THE DIMENSION OF THE KERNEL OF A PLANAR SET

Marilyn Breen

Let S be a compact subset of R^{2}. We establish the following: For $1 \leqq k \leqq 2$, the dimension of $\operatorname{ker} S$ is at least k if and only if for some $\varepsilon>0$, every $f(k)$ points of S see via S a common k-dimensional neighborhood having radius ε, where $f(1)=4$ and $f(2)=3$. The number $f(k)$ in the theorem is best possible.

We begin with some definitions: Let S be a subset of R^{d}. For points x and y in S, we say x sees y via S if the segment $[x, y]$ lies in S. The set S is starshaped if there is some point p in S such that, for every x in S, p sees x via S. The set of all such points p is called the (convex) kernel of S, denoted by $\operatorname{ker} S$.

A well-known theorem of Krasnosel'skii [5] states that if S is a compact set in R^{d}, then S is starshaped if and only if every $d+1$ points of S see a common point via S.

Although various results have been obtained concerning the dimension of the set $\operatorname{ker} S$ (Hare and Kenelly [3], Toranzos [6], Foland and Marr [2], Breen [1]), it still remains to set forth an appropriate analogue of the Krasnosel'skii theorem for sets whose kernel is at least k-dimensional, $1 \leqq k \leqq d$. Hence the purpose of this work is to investigate such an analogue for subsets of the plane.

The following terminology will be used. Throughout the paper, conv S, cl S, int S, bdry S, and $\operatorname{ker} S$ denote the convex hull, closure, interior, boundary, and kernel, respectively, of the set S. If S is convex, $\operatorname{dim} S$ represents the dimension of S. Finally for $x \neq y, R(x, y)$ denotes the ray emanating from x through y and $L(x, y)$ is the line determined by x and y.
2. The results. We begin with the following theorem for sets whose kernel is 1 -dimensional.

Theorem 1. Let S be a compact set in R^{2}. The dimension of $\operatorname{ker} S$ is at least 1 if and only if for some $\varepsilon>0$, every 4 points of S see via S a common segment of radius ε. The number 4 is best possible.

Proof. The necessity of the condition is obvious. Hence we need only establish its sufficiency.

By Krasnosel'skii's theorem in R^{2}, S is starshaped, so we may select a point z in ker S. Moreover, we assert that every 4 points of S see a common segment of length ε having z as endpoint (we refer to such a segment as an e-interval at z): For $x_{1}, x_{2}, x_{3}, x_{4}$ in S, these points see a common 2ε-interval $[a, b]$ in S, and since $z \in$ ker S, conv $\left\{z, x_{i}, a, b\right\} \leqq S$ for each $1 \leqq i \leqq 4$. Hence x_{\imath} sees conv $\{z, a, b\}$ for every i. Certainly one of the edges $[z, a],[z, b]$ of the triangle (possibly degenerate) conv $\{z, a, b\}$ has length at least ε, and this edge satisfies our assertion.

To complete the proof, we consider two cases.
Case 1. Assume that $z \in \operatorname{int} S$. Let N be a disk about z of radius $r \leqq \varepsilon$ contained in S. If $N=S$ the result is immediate, so assume that $S \sim N \neq \phi$. For $y \in S \sim N$, we define C_{y} to be the subset of N seen by y. Since S is starshaped, S is simply connected, so C_{y} is convex. Let $\left[a_{y}, b_{y}\right]$ be the intersection of C_{y} with the line perpendicular to $L(y, z)$ at z, and let δ_{y} be the smaller of the lengths of the segments $\left[a_{y}, z\right]$ and $\left[b_{y}, z\right]$, say the length of $\left[a_{y}, z\right]$.

If glb $\delta_{y}>0$, then $\cap C_{y}$ contains a neighborhood of z, contained in ker S. Hence we may assume glb $\delta_{y}=0$.

Let $\left\{y_{n}\right\}$ be a sequence of points in S such that $\delta_{y_{n}} \rightarrow 0$ as $n \rightarrow \infty$. Let y_{0} be a limit point of $\left\{y_{n}\right\}$ and assume y_{n} converges to y_{0}. Set $L=L\left(y_{0}, z\right)$ and call the open halfplanes into which L divides the plane L_{1} and L_{2}. Without loss of generality, we assume that for each n, the corresponding a_{n} lies in the closed halfplane cl L_{2} determined by L.

