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RIGHT SELF-INJECTIVE RINGS WHOSE ESSENTIAL
RIGHT IDEALS ARE TWO-SIDED

KENNETH A. BYRD

A ring R of the kind described by the title is called
a right ¢-ring and is characterized by the property that
each of its right ideals is quasi-injective as a right E-module.
The principal results of this paper are Theorem 6, which
describes how an arbitrary right g-ring is constructed from
division rings, local rings, and right ¢-rings with no primi-
tive idempotent, and Theorem 5 which shows that a right
g-ring cannot have an infinite set of orthogonal noncentral
idempotents.

Ivanov described the structure of indecomposable, nonlocal right
¢g-rings and conjectured that every right ¢-ring must be a direct
sum of such rings together with a ring all of whose idempotents
are central. Our results imply that though the structure of right
g-rings is slightly more complicated than this (there are chain g¢-
rings), one can still reduce the study of g¢-rings to ones which have
only central idempotents. More precisely, the study of right g¢-
rings is reduced to the study of right self-injective duo rings which
are either local or have no primitive idempotent.

The work done here is an extension and generalization of
Ivanov’s investigations. We develop the finiteness conditions inherent
in that work without the assumption of indecomposability and the
structure of an arbitrary right g¢-ring is developed at the same
time. Throughout the paper all rings have identity 1 = 0 and all
modules are unital.

Preliminaries. If one has a decomposition A = A,PAD---PA,
of a right R-module A as a finite direct sum of submodules then
one has a representation of EndpA4, the ring of R-endomorphisms
of A, as a ring of » X n “matrices” of the form (@,;) where «,;
belongs to Homgz(4;, A). In particular, when one has a finite de-
composition of the module R, one also has a representation of the
ring R = End,R as a ring of matrices. A decomposition of R, =
A D B as a direct sum of two modules A and B which are unrelated
in the sense that Homg(A4, B) and Homg(B, A) are both the trivial
group yields a representation of R as the product of the rings
Endz4A and End;B. For a direct sum decomposition of R, such
unrelated summands may be achieved by summing over classes of
related summands. When a module M is a direct sum of simple
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modules then a sum over a class of related summands is called an
isotypic component of M, since two simple modules are related if
and only if they are isomorphiec.

If A is a right R-module then E(A) denotes the injective hull
of A. When R is right self-injective we will assume that E(A4) is
a right ideal of R whenever A is a right ideal of R. The fact that
the rings described by the title are the rings whose right ideals
are quasi-injective is a consequence of the fact [6, 1.1 Theorem] that
A is quasi-injective if and only if A is fully invariant in E(A4), that
is End,E(A)-A < A.

Reduction to basic rings. A g¢-ring R will be called basic if
each of the nonzero isotypic components of the socle of R is simple,
i.e., R has no two distinct isomorphic minimal right ideals. We
shall show that a right ¢-ring is the ring direct sum of a semi-
simple ring and a basic ring.

The following lemma of [3] is fundamental to our study.

LEMMA 1. Let R be a right q-ring and A and B be independ-
ent right ideals of R. If f belongs to Homg(A, B) then f(A) is
semisimple.

Proof. Recall that the socle of B is the intersection of the
essential submodules of B. Let B, be an arbitrary essential sub-
module of B. It follows that A B, is essential in A @ B. Since
R is a right g¢-ring, it follows that A @B, is fully invariant in AP
B. Letting g be the endomorphism of A& B defined by g(a + b)=
f(a) for @ in A and b in B, we see that f(4) & B,.

COROLLARY. If A and B are independent isomorphic right
ideals of R then each is injective and semisimple. An isotypic
component of the socle of R which is not simple is injective.

Proof. Assume that A and B are independent isomorphic
right ideals. Since FE(A4) and E(B) are also independent and isomor-
phic then the above lemma implies that each is semisimple. It
follows that A = E(A) and B = E(B).

Let H be an isotypic component which is not simple. If H is
the direct sum of an infinite set of simple modules then H=H,(DH,
where H, ~ H and H, ~ H. Since H, and H, are injective then so
is H. It follows that H must be a finite direct sum of at least
two copies of a minimal right ideal S of R. Then S is injective
and so is H.
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PROPOSITION 1. Let I' be an independent set of right ideals
of a right q-ring R. Suppose that for each member A of I' there
48 a minimal right ideal S(A) of R so that

(1) if A=+ B then S(A) % S(B),

(2) for each A, Homyp(A4, S(A)) # 0,

(3) Y{A|AeltnX{SA)|Aecrl'}=0.

Then I’ is finite.

Proof. According to (2) there is for each A in I' an epimor-
phism a,: A — S(4) and this induces on the direct sum, the epimor-
phism a: Y. A — Y.S(A). Choose hulls in R and extend a to the
mapping B: E(Z A) — E(3:S(4)). From (3) and Lemma 1 we know
that the image of @ is 3:S(4). On the other hand the image of 2
must be cyclic since E(3 A) is a direct summand of R. It follows
that there are only finitely many nonisomorphic S(A) for A in I,
so (1) implies that I” is finite.

THEOREM 1. A right g-ring is isomorphic to the direct product
of a semisimple ring and a basic right g-ring.

Proof. The above proposition implies that Soc R has only a finite
set {4,, ---, A} of isotypic components which are not simple. Since
each of the A4, is injective we have a decomposition B, = (FA,)PB.
It follows easily that R is isomorphic to the product of the semisimple
ring Endz(ZA4,) and the ring End,B. If B = e¢R where ¢* = ¢ then
End.B =~ eRe. Since ¢R(1 — ¢) ~ Hom,(YA,, B) = 0 then ¢Re = e¢R so
that right ideals of eRe are the same as R-submodules of B. Then
since B has no distinet pair of isomorphic simple submodules, it
follows that eRe is basic.

