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A CERTAIN CLASS OF TOTAL VARIATION
MEASURES OF ANALYTIC MEASURES

JUN-ICHI TANAKA

In this paper we investigate a problem concerning the
total variation measure of an analytic measure induced by
a flow. Our main results are: Let μ be a positive Baire
measure on a compact Hausdorff space and let the distant
future in L2(μ) be the zero subspace. If μ is absolutely
continuous with respect to an invariant measure, then μ
is the total variation measure of an analytic measure. On
the other hand, if μ is singular with respect to each in-
variant measure, then there is a summable Baire function
g such that gdμ is analytic and g'1 is bounded. Moreover,
we note that general μ can be uniquely expressed as the
sum of measures of above two types.

l Preliminaries* In this section we establish the notation and
terminology which we shall use. We also explain some results about
spectra.

Throughout this paper X will denote a fixed compact Hausdorff
space upon which the real line R acts as a locally compact trans-
formation group. The translation of x by t in R will be written
x + t. Let C(X) be the space of all continuous complex-valued
functions on X. The dual space of C(X) is the space of all bounded
complex Baire measure on X and it will be denoted by M(X). For
a positive measure σ in M(X), || | |p will denote the norm in the
Lebesgue space Lp(σ), 1 ^ p tί °° Let m be a positive invariant
measure in M(X). For a function φ on X, we set (Ttφ)(x) = φ(x — t).
Then the action of R on X induces a strongly continuous one para-
meter group {Tt}teB of isometries of C{X) or of Lp(m), 1 <; p < oo.
Notice that {Tt}teB is merely continuous in the weak-* topology on
L°°(m). Using {Tt}teR one may convolve a function in Lp(m), 1 <;
p <* oo, a function in C(X) and a measure in M(X) with a function
in group algebra L\R) as follows: For φ in Lp(m) or in C(X) and
/ in L\R),

Φ*f=\ (Ttφ)f(t)dt .

When 1 <^ p < oo or when φ lies in C(X), this integral is a Bochner
integral but when p = oo, the integral converges in the weak-*
topology. For λ in M{X) and / in L\R), λ * / is defined by the
equation
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\φd(X*f) = [φ*fdX

for all φ in C(X) where f(t) = /(-«). Let 0 be a function in Lp(m),
1 <̂  j) <; oo, a function in C(X), or a measure in Λf(X). We set
j(β) = {feL\R);θ*f = 0}. Then J(0) is a closed ideal in !/(#).
The spectrum of 0 is the hull of the ideal J(θ) and is denoted by
Sp(θ). We shall say that θ is analytic if Sp(0) C [0, oo). The
measure v on R will be defined by dv(t) = l/(π(l + ί2))c£t and we shall
denote the Lebesgue and Hardy spaces based on v by Lp(v) and Hp(v),
1 <L p <> oo. Since m is invariant, it follows from Fubini's theorem
that if φ is a function in Lp{m), l<kp^°°, then there is an
invariant null set N such that, for x in X\N, the function of £,
φ(% + ί), belongs to Lp(v) (see [7; Proposition 2.1]). The space of
all analytic functions in C{X) will be denoted by SI, which is a
uniformly closed subalgebra of C(X) containing the constant functions.
For t in R, we shall write C(t9 oo) for the space {φ e C(X); Sp(φ)^(t, oo)}.
Let μ be a positive measure in M(X). Then the distant future in
L2(μ) is defined to be Π-^t^ [C(t, oo)]2 where [C(ί, °o)]2 is the L2(/i)-
closure of C(t, oo). We refer the reader to [1] for the basic facts
about spectra.

In [2, 3], Forelli raised the following question in connection with
a converse of F. and M. Riesz' theorem:

Let μ be a positive measure in M(X). If the distant future in
L2(μ) is the zero subspace, is μ the total variation measure of an
analytic measure!

It has been observed by Helson that the answer of this problem
is affirmative for some class of measures in the almost periodic
setting. More precisely, he showed the following: Let μ be a posi-
tive measure on the quotient of the Bohr group which has the same
null sets as Haar measure. If the distant future in L\μ) vanishes,
then μ is the total variation measure of an analytic measure ([5, 6;
Theorem 23]). This result is not only interesting but also highly
important in invariant subspace theory on compact abelian groups
(cf. [6] and [4; Ch. VII]).

