the relation
θiθp(i) = 1. For (01)6^(0,) we get θ\θf

pW = 1 for i = 1, •••, n, i.e.,
#; = ff'p(i) for each i. Hence (0 ) e

As a consequence, we can see that each minimal 0-variety
c &n either belongs to Ssfn or to the complement 3

PROPOSITION 1. Let S be a unitary automorphism without non-
zero fixed vectors of a real Lie algebra g (dim Q = n). Let (θt) e

be the system of eigenvalues of S. Then for each n-tuple (β't) e
#i) there is a unitary automorphism S' of Q having (#ί) as its

system of eigenvalues.

Proof. Suppose (β't) e ^""*(#,). Then there is a permutation π e
Σn such that Jff(βJ) e W{β^. Thus we can re-numerate the eigen-
values θ[, - ,θ'n in such a way that (0ί) 6 ^ ( 0 0 .

Let C/i, , Un e gc be a basis of (complex) eigenvectors corre-
sponding to the eigenvalues θl9 •••,#„ respectively. Moreover, we
can suppose that a permutation peΣn exists such that p2 = id, θi =
0p{i)9 ϋi = Up{i) for i = 1, •••, w. Now, let us define a linear trans-
formation S' of gc by the relations S'Ut = θ'iUt,i = 1, ---,n. We
have to show that S' induces a (real) automorphism of g.

Firstly, S' induces a real linear transformation of g. In fact,
we have θ\ = θ'p{ί) for each i, and hence S'Ui = θ'tUt implies S'Ut =
S'UPW = θpWUp{i) = ΘΪUt. Further, put [Uif Uά] = Σ ϊ - i c £ I74. Then
because S is an automorphism, we have S([Uif Us]) = [StT*, iSC7y] =
θtθs[Ui, Uβ\. Thus [C/ί, Z7J =£ 0 implies that ^ is an eigenvalue
of S and c\ά Φ 0 can occur only in case that θk = ^ ^ . Now,
S'([J7i, Z/y]) = Σϊ«iC?y0ίi7*, where 4 ^ 0 only if θ'k = θ θ'j. Hence
S'([i7,, l/y]) = #0}[E7i, Z7y] = [iS'tT,, ST'Z7>]. This completes the proof.

Now, consider the partially ordered set of all ^-varieties of
&n, and let 3f% denote the union of all minimal θ-varieties (with
respect to the inclusion map). We obtain the following consequence
of Proposition 1:

PROPOSITION 2. Let g be an n-dimensional real Lie algebra
admitting a unitary automorphism without nonzero fixed vectors.
Then g admits a unitary automorphism S such that its system of
eigenvalues belongs to S^n Π i^ w .
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For our further purposes, we have to reveal the structure of
the variety £ ^ \ In the next paragraphs we shall show that 3f%

is a finite set. There is a certain difficulty connected with the
proof—it is caused by the fact that the manifold &n is noncompact.

2* The space of eigenvalues—additive theory* We shall start
this section with a geometric result called "Basic Lemma".

Let Λn be a finite set of linear subspaces of the cartesian space
R^x1, •••,#"] with the following properties:

(a) For K, LeΛn we have Kf) LeΛ».
(b) Λn contains all hyperplanes given by the equations of the

form x* — xj = 0, or x* + xό = 1, where 1 ^ i < j ^ n.
Let (In)° denote the open unit cube,

(I )o = {[χ\ . . . , a? ] e Rn/0 < x* < 1, i = 1, , n} .

£fn c Λn will denote the subset of all 0-dimensional subspaces; they
will be called the lattice points of Λn.

BASIC LEMMA. Each linear subspace KeΛn of dimension k > 0
such that K Π (In)° Φ 0 contains a proper subspace L e Λn of dimen-
sion l<k such that L Π (In)° Φ 0 . Particularly, if KeΛn, Kf]
(In)° φ 09 then Kf] (In)° contains a lattice point pe^fn.

We shall send two more lemmas beforehand.

LEMMA 1. (Generalized Pasch's axiom). Let A{r) be an r-dimen-
sional simplex in the euclidean space Er, and let a linear subspace
KczEr, dimjfiT> 0, intersect the interior of A{r). Then K intersects
the interior of a (r — l)-dimensional face Δ^~x) and the interior of
an Udimensional face Af(l <i r — 1) such that Af g= Jίr~υ.