DEFINITION. If A and B are right ideals of B then the nota-
tion A — B will indicate that AN B =0 and Homy(4, B) # 0. We
shall write A —if A — B for some B, and we shall write —B if,
for some A, A — B.

The following finiteness condition is due to Ivanov [3, Lemma 3].

THEOREM 2. Let R be a right q-ring. If I' is an independent
set of right ideals of R so that A— for each A in I then I is
Sinite.

Proof. By Theorem 1 we may assume that R is basic. By
Lemma 1 we can find for each A in I' an epimorphism «, from A
onto a minimal right ideal S(4) such that AN S(4) = 0. Also, by
taking injective hulls, we may assume that each A in I" is a direct
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summand of E.

Suppose that S(A4) = S(B) for some B,B in I' where A # B.
From the projectivity of A there is a mapping 8: A— B so that
azB = a, It follows from Lemma 1 that Im 8 contains a copy of
S(B), so that S(B) & B since R is basic. This contradiction implies
that if A, Be I’ and A # B then S(4) % S(B).

Let I', be the set of all A, in I' so that S(A4) & J{4|AeT).
Since R is basic and the sum is direct then for each member 4, of
I', there is a unique member v(4,) of I so that S(4,) < v(4,). We
use the mapping v: I, — " to form the partition {v(4)|AeIm~}
of I',. Since A¢v*(4A) for each A in Im v, it follows from Pro-
position 1 that each member of this partition is a finite set.

Assume that I, is infinite and let ¢ be a function which chooses
a member from each nonempty subset of I',. If X is a finite sub-
set of I, then XU Y(X)UvX) is also finite where vX)= U
{v(B)|Be X} and v}(B) = @ if B¢Im~. Denote by X’ the set
complement of XU Y(X)U~Y¥X) in I',. We note X' = @ for all
finite subsets X of I',. Define the sequence {4}, in I, by setting
A =¢(,) and if A, ---, A, are already chosen then A4,,, =
o({4,, ---, A,}). Suppose that (FA)N (ZSA)) #0. Since R is
basic this means that for some j, %k one has v(4;) = A, and this
cannot happen by the construction of the sequence. The existence
of such a sequence contradicts Proposition 1 so we conclude that
I, is finite.

Since I' — I', is clearly finite by Proposition 1 then I' is finite.

Injective hulls of minimal right ideals. Let . be the set of
minimal right ideals of a basic right ¢-ring R and let E(%) =
{E(S)|Se.s”} be a chosen set of injective hulls in R for the members
of .&#. For each S in .&” there is a primitive idempotent ey of R
such that esR = E(S). According to Lemma 1 if ¢ is a primitive
idempotent of R and —eR then e¢R is isomorphic to a member of
E(%”). In fact if eR is not isomorphic to a member of E($”) then
¢ is central as the next proposition shows.

PROPOSITION 2. Let e be a primitive idempotent of a basic
right g¢-ring R. If eR—, then —eR.

Proof. Suppose the proposition is false so that (1 — e) Re ~
Hom, (eR, 1 — e)R) = 0 but eR(1L —e¢) =0. Since ¢ is primitive eR=
¢Re is a local ring and since eR(1 — ¢) = 0 then the right ideals of
¢Re are precisely the R-submodules of eR. If J is the Jacobson
radical of R then eJ is the unique maximal right ideal of eRe. If
eJ =0 then eR is simple and since R is basic it follows that
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(1 — e)Re = 0 contrary to the assumptions. So eJ # 0 and it follows
that eJ contains a nonzero cyclic submodule L for which there is
a eRe-epimorphism @B: L — eR/eJ which is also an R-epimorphism.
The assumption that (1 — ¢)Re # 0 together with Lemma 1 implies
that the simple image eR/eJ of e¢R embeds in (1 — ¢)R. Since
(1—e)R is injective there is an R-homomorphism a:eR — (1 — e)R so
that a|, = 8. Since Im « is semisimple it follows that a(eJ) = 0 so
that 8 = 0 which is a contradiction.

PROPOSITION 3. If e is a primitive idempotent of a basic right
g-ring B and —eR, then (1) S = eR(1l — ¢) is a minimal right ideal
of R, (2) eRe ~ End.S, and (8) S is the only proper monzero sub-
module of eR.

Proof. (1) Since —eR then e¢R(1l — ¢) is nonzero and it is con-
tained in the socle of e¢R. Since e is primitive it follows that eR =
E(S) for some minimal right ideal S containing eR(1 —e¢). If
Hom(eR, S) # 0 then there is a copy of S in (L — ¢)R contradicting
the fact that R is basic. It follows that se = 0 for every seS,
that is S Z eR(1 — ¢). Thus S = eR(1 — e).

(2) If J is the Jacobson radical of R then eRe has radical
eJe = {xceRe|xS = 0}. Since eR = S@ e¢Re as abelian groups one
has

(eJe)R = (eJe)(eR) < (eJe)S + eJe = ede

so that eJe is a right R-submodule of e¢R. Since SNeJe =0 then
eJe =0 so that eRe is a division ring. Restriction to S is an iso-
morphism from EndzeR onto End.S.

(8) If K is a nonzero submodule of ¢R then S K and K =
Ke@d K1 —e). It follows that S = K(1 — ¢). Since Ke is a right
ideal of eRe then either Ke =0 or Ke = ¢Re. Thus K=S or K=

eR.