In our discussion in the forthcoming sections, we frequently use
the following theorem of Forelli's concerning the above problem.

THEOREM F ([3; Theorem 1]). Let μ be a positive measure in
M(X). Suppose that the distant future in L2(μ) is the zero subspace.
Then there exists a function g in L°°(μ) with 0 < \g\ <̂  1 a.e. μ such
that gdμ is analytic.

The author would like to express his sincere gratitude to Professors
Yuji Ito and Junzo Wada for their useful advices.
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2* Absolutely continuous measures* In this section we shall
consider a positive measure which is absolutely continuous with
respect to an invariant measure. Our result depends on Muhly's
work.

THEOREM 2.1. Let m be a positive invariant measure in M(X),
and let w be a positive function in Lι(m). Suppose that the distant
future of L2(wdm) is the zero subspace. Then wdm is the total
variation measure of an analytic measure.

In order to prove Theorem 2.1, we need two lemmas and one
proposition.

LEMMA 2.2. Let φ be a function in Lp(m), 1 <: p ^ oo. Then
the following properties are equivarent:

( i ) The spectrum of φ as an element of Lp(m) is nonnegative:
(ii) The spectrum of φdm as a measure in M(X) is non-

negative:
(iii) There exists an invariant null set N such that for any x

in X\N, the function of t, φ(x + t), belongs to Hp(y).

This lemma was essentially proved in [8; §2], so we omit the
proof.

We set 2ί0 = C(0, oo) (see §1 for the definition of C(0, oo)). Then
§ί0 is an ideal of 8ί by [1; Theorem 1]. For any subset S of Lp{m),
1 ^ P ^ °°, we write:

S = {/; / is in S} ,

[S]p = the L^mVclosure of S .

LEMMA 2.3. There exists a closed subspace M in L\m) consisting
invariant functions such that L2(m) —

Proof. Since m is invariant, we have Sp(m) — {0} by [7;
Proposition 2.2]. So it follows from the preceding remark and [1;
Proposition 2] that [8ϊo]2 is orthogonal to [3ζj2. Let M be the
orthogonal complement of [Sίo]2 0 [8lo]2 in L2(m). If φ is in M, then
the measure φdm is orthogonal to £ί0 + 2I0. Since Sp(φdm) Q {0} by
[1; Proposition 2'], we see that φdm is invariant. Hence φ is an
invariant function. This completes the proof.

PROPOSITION 2.4. Suppose that f is a function in L°°(m) such
that f~λ is in L°°(m). Then there exists an analytic function φ in
L°°(m) such that \f\ = \φ\ a.e. m.
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Proof. By the hypothesis, we see that log |/ | is in L°°(m). It
follows from Lemma 2.3 that log \f\=u + v + v> where u is in [Sίo]2

and v is in M. Notice that v is a real-valued invariant function in
L\m). If we put g — 2u + v, then g is an analytic function in L2(m)
by [1; Proposition 2] and Lemma 2.2. Since Re g = log |/ | is bounded,
we have that exp (g) is a bounded function. It follows from Lemma
2.1 and the Fubini's theorem that there is a null set N such that
for any x in X\N, g(x + t) belongs to H\v) as a function of t and
exp (g(x + t)) belongs to L°°(v) as a function of t. The properties of
Hp(v), 1 ^ p S °°, implies that exp (#($ + <)) belongs to H°°(v) as a
function of t for any x in X\N. Therefore it follows from Lemma
2.1 that exp (g) is an analytic function with |exp (g)\ = |/ |, so the
proof is complete.

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. We use the modification argument in the
proof of [10; Theorem 1]. It follows from Theorem F in §1 that
there exists a function ψ in L°°(m) with 0 < |̂ (a?)| ^ 1 a.e. m such
that ψwdm is an analytic measure. We put

Hn = {xe X; (n + I)" 1 < \ψ(x)\ £ n~1}

and define

Iψl'1 on Hn ,
Un ~ [2-^ on X\Hn ,

for w = 1, 2, •••. Since both un and u~γ are in L^im), it follows
from Proposition 2.4 that there exists an analytic function φn such
that \φn\ = un. For a.e. x in Hm, we have

Σ \ΦnΨ(χ)\ = (
%=1 \nΦm

^ ^ 2-c+i) +

<3/2,
Σ ί*» - ( Σ .̂

> l - Σ 2-

' 1Since m(I\ULi jEΓm) = 0, if we set g — ΣSU ̂ ^> then both gr and g
/are in L°°(m). From the bounded convergence theorem and [1;
^Proposition 2] it is easy to see that gwdm is an analytic measure.
It follows from Proposition 2.4 that there is an analytic function h
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in L°°(m) such that \h\ = {gl'1. So hgwdm is an analytic measure
whose total variation measure is wdm. This completes the proof.