Proof is left to the reader.

Let In(n ^ 2) denote the closed ^-dimensional unit cube

Γ = {[x\ , xn] 6 Rn/0 ^ x* ̂  1, i = 1, , n) .

LEMMA 2. In admits a triangulation into 2%~1 %! simplexes
Aίn) of dimension n such that:

(a) Each (n — l)-dimensional face of each simplex Aίn) is
contained in one of the following hyperplanes:

( 2 ) xi = 0, or x* — 1, or xi — xj = 0(i Φ j), or xι + xj =

(b) Exactly one (n — lydimensional face of each simplex A\n)
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belongs to the boundary dln of I*.
(c) The center of the cube In is the common vertex of all

simplexes Af\

Proof. For n — 2, the wanted triangulation of P is given by
means of 6 lines xι = 0, x2 = 0, xι = 1, x2 = 1, x1 - x2 = 0, a;1 + x2 = 1.
Suppose Lemma 2 to be true for some n, and consider the cube
J + ι. Let T be a triangulation of Jw satisfying the conditions of
Lemma 2, and let fit(X: I

n -»J*+1(i = 1, , n + 1; a — 0,1) denote
the map

fU[x\ , »•]) = [*S , a1"1, α, *'+ ι, , *•] .

Then we get a triangulation fi>a(T) on each face fitJJ%) of Jw + 1,
and thus a triangulation of the boundary d(In+1). Now, we define
a triangulation T" of In+1 in such a way that each (n + ^-dimen-
sional simplex Jf+1) of T has the center [1/2, •••,1/2] of Jw + 1 for
a vertex and an ^-dimensional simplex of the boundary triangula-
tion for a face. It is obvious that T' consists of 2n'2%~1>n\ =
2" (n + 1)! simplexes Jf+1), and that the conditions (b), (c) are also
satisfied. The verification of the condition (a) is left to the reader.

LEMMA 3. Let T be a triangulation of the cube In satisfying
the conditions of Lemma 2. Further, let Λn be a set of linear sub-
spaces of Rn as in Basic Lemma. Then each k-dimensional simplex
Af\k <^ n — ϊ) of the triangulation T is either contained in the
boundary dln, or it is contained in a linear subspace KeΛn and
has the point [1/2, •••, 1/2] for a vertex.

Proof. Each ft-dimensional simplex A^] of T is the intersection
of a certain number of (n — l)-dimensional simplexes of T. Thus
the A -dimensional plane L containing Δ^ is determined by a system
of n — k equations of the form (2). Now, if Aik) is not contained
in the boundary dln, it has the point [1/2, •••,1/2] for a vertex.
Hence L is given by a system of equations of the form xι — x3' = 0.
xι + χm = l, and thus it belongs to Λn.

Proof of Basic Lemma. Let T be the triangulation of In

constructed in Lemma 2. Let KeΛn be of dimension & > 0 and
such that K Π (In)° Φ 0 . Let ΔT e T be a simplex of the minimum
dimension containing a point of K Π (In)° in its interior. Let L Z)
Δίr) be the corresponding r-dimensional plane. According to Lemma
3, we have LeAn, and [1/2, •••, 1/2] is a vertex of Δlr).

Suppose now KQ L. Then, according to Lemma 1, the k-
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dimensional plane K intersects the interior of a face Δ%~1) and the
interior of a face 4 ι>, where I ^ r - 1 and Δ™ € Λ<rυ. Then at
least one of the simplexes 4ίΓ~υ, Λi0 e Γ contains the vertex [1/2, ,
1/2] and thus it does not belong to the boundary dln. Moreover,
it contains in its interior a point q e K Π (In)° — a contradiction to
the minimality of r.

Hence K^L, and the subspace P = iΓ Π 2/ is a proper subspace
of iΓ. We have P e An and P Π (I*)0 =£ 0 , which completes the
proof.

PROPOSITION 3. The union 2&n of all minimal θ-varieties of
&n is a finite set. Moreover, each element (#<) e &*' is of finite
order, i.e., (θ^)h = (Θ2)

k = — (θn)
k = 1 for some integer k.