We now show that every two points of S see a common ε-interval at z in cl L_{1} : Otherwise, some members x_{1} and x_{2} of S would see no such interval, and there would exist points q_{1} and q_{2} in bdry $N \cap L_{2}$ such that every ε-interval at z seen by both x_{1} and x_{2} would lie in the convex region bounded by rays $R\left(z, q_{1}\right)$ and $R\left(z, q_{2}\right)$. However, for δ_{n} sufficiently small, y_{n} sees no ε-interval at z in this region, impossible since x_{1}, x_{2}, y_{n} see a common ε-interval at z. Thus the result is established.

Assume that the points of bdry $N \cap \mathrm{cl} L_{1}$ are ordered in a clockwise direction from s_{0} to t_{0}, where s_{0} and t_{0} denote the endpoints of the interval $N \cap L$. For each y in S, there exist s_{y} and t_{y} on bdry $N \cap$ $\operatorname{cl} L_{1}$ such that y sees $\left[s_{y}, z\right] \cup\left[t_{y}, z\right]$ via S and such that s_{y} and t_{y} are, respectively, the first and last points on bdry $N \cap \mathrm{cl} L$ having this property. Finally, let E_{y} denote the convex hull of all segments
$\left[z, a_{y}\right]$ seen by y, where $a_{y} \in \operatorname{bdry} N \cap \operatorname{cl} L_{1}$. Certainly y sees E_{y} via S.
We say $a<b$ on bdry $N \cap \operatorname{cl} L_{1}$ if a precedes b in our clockwise order. Since every pair of points of S sees a common ε-interval at z in $\mathrm{cl} L_{1}$, it follows that lub $s_{y} \leqq \operatorname{glb} t_{y}$. Let $s_{1}=\operatorname{lub} s_{y}$ and $t_{1}=$ glb t_{y}. Then for each y we have $s_{0} \leqq s_{y} \leqq s_{1} \leqq t_{1} \leqq t_{y} \leqq t_{0}$. If $s_{0}=s_{1}$ or $t_{1}=t_{0}$, the proof is complete. Hence we assume that $s_{0} \neq s_{1}$ and $t_{1} \neq t_{0}$, so that conv $\left\{s_{1}, z, t_{1}\right\} \cap L=\{z\}$. If for some positive number r^{\prime}, the set $\cap E_{y}$ contains an interval of length r^{\prime} in $\operatorname{conv}\left\{s_{1}, z, t_{1}\right\}$, the proof is finished. Otherwise, for every $1 / n$ there is some w_{n} in S for which $E_{w_{n}}=E_{n}$ does not contain $M(z, 1 / n) \cap \operatorname{conv}\left\{s_{1}, z, t_{1}\right\}$, where $M(z, 1 / n)$ denotes the $1 / n$-disk centered at z. Hence the sequence of sets E_{n} converges to $\left[s_{0}, t_{0}\right]$.

In this case, every point of S sees some ε-interval at z on L : Suppose on the contrary that for some x in S, x sees neither $\left[s_{0}, z\right]$ nor $\left[z, t_{0}\right.$] via S. Then there exist points p_{1} and p_{2} in bdry $N \cap L_{1}$ and points p_{1}^{\prime} and p_{2}^{\prime} in bdry $N \cap L_{2}$ such that every ε-interval at z seen by x lies either in the convex region bounded by $R\left(z, p_{1}\right) \cup$ $R\left(z, p_{2}\right)$ or in the convex region bounded by $R\left(z, p_{1}^{\prime}\right) \cup R\left(z, p_{2}^{\prime}\right)$. However, for n sufficiently large, the points y_{n} and w_{n} defined previously see no common ε-interval at z in either of these regions, impossible since every 4 points of S see a common ε-interval at z. Thus the assertion is proved.

Finally, we have to show that for at least one of the segments $\left[s_{0}, z\right]$ and $\left[z, t_{0}\right]$, every point of S sees this segment via S : Otherwise, there would exist points $u, v \in S, p_{1}, p_{2} \in \operatorname{bdry} N \cap L_{1}$ and $p_{1}^{\prime}, p_{2}^{\prime} \in$ bdry $N \cap L_{2}$ such that the ε-segments at z seen by both u and v would be either in the convex region bounded by $R\left(z, p_{1}\right) \cup R\left(z, p_{2}\right)$ or in the convex region bounded by $R\left(z, p_{1}^{\prime}\right) \cup R\left(z, p_{2}^{\prime}\right)$. This contradicts the fact that u, v, w_{n}, y_{n} see a common ε-segment at z for each value of n. We conclude that $\operatorname{ker} S$ is a full 1-dimensional, and the proof for Case 1 is complete.