We conclude this section with an application of Theorem 2.1.
Recall that the point x in X is said to be a fixed point if x + t = x
for any t in R, and that the point x in X is said to be a periodic
point if x is not a fixed point but x + t — x for some t in R. We
also recall that a measure in M{X) is said to be quasi-invariant in
case every translate of each null set in a null set. What we prove
is the following:

PROPOSITION 2.5. Let μ he a positive measure in M(X) such
that the distant future in L2(μ) is the zero sub space. Suppose that
for μ - a.e. x in X, x is a fixed point or a periodic point. Then μ
is the total variation measure of an analytic measure.

Proof. We put

τ(x) — inf {t; t is positive and x + t — x) .

Since (t, x) —> (x + t, x) is a continuous function from [0, oo) x I to
X x X, if we set S = {(ί, x); (x + t, x) e J} where Δ is the diagonal
set, then S is closed. Notice that

{xeX Q < τ(x) <>a} = {xe X; (ί, a) 6 S n (0, a] x X} .

Since (t, x) -^ x is continuous, we see that τ{x) is measurable. Let

Po = {# 6 X; x is a fixed point} , and

PΛ = {# 6 X) n — 1

for n = 1, 2, . So Pw is an invariant set and μ(X\\Jn=0 P«) = 0.
We set μJJS) = ^(2? Π Pn) for any Baire set E, and let λo(j&) = μQ(E)
and

for j = 1, 2, •••. Recall that it follows from [1; Theorem 2] that μ
is quasi-invariant, so μn is also quasi-invariant because Pn is an
invariant set. We can easily observe that μn is absolutely continu-
ous with respect to λΛ. For any u in R,

Xn(E - u) =

= \ 1 lLE{x + s + u)ds \dμn(x)
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I XE(x + s)ds \dμn(x)

\ XE(x + s)ds + I XE(x + s)ds \dμn(x)

S rrr(a ) - |

I Z^(x + s)ds d/iΛ(a5)
x LJΌ J

Therefore λκ is an invariant measure in M(X). We set

\(E) = S2-| |\. |l~

Then λ is an invariant measure in M(X) and μ is absolutely con-
tinuous with respect to λ. From this fact and Theorem 2.1, we
have that μ is the total variation measure of an analytic measure.
This completes the proof.

3* Decomposition of quasi-invariant measures* In this section,
we would like to add some propositions which follow immediately by
virtue of elementary results of spectra. The proof of the following
proposition is a straightforward applications of [7; Proposition 2.2]
and [1; Proposition 2], so it will not be given.

PROPOSITION 3.1. Let μ be a measure in M(X). Then μ is
invariant if and only if μ is orthogonal to 8ί0 + 2I0> i.e., for any
f and g in Wo, j (/ + g)dμ = 0.

Although the following proposition is similar to Muhly's results
([9; Lemma 5.3 and Corollary 5.4]), his proof does not work directly
in our case. So we give here a complete proof.

PROPOSITION 3.2. Let μbe a quasi-invariant measure in M(X).
Then μ is singular with respect to each invariant measure in M(X)
if and only if % + 3ί0 i8 weak-* dense in L°°(\μ\).

Proof. Suppose that there is an invariant measure m in M(X)
such that μ is not singular with respect to m. Then we have m =
gd\μ\ + λ where g is an nonnull function in L\\μ\) and λ is singular
with respect to \μ\. Since μ is quasi-invariant, it follows from [1;
Lemma 6] that gd\μ\ is an invariant measure. So g is orthogonal
to Sί0 + I o in L\\μ\) by Proposition 3.1. Hence Sί0 + %Q is not weak-
dense in L°°(\μ\). So we have a contradiction. The converse is clear
by Proposition 3.1, so the proof is complete.