Proof. Consider the diffeomorphism / of the open unit cube
(In)°c:Rn onto ^ n given as follows:

f([x\ , xn]) = (exp (2τn/^ϊaj1), , exp (2τπ/^ϊaj )) .

Consider the set of all hyperplanes of Rn which correspond to the
following linear equations:

x* + x* -xk = 09 .. . 7 . . . _ .
( i ^ ^ ^ A ^ ^; t , ί, Λ = 1, •-., n)

xι + x3 — xk = 1

( 3 ) «f + ̂  = l . « * i ; U = l f... fn)
aj* - ^ = 0

2a;' = 1 , (i = 1, •••, w) .

Let ylΛ denote the set of all linear subspaces of Rn which are
intersections of finite number of hyperplanes given above. For
each Le Λn we shall take into consideration all hyperplanes of the
form (3) containing L. Thus, each subspace Le Λn is characterized
by a unique (maximal) set μ(L) of linear nonhomogeneous equations
of the form (3); the equations of this set may be linearly dependent.
For each subspace L we also consider the corresponding set h(L)
of linear homogeneous equations. Now, two subspaces L, ΊJ 6 Λn

will be said to be conjugate if h(L) = h(U).
For any permutation π e Σn consider the transformation

Iπ: [x\ -- ,xn] i > [xπ{1), , x*{%)]

of Rn, and for LczRn put Σ(L) = \J^^nL(L).

LEMMA 4. If *W c ^ * is an θ-variety then f~\W) = Σ(L, U
U Lr) Π (In)°, where Lu , Lr 6 Λn is a complete set of mutually
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conjugate subspaces. Conversely, if Ll9 ,LreΛn is a complete
set of mutually conjugate subspaces then f[Σ(Lt U U Lr) Π (In)0]
is either an empty set or a θ-variety.

The proof is easy and it is left to the reader.

LEMMA 5. If Wcz^n is a minimal θ-variety then f~
consists of lattice points of Λn.

Proof of the lemma. Let *W~ be a #-variety and put /
Σ{L, U U Lr) n (I*)0. Suppose that dim Lx > 0, L, Π (I*)0 Φ 0 . The
set Λn satisfies the conditions of Basic Lemma. Thus, there is a
lattice point p e Lx Π (I*)0. Obviously, the set Lx U U Lr contains
all lattice points pίf , ps which are conjugate to p, and f(Σ{pu ,
ps} Π (In)°) c Ύ/^ is a #-variety. Hence Lemma 5 follows.

Proof of Proposition 3—continuation. Clearly, the points of the
set &n are in one-to-one correspondence with the lattice points of
Λn included in (I*)0. Now, all lattice points of Λn have rational
coordinates, and consequently, the points (0,) of 2$n are elements
of finite order.

3* Evaluation of an upper bound for the order*

PROPOSITION 4. Let k(n) denote the maximum order of an
element of ^ n * i / f t . Then k{n) ^ 5nμ for n even, and k(ri) ^
2.5(*~1)/4 for n odd.

The proof will be performed, after some preparations, at the
end of this section.

Let [a1, , a"] e (Γ)° be a lattice point of Λn. If (θl9 , θn) -
/([α1, •• ,α ί l ] )6J/ w , then there is a permutation peΣn such that
p2 = identity, and θt = θp{i), i.e., ai + ap[i) = 1 for i = 1, , n.
Suppose p{i) Φ i for i = 1, , 2r and jθ(j) = j" for j = 2r + l, •••,%.
We can also achieve by a re-numeration that 0 < ai < 1/2 for i =
1, , r and fθ(i) = r + i for i = 1, , r. Naturally, we have

α2r+i = . . . = α» = i/2. Put 6* - α* for i = 1, . . , r, and ¥ = αr+5*
for i = r + 1, , n — r. Now, the lattice point [α1, , an] can
be calculated from the values of 61, •• ,6ίl~r. On the other hand,
the numbers a1, , an are uniquely determined by a set /<(&*)) of
linear equations of the form (3). Thus the corresponding values
&1, , b% br+1, , bn~r are uniquely determined by a set of equations
of the form
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yι + yJ + yk = 1;

2yί-yk=0, 2y* + yk=l, yi^yk=0 (iφk, i, fc = l, . . , n - r )

22/* = 1 (i = r + 1, •••, w - r) .