Let &7(R) = {E(S) e E(%)| — E(S)}. We consider the restriction
of the ——relation to .97 (R). Note that E(S) — E(S,) for E(S),
E(S,) members of .9 means that the top, E(S,)/S,, of E(S,) is iso-
morphic to the bottom, S,, of E(S,).

Let D be the domain and T be the range of the restriction of
— to the set .. It is easy to show that — is a one-to-one funec-
tion from D onto 7. Define a: % — & by a(E,)=F, if E,€ D and
E,— E, and a(F,) = E, if E,¢ D. Similarly a™: &% — & is defined
by oYK, = E, if E,eR and E,— E, and o (&, = E, if E,¢ T.
Then for each Ee .o let E = {a*(E)|ke Z}. It is easy to see that
(1) Ec E since a° is the identity mapping, and (2) if F e E then F=
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E so that the set .57 of ——classes E for Ec . is a partition of
7. In fact the associated equivalence relation on .97 is just the
smallest equivalence relation on . which contains the restriction
of — to &7

It is immediate from Theorem 2 that the set of classes E with
more than one member is a finite set and also that each class E is
itself finite. It is straightforward to show that these classes E are
of two kinds namely;

(1) Chain: - E,— E,— --- E, where F, ¢ T and K, ¢ D.

(2) Loop: E,—~FKE,— +---— K, — K.
In each case the cardinality ! of E will be called the length of E.

LEMMA 2. Suppose that e is a primitive idempoient of a basic
right g-ring R and — eR so that S = eR(1 — ¢) = 0.

(1) The right annihilator S™={xecR|Sx =0} is a maximal
right ideal.

(2) If f is also a primitive idempotent of R and e¢R — fR
then eRe =~ fRf.

Proof. (1) If s is a nonzero element of S then s" =M is a
maximal right ideal. The right ideal M must be essential since
otherwise S = eR and since R is basic this contradicts the assump-
tion eR(l —e) == 0. It follows that M is a two-sided ideal of R.
For any nonzero element s, of S one has s, = sr for some » in R
so ssM=srM< sM=0. Thus M =S".

(2) Let T be the simple submodule of fR. Since T = fRe is
a simple right R-module, it is a 1-dimensional eRe-space on the right.
Jacobson’s density theorem [5, p. 28] and (1) imply that T is also a
1-dimensional fRf-space on the left. Choose a nonzero element ¢ of
T. The correspondence a < b if and only if at = tb is an isomor-
phism between fRf and eRe.

The — -classes E of R are determined “up to isomorphism” by
our choice of a representative set of injective hulls of minimal right
ideals of R. However, the sum of an — -class is independent of
this choice. This is a consequence of the following proposition.

PROPOSITION 4. Let e be an idempotent of the basic right q-
ring R. There is a omne-to-one correspondence bétween the set
(1 — e)Re and the set of copies of eR in R such that to the element
z of (1 — e)Re corresponds the module (1 + z)eR.

Proof. If z belongs to (1 — ¢)Re then f = (1 + 2)e is idempotent
and since e¢f = ¢ and fe = f it follows that fR ~ eR. If (1 + z)eR=
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(1 + z,)eR for 2,2, in (1 — e)Re then for some » in B, (1 + 2z,)e =
(L + z)er. It follows that ¢ = er and 2z, = 2,6 = 2,6 = 2,. Thus the
correspondence is one-to-one.

Let E be a copy of eR in R. Since (1 — ¢)R contains no non-
zero copy of a submodule of eR then the kernel, EN (1 — ¢)R, of
the projection x—ex of E into eR is zero. It follows that eR=eEP
A for some submodule A of e¢eR. But A must be zero since there
is a copy of A in eE. Thus the projection of E into eR is an
isomorphism onto e¢R. Choose ¢ in E so that ea = ¢ and let z =
1 — e)ae. If xe E then e(aex — x) = 0 and it follows that aex = x
for all x in E. Then for « in E one has

x=ex+(1—ex=cx+ (1 —eaex =ex + zx =1+ 2)ex.

Thus one has E = (1 + z)eR.

In particular if eR — fR with ¢R and fR members of .97 then
every copy of eR in R is contained in eR@BfR because (1 — e)Re =
fRe. Thus the sum of an — -class is independent of the choice of
the injective hulls.

DEFINITION. A basic right ¢-ring R is called a loop g¢-ring if
R has only one — -class, that class is a loop, and R is the sum of
its loop.

NOTATION. Let D be a division ring. We denote by D, the
D — D bimodule D equipped with the zero multiplication.

THEOREM 3. If R is a loop q-ring of length 1| then there is a
division ring D so that R is isomorphic to the ring H(l, D) of 1 X
Il matrices with elements on the diagonal from D and elements in
the positions (2,1), (3,2), ---, 1,1 —1), A, 1) from D, and zero entries
elsewhere. Conversely every ring H(l, D) is a loop q-ring.

Proof. The first statement is an immediate consequence of the
matrix representation of R = EndpR where R, = >\, K, and E, —
E,— ... - K, — E,. One may take D = End;E, and use Lemma 2
(2). The converse is proved in [3, Theorem 3].

The following theorem may be proved by a straightforward
induction on the number of loops of R.

THEOREM 4. Let R be a basic right q-ring. There is a set
{I, 1, «--, I} of integers =2 and a set of division rings {D,,
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D,, ++-, D,} so that
R=1[ H(, D) x R,

where R, 1s a basic right q-ring which has mo loops.

Chain ¢-rings. Assume that R is a basic right ¢-ring with no
loops. Suppose that & = {E‘i|1 <1 < m} is a finite set of chains of
R where E, is > E,, > HE,— -+ — w, with E;; = ¢;;R for a primi-
tive idempotent ¢;; of R. Let f=1— Xe;;. Then for each 7 one
has fR — E,; exactly when j =1. Also since fRQ — f) =0 then
fR = fRf is a ring with identity f.

