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IN SEARCH OF NONSOLVABLE GROUPS
OF CENTRAL TYPE

ROBERT A. LIEBLER AND JAY E. YELLEN

In 1963 Iwahori and Matsumoto conjectured that a finite
group possessing a central simple projective group algebra
must be solvable. We verify this conjecture in case all
composition factors are known simple groups.

1* Introduction* A natural question in the theory of projective
group representations is which finite groups G possess a projective
group algebra A that has the simplest possible structure. Iwahori
and Matsumoto [10] conjectured that G must be solvable if A is
central simple. DeMeyer and Janusz [2, Theorem 1] showed that
such a group possesses a central extension G (of central type) such
that there is a complex irreducible character X of G such that
X(l)2 — [G: Z(G)]. DeMeyer and Janusz also provided the first support
for the solvability conjecture.

In this paper we continue the work of these authors and Isaacs
[6], Gagola [4] and Yellen [14] and show'

MAIN THEOREM. A nonsolvable group of central type must
possess a new simple group as a composition factor.

We consider the following hypotheses on an arbitrary finite
group S:

(1.1) Hypothesis. There is a prime p such that S has a non-
trivial abelian Sylow p-subgroup and pJf\OntS\.

(1.2) Hypothesis. If there is a proper subgroup I of p-power
index, then I is nonsolvable and all composition factors of / satisfy
hypothesis (1.1).

Hypothesis (1.1) is satisfied by all known simple groups (3.1)
and (1.2) is also satisfied by all known nonabelian simple groups
except for (certain) PSL (2, q) (3.2). Theorem 2.6 shows a group
of central type having minimal order among those that are non-
solvable and have no composition factor failing (1.1) must have a
composition factor S that fails (1.2). Theorem 2.7 shows further
that S cannot be a PSL (2, q) and the main theorem follows.

Our notation is standard and follows Gagen [3], Huppert [5]
and Isaacs [7] when appropriate.
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2* The structure of a group of central type*

THEOREM 2.1. Let G be a group of central type. Then no com-
ponent of G satisfies hypothesis (1.1).

Proof. Suppose G has a component E1 satisfying (1.1) and let
Z = Z(G). Label the G-conjugates of Ex as E1 Em and set K =
(E, EJZ.

Let R be a Sylow p-subgroup of G containing P, a Sylow p-
subgroup of K and set N= r\NB{E,). Then [R:N]\ml, since R
acts as a permutation group on {Ex Em) and N is the kernel of
this action.

Take x e N. By hypothesis (1.1), (x, P Π Et) induces the same
group of automorphisms of S = Et/Z(Et) as does P Π Et. Hence
there is xt eE^P such that xxt e CoiEJZiEi)). However CG(Ei/Z(Ei)) =
CG(Eτ) by [3, 10.3a], and [xxif P n ^ ] = 1, so χχt e CB{Pn Et).
Similarly [xt, %] = 1 for %Φ j , by [3, 10.2a]. It follows that
xx1 - - xm e CR(P). This shows iV = CB(P), since P itself is abelian
[3, 10.2a].

Now a theorem of DeMeyer and Janusz [2, Theorem 2] implies
that R is a group of central type with center Z Γ\R. Take X e char
R and ζechar ^ Π i 2 to be the associated characters, so X\ZCίB —
[R: Z Π JB]1/2C Let τ be an irreducible constitutent of the induced
character ζp. By Clifford's theorem [8, 17.3] [R: ̂ ( τ ) ] = [P: Z Π i2],
as P' - 1. But ^ ( τ ) ̂  Cβ(P) = iV, so we have

pm\[P:ZnR]\[R:N]\ml

which is absurd. This proves (2.1).
In order to minimize repitition we fix the following notation for

the rest of this section. Let G be a nonsolvable group of central
type having minimal order among those possessing only composition
factors satisfying (1.1). The characters Zechar G and ζechar Z,
Z = Z(G) are supposed to satisfy l\z = [G: Z\'%. Take K to be a
minimal normal subgroup of G among those properly containing Z
and take τ e char K to be an irreducible constituent of the induced
character ζκ.