Case 2. Assume that $z \in \operatorname{bdry} S$. There are two possibilities to consider.

Case 2a. Suppose that there exist points s, t, u in S such that $z \in \operatorname{int} \operatorname{conv}\{s, t, u\}$. Then for two of these points, say s and t, no point of $[s, z)$ sees any point of $[t, z)$ via S. Then s and t see a common ε-interval at z in the closed region R^{\prime} bounded by rays $R(t, z) \sim[t, z)$ and $R(s, z) \sim[s, z)$. We define R to be that minimal sector of a circle containing all ε-intervals at z seen by both s and
t. Then R is bounded by segments $\left[z, s_{0}\right]$ and $\left[z, t_{0}\right]$ in S, and since s, t, s_{0}, t_{0} see a common ε-interval at z in R, certainly conv $\left\{s_{0}, z, t_{0}\right\} \subseteq S$. As before, order the points of bdry $R \sim\left(\left[z, s_{0}\right) \cup\left[z, t_{0}\right)\right)$ in a clockwise direction, and say $a<b$ on bdry $R \sim\left(\left[z, s_{0}\right) \cup\left[z, t_{0}\right)\right)$ if a precedes b in our clockwise ordering.

Assume that s_{0} and t_{0} are first and last points in our ordering. For each y in S, define D_{y} to be the convex hull of all ε-intervals at z in R seen by y, and let s_{y} and t_{y} be the first and last points of $D_{y} \quad$ in \quad bdry $R \sim\left(\left[z, s_{0}\right) \cup\left[z, t_{0}\right)\right)$. Clearly $s_{1} \equiv \operatorname{lub} s_{y} \leqq \operatorname{glb} t_{y} \equiv t_{1}$. Furthermore, a simple geometric argument reveals that every y in S sees the region conv $\left\{s_{0}, z, t_{0}\right\} \cap D_{y}$ via S. But $s_{0} \leqq s_{y} \leqq s_{1} \leqq t_{1} \leqq$ $t_{y} \leqq t_{0}$ on bdry R, so conv $\left\{s_{0}, z, t_{0}\right\} \cap \operatorname{conv}\left\{s_{1}, z, t_{1}\right\} \leqq \operatorname{conv}\left\{s_{0}, z, t_{0}\right\} \cap D_{y}$, and y sees conv $\left\{s_{0}, z, t_{0}\right\} \cap \operatorname{conv}\left\{s_{1}, z, t_{1}\right\}$ via S. This set is at least 1-dimensional and so $\operatorname{dim} \operatorname{ker} S \geqq 1$, the required result.

Case 2b. Suppose that $z \in$ bdry conv S. Then there must exist a line H supporting S at z, with S in the closed halfplane cl H_{1} determined by H. Order the points $\left\{x: x \in \operatorname{cl} H_{1}\right.$ and dist $\left.(z, x)=\varepsilon\right\}$ in a clockwise direction, and assume that s_{0} and t_{0} are the first and last points of S in our ordering. Then conv $\left\{s_{0}, z, t_{0}\right\} \subseteq S$, since s_{0} and t_{0} see a common ε-interval at z.

If points s_{0}, z, t_{0} are not collinear, then the argument in Case 2a above may be used to complete the proof. Hence consider the case in which s_{0}, z, t_{0} lie in H. If $s_{0}=t_{0}$, the proof is trivial, so assume $s_{0}<z<t_{0}$. If s_{0} and t_{0} see a common interval at z in $H_{1} \cup\{z\}$, then for some neighborhood N of $z, N \cap S$ is convex, and the argument of Case 1 may be adapted to finish the proof. In case s_{0} and t_{0} see no such interval, then using the fact that every 4 points see a common ε-interval at z, it is easy to show that for at least one of the segments $\left[s_{0}, z\right]$ and $\left[t_{0}, z\right]$, every point of S sees this segment via S. Hence we conclude that dim ker $S \geqq 1$ in Case 2, and the proof of Theorem 1 is complete.