PROPOSITION 5. With the mnotation above, the ring fR is a
basic right g-ring. The set of arrow classes of R is the disjoint
union of the set of arrow classes of fR with the set . For each
i, the fR-module e,Rf is simple, injective and is not embeddable
n fR.

Proof. The first two statements are straightforward consequences
of the facts that the right ideals of fR coincide with the R-sub-
modules of fR and Hom (K, L) = Hom,(K, L) for any right ideals
K and L of R on which f acts as a right identity. Since ¢, Rf is
a simple R-module it is a simple fR-module and as R is basic it
cannot be isomorphic to a right ideal of fR. The fR-injectivity
of e, Rf follows from Baer’s criterion and Lemma 1.

Suppose that fR = gR + hR where g and h are orthogonal
idempotents of fR. For each E, in & exactly one of gR — K, or
hR — E, is true because if both gR and AR mapped onto the simple
submodule of K, then projectivity of gR would imply that AR con-
tained a copy of that simple module thus violating the agreement
that R is basic. If, say, gR — E;, we say the chain E, is associated
with gR. In this way each decomposition of f as a sum of ortho-
gonal idempotents induces a corresponding partition of the set of
chains 2. The proof of the next proposition describes a procedure
for decomposing f in such a way that each component summand of
fR has associated with it exactly one chain from Z .

PROPOSITION 6. Let A be an independent set of right ideals of
a right g-ring R. If there is a right ideal A of R such that (1)
A — B for every Bed and (2) AN (X2 .B) =0, then A is finite.

Proof. We may assume that R is basic, that the members of
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A are minimal right ideals and that A = eR for some idempotent e
of R.

Suppose that B, and B, belong to 4 and B, # B,. Since R is
basic B, # B, and it follows from Lemma 2(1) that B} #* B;. From
eR — B for each Be 4 it follows that Be = 0. In particular e¢ B;
for ¢ =1, 2 and since R/B; is a division ring it follows that 1—ee
B N B;. The modular law implies that

Bi =1 —e)R + (B; NeR)
and

BiNeR = BN (eRe + eR(1 — ¢))
=eR(l — e) + (B; N eRe) .

Thus if B, # B, then eRe N B # eRe (N B;.

Choose xe(eReN B)) — B;. Let J denote the Jacobson radical
of R. Since by [1, Theorem 8.1] eRe/eJe is a regular ring there is
an element ¥ of eRe such that & — xyx belongs to eJe. Since idem-
potents of eRe lift modulo eJe by [1, Theorem 4.1] then there is an
idempotent g of eRe such that xy — g belongs to eJe. We note that
g€ B] — B;. Thus one has the decomposition 4 = (¢ — g)RP gR
where gR — B, and (e — g)R — B,.

Assume that 4 is infinite. Choose one of gR and (¢ — g)R which
has infinitely many members of 4 as homomorphic images and call
it A] and call the other A4, so that A = 4, @ A]. Replace A by A
and repeat the above process so that A; = A, A, where A, has
infinitely many homomorphic images in 4. In this way we con-
struct an infinite sequence {4}, which satisfies the three conditions
of Proposition 1 and this is a contradiction.

DEFINITION. A basic right ¢-ring R is called a chain g¢-ring if
R=fRPED---®E, where - E,—>E,— ---— FE, is the only
—-class of R and fR— E,. We call fR the corner of R in this
case.

Note that in a chain ¢-ring fR is a basic right g¢-ring all of
whose idempotents are central since fR has no — -classes. Also fR
is not a right cogenerator since the simple module FE,f does not
embed in fR. For instance fR might be an infinite product of divi-
sion rings.

PROPOSITION 7. If R is a basic loopless right g-ring then R is
isomorphic to the product of a finite set of chain g-rings each of
which has as a corner an infinite product of division rings together
with a basic loopless g-ring which has mo projective minimal right
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ideal.

Proof. In the basic loopless g-ring R let {e;R|t€I} be the set
of projective minimal right ideals. For each 7 in I one has ¢,;R(1 —
e;) =0 so that ¢,R = ¢,Re;, is a division ring. Consider the usual
embedding « of the direct sum Je,R into Ile;R where & maps e¢; to
(0:5€:);c7- Since e, R = e,Re; and eRe; =0 for 1 j then a is an
essential embedding. It follows that there is an R-monomorphism
¢: Ile, R — R so that ¢-a is the inclusion of Je,R in R. Let + be
the splitting map for ¢ so y¢=1. One may show that (1) = (¢,);e;-
If g = ¢y(1) then the image of ¢ is gR and +(g) = (¢;);c;. Since R
is basic, gR(1 — g) = 0 so gR = gRg. One has for »,s in R

Y(gr-gs) = Y(grs) = Y (g)rs = (€)ic 78 = (€,78);e; = (61)icr*(€:8)ier

where the last multiplication is componentwise. Thus ¢ is a ring
isomorphism from I7e;R onto gR.

Proposition 6 implies that the set of chains & (gR) of R associat-
ed with gR is finite, and that there is a decomposition g = g, +
g, + --- + g, so that the g, are orthogonal idempotents associated
one-to-one with the chains of & (gR), i.e., each & (g,R) is a singleton.
Let g, be an idempotent such that §,R = g.R P Y& (g.R). One checks
that for each ¢ =1, ---, k, g, is central. For instance g.R1 — g, =
0 since otherwise (1 — g§,)R has a simple image in g,R and by pro-
jectivity must contain a copy of that simple module, thus contradi-
cting the fact that R is basic. Thus R =gR@ (1 — g)R where g=
Sk g, and each g, is central. For each 7, §,R is a chain ¢-ring with
corner, ¢,R, a product of division rings. Also (1 — R is a basic
loopless ¢-ring which has no projective minimal right ideal since any
such must be contained in gR by construction.

