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GENERAL PEXIDER EQUATIONS (PART I):
EXISTENCE OF INJECTIVE SOLUTIONS

M. A. McKlERNAN

Given open connected Ω9 ΩςiRn and given T: Ω^>R
continuous, F: 42—>j£ strictly monotonic, in each variable
separately. The equation is h°T=F°π for the unknowns
h: T(Ω)-+R, π:Ω->Ω with π—(fu •• ,/J a product mapping -
e.g., h{T(x, y)}=F{f(x), g(y)}. If T is one-one in each variable,
then any continuous solution π must be injective or constant
on Ω; conversely, if an injective solution π exists then T
must be one-one in each variable separately.

1. Introduction. Given a subset Ω £ Rn for n ^ 2, let Ωt

denote its projection on the ΐth coordinate axis. By a product
mapping π: Ω —> Ω c Rn is understood the restriction to Ω of a map
(/i, ,Λ): XiΩi-> Rn defined by n functions /,: Ω.-^Ω,^ R. For
given T: Ω —> i? and F: Ω ̂  R, equations of the form

(1) h{T(xlf , a?J} = FfΛfe), , ΛGO}

for the unknowns h: T(Ω) -> R and π: Ω —> β are generalizations of
Pexider equations1. For the most part the literature concerns the
case in which T and F are specified, usually the sum and/or product
of the arguments. In [3] C. T. Ng recently gave a uniqueness
theorem for continuous solutions π, assuming T continuous but with
F(ul9 , uΛ) = ih + + un; a generalization to certain topological
spaces appears in Ng [4] and [2]. A simple case of (1) was used
by J. Lester and the author [5] to characterize Lorentz transforma-
tions in Rn.

2. Formulation of results* Given Ω, Ω £ Rn for n Ξ> 2 and
given T: Ω —»R, F: Ω -* R. Henceforth assume:

(A-l) T continuous in each variable separately,
(A-2) F one-to-one in each variable separately,
(A-3) Ω open and connected.

THEOREM 1. With (A-l, 2, 3) assume Toh = Foπ satisfied on Ω,
where h: T(Ω) —> R and where π: Ω —> β is cm injective product
mapping. Then T must be strictly monotonic in each variable
separately on Ω.

The existence of an injective solution π then places a severe
1 For literature see [1]; J. V. Pexider studied h(x+y)=f(x)+g(y).
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condition on T; the following theorems indicate that if continuous
solutions π are to exist, injectivity or at least some local one-to-
one property of π is to be expected. A function will be called
locally nonconstant if it is not constant on any open set.

THEOREM 2. If in addition to (A-l, 2, 3), T is locally non-
constant in each variable separately then for any continuous
product map π: Ω —> Ω and corresponding h: T(Ω) —> R satisfying
hoT = Foπ on Ω, either π is also locally nonconstant in each
variable separately or π is constant on Ω.

The following theorem is a partial converse to Theorem 1.

THEOREM 3. If in addition to (A-l, 2, 3), both T and F are
strictly monotonic in each variable separately, then for any contin-
uous product map, π: Ω —> Ω and corresponding h: T(Ω) —• R satisfy-
ing h°T = Foπ on Ω, either π is injective or π is constant on Ω.

3* Proof of Theorem !• By symmetry it suffices to consider
T in its first variable for all choices of the remaining variables,
denoted by X = (x2, •••,$„). If (a> X) and (b, X) are elements of Ω
with a Φ b, then by (A-2), T{a, X)=T(b, X) implies π(a, X)=π(b, X)
for product functions π; π would not be injective. Hence each X
determines a line λ parallel to the x1 axis and T( X) is one-to-one
on X ΛΩ. Hence T is one-to-one and continuous in each variable
separately. Since Ω was not assumed convex, the domain of T(- X)
for given X need not be connected (in R) and it remains to prove
that T is in fact strictly monotonic in each variable for all choices
of the remaining variables (either increasing for all, or decreasing
for all). For each point (xlf —-,xn)eΩ, some open ball around this
point is contained in Ω and define V: Ω —> Rn by V(x19 , xJ =
(±1, •••, ±1) according as T is strictly increasing ( + 1) or decreas-
ing ( — 1) in each variable within that open ball. Since V is constant
on some neighborhood of each point in Ω, V is continuous on Ω
and all of the 2n sets V~\±l, , ±1) are closed and disjoint.
Since Ω is connected, all but one of these sets must be empty.