It means that we can select a system of n — r independent
equations of the form (4) and then calculate 61, , δΛ~r using the
Cramer's rule.

Let Δ be the matrix of the left hand side of this system, and
let 12/1 denote the absolute value of det Δ. Obviously, if we can find
an upper bound for \Δ\, we get hence an upper bound for the order
of (θi). For this reason, we shall now investigate the matrices of
the above type.

In the following, define the weight of a row (or column) of a
matrix Δ to be the sum of the absolute values of all elements of
this row (or column). For the sake of brevity, a matrix Δ will be
said to be of type δ if its elements αj are integers satisfying
\a\\ <^2 and the weight of each row is ^ 3 . Clearly, a submatrix
of a matrix of type δ is also of type δ.

LEMMA 6. Let Δn(n 7>Z) be a square matrix of type δ such
that I ai\ <Ξ 1 for i, j = 1, , w. Let w(Δn) denote the number of
all places in Δn occupied by the elements ± 1 and t(Δn) — Zn — w(Δn)
Then

( 5 ) 14J ^ 5 ^ 2 ( ^ _ ) , where k - min (2, t(Δn)) .

Proof, Let us remark first that t(Δn) ^ 0 for each Δn. We
shall now proceed by induction. For n = 3 we can verify formula
(5) directly. Suppose (5) to be true for all n ^ m, m ^ 3, and
choose a matrix Δm+1.

(A) Let us have first t(Δm+1) = 0 or 1. We can suppose that
Δm+1 has exactly 3 elements ± 1 in the first row. Denote by Dm+1

the matrix consisting of the remaining m rows. If some column
of Dm+1 consists of zeros then either Δm+1 — 0, or Δm+ί has a column
of weight one. In the last case \Δm+1\ — \Δm\, where Δm is a sub-
matrix of Dm+1. Here t(Δm) = t(Δm+1), and the induction step follows.

Let now each column of Dm+1 contain at least one element ± 1 .
Then each submatrix Δ™ of Dm+1 satisfies t(Δ$) ^ t(Δm+1) + 1. If
we put kt = min (2, t(Δ™)\ k = min (2, t(Δm+1))f then kt ^ k + 1 for
each i. Now, \Δ™\ ^ 5w/2(i/5/3)^ [according [to (5). Hence \Δm+ι\ ^

Ϊ I ^ 3 5w/2(τ/5/3)/c+1 ^ 5m+1/2(l/5/3)fc.
(B) Let now ί(Λm+i) ^ 2. We shall distinguish two subcases:
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(Bl) One row of Δm+1 has weight 1; then \Δm+ι\ — \Δm\, where
is a suitable submatrix. Now \Δm\ ^ 5m/2 and hence \Δm+1\ ^5m / 2<I

(B2) One row of Δm+X is of weight 2. The matrix Dm+ί consist-
ing of remaining m rows contains 3(ra + 1) — t(Δm+1) — 2 = 3m —
(t(Jw + 1) —1) elements ± 1 . If some column of Dm+1 consists of zeros,
then either Δm+1 = 0, or \Δm+ί\ = \Δm\ where t(Δm) ;> t(Δm+1) — 1 ^ 1 .
In the last case \Δm+1\ = | 4 J ^ 5w/2(τ/5/3) ^ 5(w+1)/2(i/5/3)2. If each
column of Dm+1 contains at least one ± 1 , then for each submatrix
4 ? of Dm+1 we have t(Δ%) ^ t(Δm+ι)_^ 2. Hence \J™\ ^ 5w/2(i/5~/3)2,
and \Δm+1\ ^ 2. max, | 4 ? | ^ 2.5w/2(i/5/3)2 ^ 5^+

LEMMA 7. For an arbitrary matrix Δn of type d we have

( 6 ) \Δn\^5^ .

