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A COMMON FIXED POINT THEOREM FOR
NESTED SPACES

R. E. SMITHSON

Let X be an arcwise connected Hausdorff space in which
the union of any nest of arcs is contained in an arc. Let
f,g:X-^X be commuting: functions (not necessarily contin-
uous), which satisfy (1) f(A) and g(A) are arcwise connected
for each arc AaX, and (2) /"1(OJ) and g^ix) are arcwise con-
nected for each xeX. The principal result of this paper
is:

THEOREM. The functions f and g have a common fixed point.

A space satisfying the conditions on X is called a nested space.
Functions which satisfy condition (1) are called arc preserving and
those satisfying condition (2) are called strongly monotone. In [3]
Harris showed that continuous functions are arc preserving. Thus
we have:

COROLLARY. TWO commuting, continuous strongly monotone
self maps of a nested space have a common fixed point.

In this context an arc is a continuum with exactly two non-
cutpoints. If X is metrizable, then this coincides with the classical
definition of an arc as the homeomorphic image of the closed unit
interval.

Before proceeding to the proof of the main result we give an
example which shows that an arc preserving, strongly monotone
function is not necessarily continuous and then give a few historical
remarks.

EXAMPLE. Let Xo = {(x, 0): 0^a^2} and Xn = {(1/n, y): 0 ^ y ^ 1}
for n^l. Next set X_x = {(2, y):0^y^2}, X_2 = {(x, 2): 0 ^ x £ 2 }
and X_3 = {(0, y): 1 ^ y ^ 2}. Then set X = U {Xk: k ^ -3} . Define
/ : X-> X by /(*) = (2, 0) if z e \J*issl U^ and f(z) = z otherwise. We
see that / is arc preserving and strongly monotone but / is not
continuous.

In 1967 W. J. Gray [1] proved that an abelian semigroup of
continuous, monotone functions on an hereditarily unicoherent,
hereditarily decomposable continuum into itself had a common fixed
point. Further, in 1975 Gray and Smith [2] proved an extension
of this result for hereditarily unicoherent, arcwise connected con-
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tinua. In this note we prove a common fixed point theorem for
commuting functions on a nested space.

The notion of a nested space was used by G.S. Young [6] in
1946. In [6] Young showed that nested spaces have the fixed point
property for continuous self maps. This theorem was subsequently
extended to multifunctions by Smithson [5] and further extended
by Muenzenberger and Smithson in [4].

REMARK. It is clear from the definition that a nested space is
acyclic. Thus if x, y e X where X is a nested space, we denote the
unique arc in X with endpoints x, y by [x, y]. In the sequel X
will denote a nested space, and the functions /, g satisfy conditions
(1) and (2).

We define a partial order on X as follows: Let eeX. Then
x ^ y if and only if xe[e, y]. The proof that <£ is a partial order
is routine and is omitted. In the remainder of the paper we assume
that X has this partial order.

LEMMA 1. The partial order <; satisfies the following:
( i ) If x <y, then there is a z such that x < z < y.
(ii) If CcX is totally ordered and nonempty, then sup C

exists in X.
(iii) For each x,yeX, inf {x, y) — xΛy exists.

Proof. For (i) let z e [x, y] — {x, y}. Then z e [x, y] c [e, y] since
x 6 [e, y] and thus x < z < y. For (ii) note that {[e, c]: ceC} is a
nested collection of arcs in X and so C is contained in an arc [e, a].
Let cQ = sup C in [e, a]. If Ca[e, b], then Ca[e, a] Π [e, b] which is
an arc and so c0 ̂  6. Thus c0 = sup G in X. For (iii), let A =
[e, x] Π [e, y]. Then A is an arc [β, a] and a = xΛy.

REMARK. We could also show that each nonempty subset of X
has an infimum in X and that for each x e X, there is a maximal
element meX with x <; m.

If x, y are not comparable, xΛy is a cutpoint of the arc [x, y]
and thus [x, y] — [xΛy, x] U [xΛy, y].