The following example illustrates that the number 4 in Theorem 1 is best possible.

Example 1. Let S be the set in Figure 1. Then every 3 points of S see via S at least one of the segments $\left[z, x_{i}\right], 1 \leqq i \leqq 4$, yet $\operatorname{ker} S=\{z\}$.

Example 2 shows that the uniform lower bound ε on the segments seen by 4 points is necessary.

Example 2. Let S be the set in Figure 2. Then every 4 points see a common segment on the x-axis, but $\operatorname{ker} S$ is the origin.

Figure 1

Figure 2
Our second theorem is not limited to the plane and is essentially a quantitative version of Krasnosel'skii's theorem.

Theorem 2. Let S be a compact set in R^{2}. The dimension of ker S is 2 if and only if for some $\varepsilon>0$, every 3 points of S see via S a common neighborhood of radius ε. The number 3 is best possible.

Proof. Again we need only establish the sufficiency of the condition. Clearly S is starshaped, so select z in ker S. We observe that for every 3 points x_{1}, x_{2}, x_{3} in S, there corresponds a connected subset T of S such that dist $(z, t)=\varepsilon$ for each t in T and $\operatorname{conv}(T \cup\{z\})$ is a 2-dimensional subset of S. To verify this, let N be a neighborhood of radius ε seen by x_{1}, x_{2}, x_{3}. Then since $z \in \operatorname{ker} S$, $\operatorname{conv}\left(\left\{x_{i}, z\right\} \cup N\right) \subseteq S$ for each i, so x_{i} sees $\operatorname{conv}(\{z\} \cup N)$ via S. Letting $T=\{y: y \in$ $\operatorname{conv}(\{z\} \cup N), \operatorname{dist}(z, y)=\varepsilon\}, T$ satisfies the requirements given above.

Furthermore, letting D denote the closed ε-disk about z, notice that conv $(T \cup\{z\})$ is either D or a nondegenerate sector of D. If we associate with each set T the corresponding arc length $\delta(T)$ along bdry D, since S is compact, the numbers $\delta(T)$ are bounded below by some positive number δ. Therefore, for each $y \in S$, we may consider the collection G_{y} of all sectors of D seen by y for which the corresponding arc length on D is at least δ. Then using the sets G_{y}, the
argument in Theorem 1 may be appropriately modified and in fact simplified to complete the proof. The details are straightforward and hence are omitted.

To see that the number 3 of Theorem 2 is best possible, consider the following easy example.

Example 3. Let S be the set in Figure 3. Then every two points of S see one of the regions A_{i} via $S, 1 \leqq i \leqq 3$, yet $\operatorname{ker} S=\phi$.

Figure 3
In conclusion, it is interesting to notice that both Theorems 1 and 2 fail completely and in fact no $f(k)$ is possible without the requirement that S be compact.

Example 4. To see that our set must be closed, let S denote the unit disk with its center removed. Then every j-member subset of S sees via S an open sector having arc length $2 \pi / 2^{j}$, and every denumerable set of points sees a radius of S. Yet the set is not starshaped.

Example 5. To show that S must be bounded, consider the following example by Hare and Kenelly [4]: Define $T_{n}=\{(x, y)$: $n-1 \leqq y \leqq n, n \leqq x+y\}$, and let $S=\bigcup T_{n}$. Then every finite subset of S sees via S a common disk of radius $1 / 2$ in T_{1}, yet S is not starshaped.

References

1. Marilyn Breen, Sets in R^{d} having (d-2)-dimensional kernels, Pacific J. Math., (to appear).
2. N. E. Foland and J. M. Marr, Sets with zero dimensional kernels, Pacific J. Math., 19 (1966), 429-432.
3. W. R. Hare, Jr. and J. W. Kenelly, Concerning sets with one point kernel, Nieuw Arch. Wisk., 14 (1966), 103-105.
4. ——, Intersections of maximal starshaped sets, Proc. Amer. Math. Soc., 19 (1968), 1299-1302.
5. M. A. Krasnosel'skii, Sur un critère pour qu'un domaine soit étoile, Math. Sb., (61) 19 (1946), 309-310.
6. F. A. Toranzos, The dimension of the kernel of a starshaped set, Notices Amer. Math. Soc., 14 (1967), 832.

Received January 15, 1978.
The University of Oklahoma
Norman, OK 73019