LEMMA 2.2. K is abelian.
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Proof, By Theorem 2.1 K/Z is an elementary abelian p-group
for some prime p. Consider the "bilinear" function ((,)): K x if —> C*
defined by {(x, y)) = ζ([x, y]) as in Isaacs [7]. By choice of G, ζ is
faithful and so if1 = Z(K) and Z(K) = Z(G) by choice of if. Thus
(( , )) is nondegenerate on K/Z. This implies, [7], that (if, Z, τ) is
a fully ramified triple and it follows that G = *J%(τ). But now
(G, if, τ) is fully ramified by Gagola [4, 2.2a] and Isaacs [7, 8.2]
implies a central extension of GjK is of central type and has the
same nonabelian composition factors as G, contrary to the choice of
G.

LEMMA 2.3. CG{K) = CG(K/Z).

Proof. Let A = CG(K/Z)/CG(K). Then A stabilizes the normal
series K > Z > 1 and so is a p-group. Let {ax α j be a minimal
set of generators for A. Consider the commutator map [aif -] :
K-> Z. Since Z is cyclic (ζ is faithful by choice of G), if/C^α,) is
cyclic also. But Cκ(a%) ^ Z and If/Z is elementary abelian, so KICκ{a%)
order 1 or p. It follows that [K: CK(A)] = [If: n C ^ ) ] ^ ps, and
by Burnside's basis theorem [5, III. 3.2], [K: CK(A)] ̂ ps^ [A: Φ{A)] ̂
\A\.

Since CK(A) is G-invariant CK(A) = K or ^ . If CX(A) = K the
lemma holds, so suppose CK(A) = Z. Let K* be the dual group of
K and let V <; if* be the set of characters vanishing on Z. If a
power τz = τ (g) (x)τ of τ is in V, then ζ* = (τ|z)

z = 1 and \Z\\l,
as ζ is faithful. Thus if* = <τ, F> and Cβ(F)
However, CG(K) = Q(if*) and Cff(7) = CG(if/Z), so
CG{K). Now |A| ^ [K: CK{A)} = [if: Z] implies G = ^(τ)Cσ(K/Z).
Since A, = CG(K/Z)/(CG(K/Z) Π Jξ(r)) is a p-group, the nonabelian
composition factors of G are also composition factors of ̂ ( τ ) .
Once again (^(τ), if, r) is a fully ramified triple [4, 2.2a] and [7,
8.2] implies a central extension of J^G{τ)\K is of central type. Since
G=^(τ)CG(K/Z)f J^"G{τ) has the same nonabelian composition factors
as G, contrary to the choice of G.

LEMMA 2.4. Lei K* denote the dual group of K and V ^ if *
denote the characters vanishing on Z. If H is a nonsolvable sub-
normal subgroup of G containing CG(K) then H — H/CG(K) violates
hypothesis (1.2) and H\Hf V) Φ 0.

Proof. By Lemma 2 . 3 Ϊ acts faithfully on V. The constituents
of the induced character ζκ are τV, by [8, 6.17]. Therefore τh~ι =
τhτ~γ 6 V for each he H.

Consider the split extension 3 tx V (with multiplication
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(hiVjQwi) = (hλh2> vϊ2v2)). Then φ: S->H x V defined by φ(h) = (A, τh~ι)
is an isomorphism. If φ{H) is conjugate to H = {(Λ, l) |Ae J3"}, say
φ(H)i9'x) = S", then r a ; " r l e r 7 is if-invariant. Thus jff ^ ^ ( r a r O *
and all composition factors of i ϊ are composition factors of G. Again
(*Jr

G(τx~9~~ι), K, τxg~ι) is fully ramified, contrary to the choice of G.
This shows H ^ V contains at least two conjugacy classes of

complements to V and so H\H, V) Φ 0.
By Clifford's theorem [8, 17.3] G acts transitively on r 7 and

this set has p-power order. It follows [5, II. 1.5] that every H-
orbit on r 7 has p-power order. Suppose I <; H is the stabilizer of
σeτV. Then I = J^H{σ) ΦHby choice of G. However, I = Hf] J^iσ)
is subnormal in ^J%(σ) and the choice of G forces the nonabelian
composition factors of / to fail (1.1). This shows H fails hypothesis
(1.2).