Define the sets L(x) and ilf(aθ by: L{x) = {y e X; y <; x) and
M(x) = {y: x ^ 2/}. Then, since L(#) = [e, x], L(x) is totally ordered.
Also M(x) is arc wise connected. We have:

LEMMA 2. If A is arcwise connected, if Af\M(x)ΦφΦAΓ)(X —
M(x)), then xeA.

Proof. Let y1 e AΠM(x) and y 2 e i n ( X - Λf(»)) Then y,Λy2$
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M(x), but yxΛy2 e L{yx). Thus x e \y^Ay2, yx] c [ylf y2] c A.

LEMMA 3. If a <b and if [α, b] contains a fixed point of f,
then x0 = inf {x e [a, b]: f(x) = x) is a fixed point of f. Hence, [a, b]
contains a smallest (in [a, 6]) fixed point of f.

Proof. Let x1 e [a, b] be a fixed point of /. Then if f(x0) Φ x0,
x0 < x1 and we may assume that f(x0) S %i- Let z0 = f(x^)Λx1. Since
/ is arc preserving, there is a zx e [xOf xλ] such that / ( z j = z0. Note
zx Φ x0. Now let x2 be a fixed point of / such that x0 < x2 < zx.
Since xz<xί9 f(Xo)Λx2^f(xQ)Λx1^f(xQ). But x2 and f(x0) are elements
of f[xOf x2] and thus so are f(xo)Λx2 and f(x0). Hence, zoef[x0, x2].
This implies that f~\z0) f] M{x2) Φ 0 and f~\z0) Π (X - Λf(a?2)) ^ 0
and thus x2 e f~\zQ) since / is strongly monotone. This is a contra-
diction to f(x2) = x2 and x2 < zQ.

Next we need another definition.

DEFINITION. Let aeX. The branch at a containing x1 e M(a)—a
is the set B — {x: a < a ^ J .

Thus if J5j, B2 are two different branches at a and if ^ 6 Bu

i = 1, 2, then α = ^ ί c 2 and α e [^, α;2].
Before proving the main result we need two more lemmas.

LEMMA 4. If Ad.X is a nonempty totally ordered set such that
x <̂  f(x) for xeA, then, xQ ^ f{x0) where x0 = sup A.

Proof. Suppose f(xQ)$M(x0). Let b = f(xo)Λxo and let b<kc<Lx0.
Since x0 = sup A, there is an xu c < xt < x09 such that xι ^ /(a?i).
Then f[xu x0] meets M(c) and X — M(c) and hence, contains c. Let
2X 6 [xl9 x0] with / ( ^ ) = c. Next let a?2 be in A with 2X < x2 < a?0.
Then /[α;2, x0] meets both M(c) and X — Λf(c) and also contains c.
But then /"L(c) meets M(x2) and X — M(x2) and therefore contains
a?2. This contradicts the choice of x2. Thus x0 ^ /(a?0)

LEMMA 5. Lβί α < f(a). (i) If B is the branch at a contain-
ing f(a), then B contains a fixed point off. (ii) Iff(f(a)) £ M(f(a)),
then X — M(f(a)) contains a fixed point of f.

Proof. For part (i) first let a < x < f(a). Then if f(x) $ M(x),
f[a, x] contains x. Hence, there is an x, a < x < /(α), with x^f(x).
Now let C be a maximal totally ordered set containing x such that
c ^ /(c) for all ceC. Let x0 = sup C. Then f(xQ) e M(xQ) follows
from Lemma 4. Note that x0 is in the branch at a containing f(a).
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For xQ < xι < f(χQ), f{xx) ί Mix,). Thus xQ e f[xQ, xλ]. Suppose f(zx) =
x± where x0 < zx < xx. But then zλeC which contradicts the defini-
tion of x0 and C. Thus f(xQ) = χ0.