Matrix representation of chain g¢-rings. A chain ¢-ring R is
a g¢-ring with orthogonal idempotents f, e, e, ---, ¢, such that the
e, 1 <i<1, are primitive, fR—e,R —¢,R— --- —¢R, fR = fRf,
and R=fRPeRD - --- PeR. Since the — -relations shown are
the only ones which exist between the modules fR, e,R, ---, ¢,R one
has the matrix representation

fR 0 0 <o 0
e,Rf eRe, 0 ce 0
0 eRe eRe, --- 0
0 0
: : e_Re_, 0
L0 0 --- ‘eRe_, eRe
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Since e¢,Rf, is 1l-dimensional as a left e Re,-space if we select
x,ce,Rf, », #0 and if M =z then dx, = x,d, implements a ring
isomorphism d,+— d, from e,Re, onto fR/M and at the same time
e, Rf =~ fR/M as an fR-module. If we use these isomorphisms to
identify e, Re, with fR/M and e¢,Rf with the fR-module fR/M then
the left action of ¢,Re, on ¢,Rf corresponds to the natural left fR/
M-module structure of fR/M. Similarly for ¢ =1 each e, ,Re; is
1-dimensional on each side so that selecting x,,,€e, Re, x,., # 0 we
have isomorphisms d,,,+— d,,, from e, ,Re;., onto e;Re, given by
dipi®iry = €idir. If we denote by (fR/M), the abelian group of
fR/M with its usual left and right module structures over the rings
fR and fR/M and with the zero multiplication then it is easy to
see that

fR 0 0 (U
(fRIM), fRIM 0  --- 0
R~ 0 (fRIM), fRIM
0 0 0

Lo 0 .o (fRIM), fRIM

The following proposition shows that, conversely, every ring of
this form is a right ¢-ring.

DEFINITION. Let A be a right ¢-ring with an essential maximal
right ideal M such that A/M is injective and does not embed in A.
We denote by C(A4, M, 1) the ring of (I + 1) x (I + 1) matrices with
entries in the (1,1) position from A, entries in the other main
diagonal positions from A/M, entries on the sub-diagonal from
(A/M),, and zero entries elsewhere. (It is convenient to allow [ to
be any integer =0.)

ProrosiTiON 8. For any 1 =0, the ring C(4, M, 1) as defined
above is a right g-ring.

Proof. Let A and M be as described above. For each 1 =1
let A, = C(4, M, 1) and let M, denote the ideal of A, whose members
are those matrices with zero entry in the (I + 1,7+ 1) position.
We wish to show by induction that for every ! = 1 the ring A, is
a right g-ring with the essential maximal right ideal M, such that
A /M, is A;injective and does not embed in A4,.

If I = 1 there is an obvious ring isomorphism between A4,,, and
C(A,, M, 1). Using this, the proof by induction is reduced to prov-
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ing that the statement holds when [ = 1.

Let ¢;, 7 = 1, 2 be the idempotent matrix of A, with zero entries
except at the (¢, 7) position where the entry is 1. Since e de, =0
then a minimal right ideal of A, is either a minimal right ideal of
¢,A, (i.e., a minimal right ideal of A) or it is a simple submodule
of ¢,A,. The kernel of the ring homomorphism from A, onto A/M
which sends a matrix X to Xe, is M, = Ae,. Since A/M is a divi-
sion ring, the ideal i, is a maximal right ideal of A,. It is easy
to check that S = ¢,4.e, is an essential submodule of ¢,4, so that M,
is an essential right ideal of A,. Since ¢,4,/S =~ A,/M, it follows
that S is the only proper nonzero submodule of e,A,.

Suppose that K is an essential right ideal of A,. If K 2 e,4,
then K = ¢,A, P (KN ed,). Otherwise KNed, =8 so Ke,=0 and
KC M =e¢A PS. It follows that K =S P (KNed,). Since A is
a right ¢-ring it is easy to see that K NeA, is a two-sided ideal
of ¢, A, and it follows easily that in either of the above cases, K is
a two-sided ideal of A,.

To see that A, is right self-injective it suffices to apply Baer’s
criterion as follows. Let ¢: K— A, be an A,-homomorphism where
K is an essential right ideal of A,. Since K is an ideal K = ¢ KD
e,K. Let ¢, be the restriction of ¢ to ¢, K. Since ¢, 4, = ¢, A.e, then
Img, C Ae, = ¢,A, D S. The injectivity of A/M as an A-module
implies that S is an injective ¢, A,-module and by assumption e A, ~
A is right self-injective. Since ¢, is an ¢, A,-homomorphism it follows

that there is an element a of A and an element s of A/M so that

for every X in ¢, K one has ¢,(X) = <g 8)X Let ¢, be the restric-

tion of ¢ to ¢,K. Since no submodule of ¢,4, has a nonzero image
in ¢4, then the image of ¢, must be contained in ¢,4,. It is then

easy to see that there is an element d of A/M so that for each Y

in ¢,K one has ¢,(Y) = <8 2>Y It follows that for all Z in K,

oZ) = <g 3>Z So A, is right self-injective.