LEMMA 2.5. Let T be the maximal solvable normal subgroup of
G. Then T = CG(K).

Proof. Since CG(K) <\ G and CG(K) £ *J%(τ), the minimality of
G implies CG(K) is solvable and so Γ ^ CQ(K).

Suppose T Φ CG(K) and let R be a minimal normal subgroup of
G among those containing CG(K) and contained in T. Then R acts
completely reducibly on V (as in Lemma 2.4) by Clifford's theorem
[8, 17.3]. By Lemma 2.3 CV(R) = 1 and R/CG(K) is a ^-subgroup.
It follows that NV.G(R) = G where G = G/CG(K). Now the Schur-
Zassenhaus theorem implies H\R, V) = 0 and so 0 = H\NveG(R), V) =
ffXCr, V) contrary to Lemma 2.4.

THEOREM 2.6. Let G be a nonsolvable group of central type of
minimal order among those possessing only composition factors that
satisfy (1.1). Let Z — Z(G) and let K be a minimal subgroup of G
among those properly containing Z. Then F(GjCG(K)) = 1 and no
component of G/CG(K) satisfies (1.2) for the prime p dividing K/Z.

Proof. By Theorem 2.1 and Lemma 2.2, K S CG(K). By
Lemma 2.3 G = G/CG(K) acts faithfully on V where V is the sub-
group of the dual group of K consisting of characters with kernel
containing Z and the fitting group F(G) is trivial by Lemma 2.5.

If S is a component of G, then there is a subnormal subgroup
H ^ CG(K) such that H = S, and Lemma 2.4 applies.

THEOREM 2.7. Let G and K be as in 2.6. Then PSL (2, q) is
not a component of G/CG(K).
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Proof. Suppose H ^ CG(K) and H/CG(K) = PSL (2, q) is a com-
ponent of G = G/CG(K). Observe that if satisfies the hypotheses of
Lemma 2.4 and recall the proof of this lemma. It was shown that
each iJ-orbit on τV has nontrivial p-power order.

However, the subgroups of PSL (2, q) are all known [5, II. 8.27]
and only for certain q (see 3.2) does there exist a proper subgroup
of p-power index and in each of these cases (except PSL (2, 7),
p = 7), the subgroup is unique up to conjugacy.

Assume at least one of p and q is not 7 and take H ^ / ^ GG(K)
so [H: I] is a nontrivial power of p. Then I fixes an element of
each iϊ-orbit on τV. Therefore \τV\ = \CτV(I)\[H: I] and so
[if*: CAD] ^ [H: I]. Now i ϊ = (I, Γ> for λ in H but not in I, so

[if*: CW#)] = [K*: CAD Π C^/*)] <: [H: I]2 .

We have shown 3 = H/CG(K) acts faithfully on IF - K*/CK*(H) and

In case [ίί: /] = 2m, g is a Mersene prime and / is the normalizer
of a Sylow g-group Q. Consequently, an element A of order (q — l)/2
normalizing Q acts faithfully on [TΓ, Q]. Since Q acts on [W, Q] as
the full multiplicative group of GF(2m), this implies (g —l)/2|m,
and so m = 3. Since A normalizes a second Sylow g-subgroup Qx

and centralizes Cw(Qt)f it follows that | W\ = 16 and TF has an
irreducible submodule of order 8. This situation cannot occur in G
since S is subnormal in G and hence acts completely reducibly on V
by Clifford's theorem.

In case [H: /] = 9, q — 8 and we have a homeomorphism of PSL (2,8)
into SL(4, 3) contrary to the fact that 7 does not divide |SL (4, 3)|.

In case [H: I] = p, q is a power of 2 and we have SL(2, q) as
a subgroup of SL (2, p). This is impossible. (Even in case p = 5,
g = 4, SL (2, 5) has no subgroup of order 60.)