*
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We remark that the following corollary is concerned with a
problem raised by Helson and Lowdenslager (cf. [9; Remark 5.5]).

COROLLARY 3.3 ([9; Corollary 5.4]). Let μbe a positive measure
in M(X). If μ is singular with respect to each invariant measure,
then the subspace {Γ\s<Q[C[s, °°)]2} θ [C(0, oo)]2 consists of the zero
function alone, where [C[s, oo)]2 denotes the L\μ)-closure of C[s, oo).

Proof. We may assume that the distant future in L\μ) is the
zero subspace. So, by [1; Theorem 2], μ is a quasi-invariant measure.
Let / be a function in {Πs<o[C[s, °°)]i} θ [C(0, °°)]2 It follows from
[1; Theorem 1] that, for any g in Sί0 = C(0, oo), gf lies in [C(0, oo)]2.
Then gf is orthogonal to / in L\μ). Therefore, since \f\2dμ is real
measure, it is easy to see that |/|2 is orthogonal to Sί0 + % in L\μ).
So we have that / = 0 by Proposition 3.2. This completes the proof.

PROPOSITION 3.4. Let μbe a quasi-invariant measure in M(X).
Then μ is uniquely expressible in the form μ = μ1 + μ2 where μ1 is
mutually absolutely continuous with respect to an invariant measure
and μ2 is singular with respect to each invariant measure.

Proof. By above Proposition 3.2, we may assume that % + %
is not weak-* dense L°°(\μ\). We use the Forelli's argument in [2;
§2.4]. Let G be a maximal collection of nonnull functions in L1{\μ\)
with the properties that gd\μ\ is orthogonal to Sί0 + 2Ϊ0 for all g in
G and that if g and gr belong to G and g Φ gf, then gg' = 0. From
our assumption, it can be easily seen that G is not empty. Since
μ is finite, G is at most countable, so we can write G = {glf g2, •••}.
We define

dm(x) =
n=l

where 11- [̂  denotes the L^I^D-norm. Then m is invariant by Proposi-
tion 3.1. Therefore, by the Lebesgue's decomposition theorem, we
have dμ — hdm + dX where h is in Lι(m) and λ is singular with
respect to m. Since G is maximal, it is easy to see that λ is singular
with respect to each invariant measure by Proposition 3.1. The
uniqueness of decomposition follows from this fact, so the proof is
finished.

REMARK. Let μ be a positive measure in M(X). By [2; Proposi-
tion 2], if we assume that the distant future in L\μ) is the zero
subspace and that μ = μ1 + μ2 is the decomposition of Proposition 3.4,
then the distant future in L\μύ and the distant future in L\μ2) are
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both the zero subspaces. Therefore, when we deal with the Forelli's
problem, it suffices to consider the case where a measure is singular
with respect to each invariant measure.

4* Singular measures* The purpose of this section is to show
an improvement of Theorem F in § 1 under the condition in preceding
remark (see §3). We also give an application of this result. In
4.1, 4.2, 4.4, and 4.5, we assume that μ is a positive measure in
M(X) which is singular with respect to each invariant measure.
Recall that 9ί0 + 2Ϊ0 is weak-* dense in L°°(μ) if and only if μ is such
a measure (cf. Proposition 3.2).

THEOREM 4.1. Let 1 <̂  p < <*>. If φ is a function in L°°(μ)
with 0 < \φ\ <̂  1 a.e. μ, then there exists a function g in [%φ]p such
that g~x is in L°°(μ), where [%φ]p denotes the Lp(μ)-closure of SΆQφ.

In order to prove Theorem 4.1, we provide some lemmas.

LEMMA 4.2. We have the following properties;
( i ) If u is a real-valued function in L°°(μ), then there exists

a sequence {fn} in δί0 such that, for a.e. x in X, Refn(x) <̂  \\u\\n and
Re fn(x)-* u(x) (as n-> oo).

(ii) If w is a positive function in L°°(μ) where w~λ is in L°°(μ),
then there exists a sequence {gn} in δί0 such that \\\gn\ — w\\p —>0 (as
n —> oo) .

Proof, (i) Let CR(X) be the space of all real-valued continuous
functions on X. Since there exists a sequence {un} in CR(X) such
that, for a.e. x in X, un(x) ^ IMU and un(x)-+u(x) (as n—> cχ>), so
we may assume that u is continuous. Let B be the subspace of
CR(X) spanned by ReSί0 and u. The functional L can be defined on
B by setting:

L(v) = sup I \ hdμ; h e Re 9ί0 and h ^ v\ .