If A/M, embeds in A, then either A,/M, embeds in e A, or
AJM, = S. Since A,/M, ~ ¢,A,/S and e, Ae, = 0 then A,/M, does not
embed in ¢ A,. If A /M, =~ S then there is an epimorphism from
e, A, onto S. But since Se, =0 there is no such mapping. Thus
A,/M, does not embed in 4,. To see that A,/M, is A,-injective sup-
pose that ¢: K — A,/M, is an epimorphism where K is an essential
right ideal of A4,. Since K is an ideal then K = ¢, K P ¢,K. Because
e, Aje, =0 and A,/M, is an image of ¢, 4, it follows that ¢(e,K) = 0.
If ¢,K = ¢,K, then ¢ extends immediately to A,. Otherwise, ¢,K=S
so that ¢ is an isomorphism between S and A,/M, which we have
just shown to be impossible.



RIGHT SELF-INJECTIVE RINGS 35

The finiteness condition. The finiteness results Propositions 1
and 6 and Theorem 2 will be subsumed in the following theorem
whose proof will be given as a sequence of lemmas.

THEOREM 5. A right q-ring has mo infinite set of orthogonal,
noncentral idempotents.

It suffices to prove the result for basic rings where from Lemma
1 and Proposition 2, the theorem is equivalent to the assertion that
7 (R) is a finite set. From Theorem 4 and Proposition 7 we may
assume R has no loops and no projective minimal right ideals. We
now reduce the problem to the case where R has no chain of length
1>1. Let {E;|1 <i < m} be the set of chains of R of length I>1,
where E, is - E, > E,— -+ — w, With E;; = e;;R for a primitive
idempotent ¢;; of R. Let f =1 — Ye;; so that fR— E,, for each 1
and fR = fRf. It follows that fR is a right ¢-ring which is basie,
loopless, without projective minimal right ideals and whose — -clas-
ses are exactly the chains of R of length 1.

LEMMA 8. Let R be a basic right q-rimg whose only — -classes
are chains of length 1 and let & be the set of minimal right
ideals of R. To each subset A of & we associate an idempotent
e, so that e,R is an injective hull of 3 {S|Se€A}. If AS & then
there is a subset A, of & so that A4A, is finite and e, is central.
(Here 4 denotes symmetric difference of sets.)

Proof. Let A< . and e,R be a hull of X{S|SeAd}. Let BS
% be the finite set of simple images of ¢,R in (1 — ¢, )R and let
CZ.%” be the finite set of simple images of (1—e¢,)R in e,RB. One has
e,R=¢eR + ¢R and (1 —¢,)R = fR + ¢zR where ¢, f, ¢, and ¢, are
pairwise orthogonal idempotents. If A, = (4 — C)U B then A4A4,
is finite and (¢ + e¢z)R is a hull of 3{S|Se A4,}). It is routine to
check that e¢ + ¢, is central. For instance, to see that Hom,((1—e—
ex)R, (e + ep)R) = Homz(fR + e.R, eR + e;R) =0 one argues as
follows: Any simple submodule of ¢zR is an image of ¢,R. It can-
not also be an image of (1 — ¢,)R so it cannot be an image of fR
and thus Homg(fR, ¢zR) = 0. Since the — -classes are all chains of
length one then Homg(e R, eR) = Homg(eR, ¢zR) = 0 and Hom,(fR,
eR) = 0 by the definition of C. The argument that Hom((e + ¢;)R,
1 —e—epR) =0 is similar.

Proof of Theorem 5. The proof is by contradiction. Assume
the theorem is false. Then there is a right ¢-ring R such that
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& ={S;|i eI}, the set of minimal right ideals of R, is infinite, S,
S; for ¢+ j, and if for each 7+ we let ¢;R be a hull of S, then
(1 —e)Re;=0 and ¢,RA —e¢)+0. If we let A be a countably
infinite subset of . then by the Lemma 3 there is a countably
infinite subset A4, so that the hull of 3{S|Se A,} is generated by a
central idempotent e,. It follows that we can assume that & is
countable (so we take I to be the set of positive integers) and that
Ry is the hull of >, S;, i.e., the socle of R; is essential in B,. The
proof is given as a sequence of eleven assertions proved individually.
(1) If J is the Jacobson radical of R then

J = (reR|re, = 0, Vi} = (iR(l —e).

Proof of (1). Since (1 — ¢;)Re, = 0 then Re, = ¢,Re,. Since ¢,Re;
is a division ring then Re, is a minimal left ideal of R so that
R — ¢,) is a maximal left ideal. Thus J < N R — ¢,). For the
other containment, if re NR(1 — e;) then 7S, = 0 for all ¢ so »(Soc
R) = 0. Then since Soc R is essential in R, it follows that e J by
[1, Theorem 3.1]. Thus (1) is proved.

(2) The mapping a: R; — Ile,R defined by a(r) = (e4);c; is an
R-monomorphism.

Proof of (2). If reR and r # 0 then since Soc R is essential
in R there is 7, ¢ R so that 0 = rr,€Soc B. For some j&I one has
err, = 0 so e¢;r = 0 and a(r) = 0. Thus (2) is proved.

We will identify the module /7S, with its image in I7¢,R under
the mapping induced by the inclusions S;<=>eR. Since «a(R) is
injective then I7e,R = a(R) @ L for some submodule Lpg.

(3) L<CIIS,.

Proof of (8). If L ¢ IIS; then there is (x,)i, € L such that x; ¢
S; for some j. Since S; =¢;R(1 — e;) and ze; = e;x;e; it follows
that x;e; #0. Then since x,; = 0,;0;6; we have 0 (x)2,e; =
a(x;e;) € L N a(R) which is a contradiction. Thus (3) is proved.
From (3) and the modular law one has

I8, =18 N @R DL =S Ne(R)PL.
(4) SN ea(R) = alJ).