Proof. We can verify easily that |ΛI ^ 2 < 51/2, | J 2 | ^ 5, and
thus the formula is true for n = 1, 2. Let (6) be true for all n^m9

and consider some J m + 1 . If Δm+1 contains some row or column of
weight ^ 2 , then we can write \Δm+1\ ^ 2 max i I42Ί ^ 2.5m/2 ^ 5m+1/2.
(Here Δ^ are the submatrices which are complementary to the
elements of the given row or column.)

Suppose now that the weight of each column and each row is
^ 3 . (For the rows the weight is always 3.) If Δm+1 does not
contain elements ± 2 , we have \Δm+1\ ^ 5m+1/2 according to Lemma
6. Thus, let Δm+1 contain at least one element ± 2 . Then inter-
changing the rows, and also the columns properly we can achieve
that a\ = ± 2 , a\ Φ 0, a\ Φ 0. We shall consider 3 cases:

(a) \a\\ — 2, \a\\ = 1; then the submatrix Δ\ to a\ has the first
row of weight 1, and the submatrix Δ\ to a\ has at least one row
of weight ^ 2 . Hence \Δ\\ ̂  5m~1/2, \Δ\\ ̂  2.5W"1/2, |z/m+1 | ^ \a\\ | 4 | +
| α ϊ | | 4 ϊ | ^ 4 5 W - 1 / 2 ^5 W + 1 / 2 .

(b) |αj | = \a\\ = |α?| = 1. Then the submatrix 4 has the first
row of weight 1, and each of the submatrices Δ2

U Δ\ has at least
one row of weight ^ 2 . Thus | J m + ι | ^ Σ* Wλ \ΔW ^

(c) |α}| = 1, \a\\ = 2. The conclusion | J m + 1 | ^ 5m+1/2 is quite
similar to the case (b).

This completes the proof.

REMARK. For n even, the estimate (6) is the best one.

Proof of Proposition 4. Consider a given {θ%) e 22n Π J^n and
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the lattice point [α1, , an] = f~\θi)- Then we can find a compatible
system of n — r independent equations of the form (4) defining the
corresponding values δ1, , br, br+1, , bn~r. Without the loss of
generality we can suppose that all equations of the form 2yj = 1
(j = r + 1, , n — r) form a part of this system. The matrix of
the left hand side of the system take on the form

D

where Δr is a matrix of type δ with r rows and columns. Solving
the system by means of the Cramer's rule, we obtain for i = l , •••,
r: \y*\ — \Di\/(2n~2r-\Ar\), where A is the matrix obtained by replac-
ing the ί th column of D by a column consisting of elements 0 and
± 1 . Clearly, if n - 2r > 0, then | A I = 2n~2r~1-ni, where nt is an
integer. Hence |δ*| = w,/(2|4.|) (i = l, -- , r ) , δ' = l/2 (j = r + l, •••,
n — r). Thus, if n — 2r > 0, we can see that 2\Jr\-bί is an integer
for i — 1, , 7i — r, and also 214.1a'" is an integer for i = 1, , n.
If n ~- 2r — 0, then | J r | δ* is an integer for i = 1, , r, and also
\Δr\a* is an integer for j = 1, •••, w.

Now, if Wr is odd, then w — 2r > 0, and (0<) is of order fc ^
2 | 4 | , where \Δr\ ^ 5r/2 ^ 5{ίl~1)/4 according to Lemma 7. If w is
even, then either (^) is of order ά < Ξ | J r | , where r — n/2, or of
order k^2\Jr\, where r ^ (n - 2)/2. In both cases, & <; 5*/4. This
completes the proof.

Now, our theorem follows from Proposition 2 and Proposition 4.

4* Note* In the paper [2] we have defined a generalized
symmetric Riemannian space of order k. (Here, the usual globally
symmetric Riemannian spaces are those of order 2.) We have also
shown that all simply connected generalized symmetric Riemannian
spaces are in one-to-one correspondence with certain tensor struc-
tures on vector spaces, admitting unitary automorphisms without
nonzero fixed vectors. By the same method as we used above we
can come to the following theorem:

Let J i b e a simply connected generalized symmetric Riemannian
space of dimension n and of order k. Then k <̂  5W/4 for n even,
and & ^ 2 5(*-1)/4 for n odd.
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