Then L is a bounded positive linear functional on B. We can extend
L monotonically no CB(X) (cf. [4; Ch. II §2]). So, by Riesz' re-
presentation theorem, there is a positive measure σ in M(X) such
that

L(v) = \ vdσ , for v in B

Since σ — μ is a real measure and orthogonal to % + Sl0, it follows
from Proposition 3.1 that σ — μ is an invariant measure. We put
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λ = σ — μ, then λ is singular with respect to μ by our assumption.

So λ is positive. From the definition of linear functional L,

there exists a sequence {/}} in Sΐ0 such that Re/,-(#) ^ u{x) and

I (u(x) — ~Refj(x))d(X + μ) —> 0 (as i -»oo) . Therefore we can find

a subsequence {/Λ} of {/,-} which has desired properties.
(ii) If we set u = logw, then u is in L°°(μ) by the assumption.

Therefore we can find sequence {fn} in 9ί0 which has the properties
of (i). Let gn — exp (/„). Then, it follows from the bounded con-
vergence theorem that \\\gn\ — w\\v—»0 (as n->oo), So the proof is
finished.

The following result is the well-known Borel-Cantelli lemma, so
we omit the proof.

LEMMA 4.3. Let An be a sequence of measurable sets. If
Σn=--ιμ(Ac

n) < oo, then we have μiliτn^^^ Ar

n) = 0.

Proof of Theorem 4.1. We first note that if we set

Hk = {x 6 X; k"1 < \φ(x)\ ̂  1 a.e. μ]

for k = 2, 3, ••-, then μ(\Jΐ=2 Hk) = μ(X). By induction, we can
choose a sequence {/J in 2ΪO and a increasing sequence {jt} of posi-
tive integers which have the following properties:

( i ) If we set

= \x e X; Σ

then μ(Ac

n) < 2~i .

(2) II/^IIP < (2-O'1 1"1 + 2

Indeed, for some A?!, we have μ(Hkl) > 2"1. From (ii) of Lemma 4.2,
we can easily find a function fx in Sί0 such that μ(Aj) > 2"1 and
WfίφWp < 2~p~\ We let jx = 1. Next, assume by induction that we
have found {f19 f2, , fn) in §ί0 and {j19 j 2 , , iH_J which have above
properties. It suffices to consider the case where μ{Ac

n_^ > 0. Let
j n and kn be positive integers such that μ(Ac

n_^) > 2~jn and μ((An_1 U
Hkn)

c) < 2-''» respectively. We put J^% = Hkn\An^ and & = 2~y -
K(A*-i U -fffeJO It follows from Lusin's theorem that there exists
a compact subset Kn of -AΛ_j. such that φ is continuous on Kn and
μ{An_\K«) < 3~15. Since Σ S / ^ is continuous on JBΓΛ, if we put
α = min {\Σϊ=} ftφWli % β JSΓΛ}, then α > 2"1. Define

(1 + 2— on En
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Then it follows from (ii) of Lemma 4.2 that there exist a function
/„ in 5ί0 and a measurable set E with μ(E) < 3~'δ such that \fnφ\ >
l + 2-'»+11 on En\E, \fnφ\ < 3~\a - 2-1) on E&E, and \\fnφ\\P <

' 1 + 2-". Then we have (EΛ\E) U (Kn\E) Q An. In fact, we see

2= \u\ -

that

> 2-1 on

and

Σ.U - \u\
> α - Z~\a - 2"1)

> 2-1 on Kn\E.

On the other hand, since

Σ
n=0

we see that g — Σ?=iΛ^ belongs to [Slô ]?> It follows from Lemma
4.3 that \g(x)\ ^ 2"1 a.e. /ί, so βf"1 is in L™{μ). This completes the
proof.

REMARK. It is easy to see that if \φ\ is continuous, more
generally lower semi-continuous, then we can choose g in [Sίô ]p such
that both g and g~ι are in L°°{μ).

From Theorem 4.1, we have the following improvement of
Theorem F in §1.