For statement (ii) set Xo = {X - AΓ(/(α))} U {/(α)}, and define
g: Xo -> Xo by flr(a?) = Rx) if /(a?) £ M(/(α)) and 0(αO = /(α) if f(x) e
Λf(/(α)). Since X — M(f(a)) is arcwise connected, Xo is a nested
space and g is arc preserving, and strongly monotone. Now let C
be a maximal totally ordered set in Xo which contains a such that
* ^/(a) for all xeC. Then let #0 = sup C. (We are using ^
restricted to Xo.) From the hypothesis for (ii) /(/(α)) g M(f(a)) and
thus xoφf(a). Then by the same argument used in part (i), f(xo) =
x0 and part (ii) follows.

Now we give the proof of the main theorem.

Proof. Let A — {xeX:x <* f(x) and a ^ #(#)} and let C be a
maximal totally ordered subset of A. Set a = sup C. Then by
applying Lemma 4 to / and g we see that aeC. The remainder
of the proof is divided into a number of parts.

First suppose that a < f(a)Ag(a); without loss of generality we
may suppose that for a < x < b = f{a)Λg(a) there is a 2, α < 3 < x
with f(z) ί M(z). Thus let a <zι<b1<b with /fo) g ilίfe). Then
bi£f[a, s j . Say α < ^ < ^ and f{yx) = 6̂  But then there is a
z2, α < z2 < 7/i with f(z2) £ M(z2). Thus /[α, z2] also contains 6X which
contradicts the assumption that / "^δ j is arcwise connected.

Next we assume that a Φ f(a) and a Φ g(a), and that a =
f(a)Ag(a). For each i — 1, 2, let B< be the branch at a containing
α?i = f(a) and α?2 = g(α) respectively. Since / and g commute /(a?2) =
(̂α J and hence, either g(xλ) £ B2 or f(x2) $ Bλ. Say /(α?2) g A Then

αe/[α, x2]. By Lemmas 3 and 4 there is a fixed point ^ of / in
Bt such that the only /-fixed point in [α, #J is 2/lβ Next note that
fg(Vi)=gf(Vi)::=g(yi) and so g{yx) is also a fixed point of /. Further,
if y2 = g(yi)ίBlf then α e f e j j and thus aef[y21y^. This leaves
two possibilities: either y2 e B1 or y2 e B2 for otherwise a e f~\a)
which is a contradiction. So suppose y2 e Bx and let b — yxAy2.
Then if f(b)$M(b), bef[b, i/J Π/[δ, y2] and so bef~\b) which con-
tradicts the choice of 7/2. Thus /(δ)eΛf(δ). Then g{b)£M(b)-b
follows from the maximality of α. Next set y% = g(y2). If yBeM(b)
we have 6 6 g[b, yλ] Π fl^[δ, ̂ /2] which is a contradiction. Hence, yz ί
Λί(δ). Note /(τ/3) = y8. So we have b e f[y3, b] and either b e /[δ, 2/J
or δe/[δ, t/2] which is another contradiction.

We still have the subcase y2 e B2 to consider. By Lemma 3 we
may assume that / does not have another fixed point in [al9 y2\
Then set y3 = g(y2). As above either y3eB1 or yzeB2. In either of
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these cases we can obtain the same contradiction as in the case
where y2 e Bλ. Hence, the argument for f(a)φaΦg(a) and f(a)Λg(a) =
a is concluded.

Finally, assume f(a) = a and a < g(a) — y^ Since yλ is a fixed
point of figiyJφMiyi). Thus there is a #-fixed point x1eM{a) —
M{y^). Let b = x^y^ Then a <; δ <yx and so let c be such that
b < c <yx. Now if x2 = f(Xi) £ M(a), then c e #[#2, α] and c e g[a, x±]
which is a contradition since a $ g~\c). Thus x2 e M(a) and x2 ί M{x^).
From Lemma 3 we may assume that xx is the only r̂-fixed point in
[α, a?J. Now let d = a?^^. As in the previous arguments, applied
to g in this case, f(d) e M(d). Finally we set xz — f(x2) and the same
arguments as above give the same contradiction. Thus we conclude
that a is a fixed point of both / and g.
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