Proof of (4). Since J = NRA —¢,) from (1), it is clear that
a(J) S IS, N a(R). For the other containment suppose that rc R
and a(r)eIlS;. Then for each ¢ one has er =er(l —e) so that
re, = e;re; = 0. It follows from (1) that reJ. Thus (4) is proved.

We have IIS;, = a(J) @ L and since (IIS,)J = 0, it follows from
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(2) that J2 = 0.
(5) The rings R/J and Ile,Re; are isomorphic.

Proof of (5). For each i, e,R = S, @ e, Re, as abelian groups. The
projections onto the second summands induce an abelian group
epimorphism =: ITe,R — IIe,Re,. lLet B =zma map R into IleRe,.
Using Re, = ¢;Re; one can see that B is a ring homomorphism.
Since by 8) L < IIS; then n(L) =0 and since Te,R = a(R) P L it
follows that Im 7 = 7a(R) = Im 8 so B is an epimorphism. We note
that Ker 8 = a*(Ker7) = a™(IIS,) = J by (4). Thus (5) is proved.

From Lemma 2, each S; is a 1l-dimensional left vector space
over ¢;Re,, The componentwise multiplication (e,r.e,)i.(s.) =
(e;7.e;8,)%, makes IIS; a left Ile,Re;-module. Since each S, is a left
ideal of R and JS; =0 then IIS; is naturally a left R/J-module
where the multiplication is given by (r + J)(s)x = (rs)2.. We
denote by D, the ring e¢,Re,.

(6) As left R/J-modules, IIS; is isomorphic to R/J.

Proof. In each S; select a nonzero element z,. This produces
a map o: IIS; — II1D, where 0d(s,)7; = (d,);—, when s, = d;x;. The map-
ping 6 is clearly a /ID,-isomorphism. The mapping B of (5) induces
a ring isomorphism B: R/J — IID,. One checks that if #=r + J
for re R and sellS; then 6(Fs) = B(r)d(s) so that if we identify
R/J and IID, via B then ¢ yields the desired isomorphism. Thus
(6) is proved.

Since J? = 0 then J is a left R/J-module.

(7) The restriction of & to J is an R/J-monomorphism from
R/JJ into HSL.

Proof of (7). If sellS; and 7 = r + J for r € R then one always
has 7#s = B(¥)-s where-denotes componentwise multiplication, since
B(T)-s = B(r)-s = (esre)-(s) = (eres;) = (res,) = (rs;)=1(s)=TFs. Let
Jj belong to J. Then a(7j) = a(rj) = (ex)J = (esrej+er(l—e)f)i, =
(ere )i = (ere)in. (e9)im = B(r)-a(j) = Fa(j). Thus (7) is proved.

(8) The mapping B0« is an essential embedding of J into
R/J as left R/J-modules.

Proof of (8). From (6) and (7), B8'0a is an R/J-embedding of
J into R/J. To show that B 'da(J) is essential in R/J is equivalent
to showing that da(J) is an essential left ideal of I7D,. It suffices
to show that for each j the idempotent E; where E; = (3,;);=, belongs
to da(J). If x, €8, then for each k& one has xe, =0 so that XS, &
J. Then with the elements x;,€.S; chosen in (6) one has da(x;)e
oa(J) and da(x;) = d(ex;)izy = 0(0:5%;) = = E;. Thus (8) is proved.
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Consider the bimodule z/;J5z;. The right hand action of elements
of R/J on J produces a ring homomorphism <: R/J— End (5,J)
whose kernel is {r + J|Jr = 0}.

(9) If r belongs to R then Jr =0 if and only if Supp r =
{ieI|re, == 0} is finite.

Proof of (9). Suppose that Supp 7 is finite. Since », = —
Siesup o1€; left annihilates all the e, then by (1) », belongs to J
and hence Jr,=0 since J*=0. But clearly J >csupp.7€ =
J Diesupp £7€; = 0. Thus Jr = 0.

Suppose that Jr = 0 and that Supp 7 is infinite. From Lemma
38 there is a central idempotent f of R so that if I, = {1eI|e;e fR}
then Supp 741, is finite. Replacing R by fR we can assume that
Supp 7 is cofinite in I. Let 7, =17+ Diisupp .- Since J(Ze) =0
then Jr, = 0. But for all ¢ in I, 7, # 0 so B(r,) is a unit of IID,.
Then there is an element ¢ of R so that 1 — r,teJ and hence J =
J(1 — rt) € J* =0, a contradiction. Thus (9) is proved.

It follows from (9) that Kerv = {¥|Jr = 0} = {F|re; = e,re; = 0
a.e.} = {F|B(r) e Soc IID;} = Soc (R/J). Let D = IID, = Ile;Re;. Then
v induces a ring monomorphism from D/Soc D into End (z/;J). Since
as a left R/J-module J is isomorphic to an essential left ideal of
R/J by (8), then End (r,,J) =~ R/J because R/J is a left self-injective
regular ring (in fact, a product of division rings). It follows that
v induces a ring monomorphism from D/SocD into D. We then
arrive at a contradiction from the following two facts.

(10) If G is a set of nonzero orthogonal idempotents of D=1/ID,
then |G| = W,

(11) The ring D/Soc D has a set of orthogonal idempotents of
cardinality e.