COROLLARY 4.4. // the distant future in L\μ) is the zero sub-
space, then there exists a function g in Lp(μ), 1 ^ p < oo, such that
gdμ is analytic and g'1 is in L°°(μ).

Proof. By Theorem F, there is a function φ in L°°(μ) such that
0 < \φ\ <; 1 a.e. μ and Φdμ is analytic. Moreover, for any / in Sϊ,
we see that fφdμ is analytic by [1; Proposition 2]. From this fact
and Theorem 4.1, we find a function g in Lp(μ) which has the desired
properties. So the proof is finished.

Finally we give an application of Theorem 4.1 that is an ex-
tention of one result in [5]. For a positive measure σ in M(X), we
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call that σ has the property (P) if σ satisfies the following condition:

(P) // / is a function in SI, then there exists an invariant
function φf in [Sί]2 such that f + φf is orthogonal to Sί.

PROPOSITION 4.5. Let μ be a positive measure in M(X) which
satisfies the above condition (P). Suppose that w is a positive func-
tion in L2(μ) such that the distant future in L2(wdμ) is the zero
subspace. Then wdμ is the total variation measure of an analytic
measure.

Proof. Since wdμ is mutually absolutely continuous with respect
to μf it follows from Theorem F that there exists a function φ in
L°°(μ) such that 0 < \φ\ ^ 1 a.e. μ and φwdμ is analytic. From
Theorem 4.1, we can find a function g in [%φ]2 such that g~x is in
L°°(μ). Notice that —log \g\ is in L\μ) and upper bounded. Let c
be a positive number with —log \g\ ^ c a.e. μ. Then it follows from
(i) of Lemma 4.2 that there exists a sequence {fn} in 8t0 such that
Refn^c a.e. and ||Re/Λ - (-log |flr|)||2-> 0 (as n-+<*>). On the
other hand, for any / in 31, we let φf be the function as in the
condition (P). Then, since φf is in [Sί]2, we have:

= \\{f + Φr) + (f - Φf)\\l
2 > | | / + φf\\l, a n d \\f - φ,\\\.

Let φn be the invariant function corresponding to fn. Then, since
{Re/J is a Cauchy sequence in L\μ), both sequences {/n + φn} and
{/» — Φn) are also Cauchy sequences. So {fn + i Im φn) is a Cauchy
sequence. Hence we can choose h in L%μ) such that Refe = — log |^|
a.e. μ and

(fn + i Im 0j(αO > Λ(α;) a.e. (as n > oo) .

Notice that if λ is an analytic measure and if ψ is an invariant
function in L\\X\)f then ψdX is analytic. So it can be easily seen
that exp (/n + i Im φn)gwdμ is analytic for % = 1, 2, . Since

|exp (fn + i Im $>n)flrw| ^ ^c bl w

and I gr I w is in L\μ)9 it follows from bounded convergence theorem
that exp {h)gwdμ is analytic. Since |exp {h)\ = \g\~\ we see that wdμ
is the total variation measure of the analytic measure exp (h)gwdμ,
so the proof is complete.



558 JUN-ICHI TANAKA

REFERENCES

1. F. Forelli, Analytic and quasi-invariant measures, Acta Math., 118 (1967), 33-59.
2. , What makes a positive measure the total variation measure of an analytic
measure? J. London Math. Soc, (2), 2 (1970), 713-718.
3. , Fourier theory and flows, Actes, Congres intern. Math., 2 (1970), 45Θ-.457
4. T. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, N.J, 1969.
5. H. Helson, Compact groups with ordered duals IV, Bull. London Math. Soc, 5 (1973),
67-69.
6. 1 Analyticity on compact abelian groups, Algebras in Analysis, Academic
Press, (1975), 1-62.
7. P. Muhly, Function algebras and flows I, Acta Sci. Math. (Szeged), 35 (1973),
111-121.
8. , Founction algebras and flows III, Math. Z., 136 (1974), 253-260.
9. , The distant future, Indiana Math. J., 24 (1974), 149-159.
10. J. Tanaka, Some remarks on simply invariant subspaces on compact abelian groups,
J. Math. Soc. Japan, 30 (1978), 475-482.
11. y A note on Helson's existence theorem, Proc. Amer. Math. Soc, 69(1978),

87-90.

Received April 13, 1978.

TSURU UNIVERSITY

TSURU CITY, YAMANASHI-KEN

402 JAPAN