4* Proof of Theorem 2. Consider the two dimensional case
h{T(x, y)} = F{f{x), g{y)}, valid on some open connected ΩaR2; Ωz, Ωy

denote the projections of Ω on the x and y axes, / and g are
continuous on Ωx and Ωy respectively. Let Ne(x): =]x — ε, x + ε[,
the open interval.

LEMMA 2. For (x0, y0) in Ω, if f is constant on some Nε(x0)
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then g is also constant on some Nδ(y0) and conversely.

Proof. Choose ε > 0 sufficiently small so that N£(x0) x Nε(y0)cz
Ω with f(x) = k constant on Nε(x0). Since T( , y0) is locally non-
constant and continuous, T(Nε(xQ), y0) contains an open interval I;
since h{T(x, y0)} = F{k, g(y0)} is also constant, h must be constant on
I. With x1 chosen in Nε(x0) such that T(xu y0) is in /, so also is
T(xlf y) in I for all y in some Nδ(yQ); hence h{T(xlf y)} = F{k, g{y)}
is constant, that is, g(y) is constant by (A-2) for y in Nδ(y0).
Similarly for the converse.

LEMMA 3. If f is constant on some closed interval [a, b] c Ωx}

a < b9 then for some δ > 0, / is also constant on ]a — δ, b + δ[(zΩx.
Similarly for g relative to intervals in Ωy.

Proof. With be Ωx so also (6, y0) e Ω for some y0 and since Ω
is open, [b — ε, b + ε] x [yQ — ε, #0 + ε] c β for some ε > 0. Choose
#oe]δ — ε, b[ = N(x0), a neighbourhood of cc0 on which / is constant;
by Lemma 2, g is constant on some N(y0). But again (6, ?/0) e i2
with g constant on N(y0) implies / constant on some N(b), thus
extending [α, b] to [α, & + 3[. Similarly for the end point a and
for g relative to Ωy.

If / is constant on some open interval, so also on the closure
in Ωx of the maximal extension of the interval on which / is
constant; this maximal extension must also be open in Ωx by Lemma
3. Since Ωx is connected, / must be constant on Ωx itself. In view
of Lemma 2, g will be constant on Ωy. A similar argument applied
to any two of the arguments of π in Rn proves the theorem.

5. Proof of Theorem 3\ With T strictly monotonic in each
variable separately, T is locally nonconstant in each variable also;
the results of §4 are therefore applicable and it remains only to
prove that if π is not injective on Ω, then some ft is constant on
some open set in Ωt. Consider again the R2 case using /, g as
before. If f(a) = f(b) for some a < b, then for some a < c < b,
fie) extremizes / (choosing max. or min. as required) on [α, b] and
in every N£c) two points x0, x2 can be found satisfying f{x^) — f(x^r
With c e Ωx so also (c, y0) e Ω for some y0 e Ωy, and for sufficiently
small ε > 0 so also Nε(c) x {y0} c Ω. Hence f(x0) = f(x2) with [x0,
#2] x {y0} c: Ω; for this x0, x2 choose xx in the open interval ]xQ, x2[
such that f(x^ extremizes / on [x0, x2]. Assume f{x^ ^ fix) for all

A similar argument may be found in [3],
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%o ^ x ^ 2̂ and note that x0 < xx < x2. Since T is strictly monotonic
in each variable assume T(x0, Vo) < T(xu y0) < T(x2, y0) and define
Γu Γ2, Γ3 c Ωy as follows: Γ1 = {y\ T(xQ, yQ) < T(xu y) < T(x2, y0)}, Γ% =
{y\T(x0, y) < T(xίf y0)}, and Γd = {y\ T{xu y0) < T{x2, y)}. By continuity
each Γi is open and i / o e Λ Λ A Λ Γ3 thus defining a neighborhood
N(y0) of y0. For every yeN(y0) follows T(x0, y0) < T(xίf y)<T{x2, y0)
and T(xQ, y) < T(xu yQ) < T{x2y y); therefore there exist points a, βe
]x0, x,[ satisfying T{a9 y0) = T(xlf y) and T(β9 y) = T(xίf y0). The
equation hoT = F<>π then implies F{f(a), g(y0)} = F{f(Xj), g(y)} and
F{f{β), g(y)} - JPί/ί^), g(Vo)}. But /fe) ^ /(α) and ^f(β) and since
F is now strictly monotonic in each variable, g(y) = g(y0) follows.
Hence g is constant on N(y0), and by § 4, g is constant on Ωy and
/ is constant on Ωx. When applied to any two arguments of the
original equation in Rn, n ^ 2, the theorem follows.
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