Proof of (10). For each 1 =1,2, --- let & be the sequence of
D with 4th slot e, and zero elsewhere. If g, and ¢, belong to G
and ¢,9, = ¢; and ¢€,9, = ¢, then g, = g, since otherwise we have ¢;=0.
It follows that if we let E = {¢;|¢,9 = ¢, for some ¢ in G} then the
mapping from K to G which maps ¢, to g if ¢,g9 = ¢, is well-defined
and it is clearly a surjection. It follows that |G| = |E| = W,

Proof of (11). The set N of natural numbers has a set .o of
¢ subsets of N, each of cardinality ¥,, any two of which have
finite intersection. (Match N with the set of rational numbers and
choose for each real number a strictly increasing sequence of
rational numbers converging to it.) For each subset X of N let ey
be the idempotent of D such that e,(7) = e, if ¢ belongs to X and
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ex(7) = 0 otherwise. The set .o = {e; + Soc D| X € .o/} is a set of
pairwise orthogonal idempotents of D/Soc D. Since XAY is infinite
when X and Y are distinct members of .o then e, + Soc D +# e, +
Soc D. It follows that .o~ has cardinality c.

Thus (10) and (11) hold and Theorem 5 is proved.

COROLLARY. Let R be a basic right q-ring which has mo pro-
jective minimal right ideals and has no loops. Then R is a finite
product of chain q-rings whose corners are right q-rings with no
noncentral idempotents.

Proof. It follows from Theorem 5 that .o/ (R) is a finite set
all of whose members are chains. If & (R) is the union of the sets
in .9 (R) then Y% (R) is injective so there is an idempotent g of R
such that R, = gR + Y% (R). If the chains are denoted E, or
— K, > E,—---—>E, for 1 <i<m then gR— E, for each 1.
As in Proposition 6 we can find orthogonal idempotents g,, 1 =1 =
m so that g = 3", g, and g, R — E;, if and only if ¢ = 5. If g, is an
idempotent such that g,R = g.R@P >;i, E,; then g, is central in R.
As a ring ¢g,R is a chain right g¢-ring such that the corner ¢.,R =
9:Rg, is a right ¢-ring with .o7(¢,R) = @. It follows from Lemma
1 that each idempotent of g, R is central.

ProrosiTiON 9. If R is a right q-rimng with mo projective
minimal right ideals all of whose idempotents are central then R=
Z X L where Z 1is a right q-rimg with mo primitive idempotent
and L is a product of local right g-rings mome of which is a divi-
S10M Ting.

Proof. Let {e,|t €I} be the set of primitive idempotents of R.
As in the proof of Proposition 7 there is an idempotent g of R so
that gR is ring-isomorphic to the product of local rings L = ITe,R,
in such a way that ¢,R & gR corresponds to its usual image in
Ile;R. Clearly, (1 — g)R has no primitive idempotent.

We note that local rings in the product L which are division
rings would correspond to projective minimal right ideals of R.

PROPOSITION 10. Let R be a chain right q-ring without projec-
tiwwe minitmal right ideals and with corner gR a ring with all
idempotents central. Then R =~ R, X L. where R, 1s a chain right
g-ring with corner Z a ring with no primitive idempotents and L
18 a product of local right q-rings none of which is a division ring.

Proof. By Proposition 9, gR = g,R P g,R where Z = g,R has
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no primitive idempotent and ¢,R =~ L is a product of local right ¢-
rings none of which is a division ring. The chain of R is associated
with Z and not with L. This follows from Proposition 5 and the
fact that if L is a product of local rings which are not division
rings then there is no simple, injective right L-module which is not
embeddable in L. For suppose that L = IIL, where each L, is a
local right ¢-ring so that J, # 0 where J, is the Jacobson radical of
L,. Suppose L/M is simple, injective L-module and is not embedda-
ble in L. Then the maximal right ideal M of L is essential and
therefore M is an ideal of L. Choose u €L so that u = (u;,) where
for each 4, u,€J;, and u, # 0. The right annihilator «” of » in L
is contained in the radical I7J, of L so that in particular «" & M.
Thus the mapping uara + M from uL to L/M is a well-defined
epimorphism. Since L/M is injective there is an element x e L/M so
that for each ac L, a + M = x(ua). But wellJ, € M so that zu =
0 and we have a contradiction.

We can summarize all of the structure theorems of the paper
in the following way.

THEOREM 6. A right g-rimg s isomorphic to a finite product
of rings of the following kinds:

(1) Semisimple artinian ring.

(2) Loop q-ring: H(l, D).

(8) IIDschain q-ring: CUID, M,l) where the corner IID, is
an infinite product of division rings.

(4) Z-chain q-ring:. C(Z, M, 1) where the corner Z is a right
g-rimg with no primitive idempotent.

(5) A product of local right q-rings nmone of which is a divi-
S10M ring.

Final remarks. The further study of g¢-rings would examine
the structure of the local ones and the ones which have no primi-
tive idempotent. The latter clearly have zero right socle and for
both kinds, all idempotents are central so that one would expect
the investigation of them to require methods very different from

those of the present paper.

With regard to the symmetry question for the ¢-ring condition,
it is easy to see that a chain right g¢-ring (of length =1) is not
left self-injective so that a right ¢-ring need not be also a left ¢-
ring. For consider R = C(4, M, 1) and let E, and E, be the idem-
potent matrices with zero entries except for entries of 1 in the
(1,1) and (2, 2) positions respectively. It is easy to see that the

obvious correspondence between S = E,RE, and RE, where (g 8)
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corresponds to <8 g) is an isomorphism of left R-modules. If R

were left self-injective then by Baer’s criterion the isomorphism
from S to RE, could be realized as a right multiplication by some
element of RE, but SRE,=0. One might rephrase the question
thus: Is every right ¢-ring with no chain of length =0 also a
left g¢-ring? [Cf. 2, Remark 2.14.] With regard to this symmetry
question one would like to know whether there is a local, right self-
injective duo ring which is not left self-injective.
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