We are left with the case p — q = 7. Here there are exactly
two possible conjugacy classes for I and so we may choose / so
\τV\ ^2\CτV(I)\[H: I] and so [K*: CAD] ^ 2[ff: J]. However, both
[i ϊ :I] and [K*:CAD] are powers of 7, so we have [-£*:(?*.(/)]
just as above. It follows that PSL (2, 7) is a subgroup of SL (2, 7),
contrary to the fact that SL (2, 7) is perfect.

3* Hypothesis (1.1) and (1.2) and the known simple groups.

THEOREM 3.1. If S is a simple alternating group, group of
Lie type or one of the first 26 sporadic simple groups, S satisfies
hypothesis (1.1).

Proof. In case S is an alternating group, this follows from
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Bertram's postulate [11, 8.6] and the fact that |Out S||4.
Suppose S is of Lie type having characteristic p. The pf part

of ISI is a product of terms of the form (pi — l)/kt where kt = 1
or pj — 1 for some j < i. Let m be the maximal value of i for
which there is such a factor.

Assume there is a ^-primitive prime divisor r of (pm — 1). Then
a Sylow r-subgroup of S is cyclic and Out S is generated by diagonal,
graph and field automorphisms, Steinberg [13]. The group of
diagonal automorphisms D has order dividing the order of the
multiplicative group of the underlying field and so r)f\D\. Fermat's
theorem and pm = 1 (mod r) imply (r — 1) | m and so r does not
divide the order of the group of field automorphisms. Hypothesis
(1.1) now follows unless perhaps r = 3 and the diagram of S has
3-fold symmetry, i,e., if S = DJj)1). Thus we reduce to the case
S — D^p*), m — 4£ and 3 is the only ^-primitive prime divisor of
pm — 1. Then p2t + 1 has the form 2a 3δ and consideration of the
squares modulo 12 leads to a contradiction. This shows a group of
Lie type satisfies hypothesis (1.1) unless perhaps pm — 1 = 63 or p
is a Mersene prime and m = 2, [15].

In the first case, inspection of the group order formulae leads
to the possibilities: PSL (2, 8), PSL (3, 4), PSL(6, 2), PSP(6, 2),
PΩ (5, 2), PΩ+ (8, 2) and the solvable group PSU (3, 2). For these
groups, the primes r = 7, 5, 31, 5, 5 and 7 respectively satisfy
hypothesis (1.1). In the second case S = PSL (2, p) is the only pos-
sibility and it has a cyclic Sylow ^-subgroup.

Suppose finally that S is one of the first 26 sporadic groups.
Then inspection of the list of orders of S, Rudvalis and Hurley [6]
reveals that \S\ is divisible by a prime r > 7 to the first power,
and inspection of the list of |OutS|, Aschbacher and Seitz [1, Table
1] shows |OutS| |2.

THEOREM 3.2. Let S be as in 3.1. // S fails hypothesis 1.2
then S = PSL (2, 2m - 1) where 2m - 1 is prime or PSL (2, 2m) where
2W + 1 is prime or 9.

Proof. Suppose S is an alternating group. The group Aδ =
PSL (2, 4) is exceptional. Observe that A6 possesses no subgroups
of prime power index. Fix a prime p and choose n > 6 minimal so
that An has a subgroup I of p-power index. If I acts transitively
AJAn_γ then An_t Π I is of p-power index in An_lf contrary to choice
of n. Therefore, / has at least two orbits on AJAn_γ and so
\I\\k\(n — k)l/2 for some 1 ^ k ^ n. (No element of / can induce
an even permutation on one I-orbit and an odd permutation on the

complement of this orbit.) Therefore, the binomial coefficient
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divides [An: I] and is a p-power. This forces k = 1 and n itself to
be a prime power. This shows the only subgroups of p-power index
in An are An_x in case n is a p-power and so An satisfies hypothesis
(1.2) for n > 6 since An_x is a simple group satisfying hypothesis
(1.1) by Theorem 3.1.

Next suppose S is a group of Lie type and characteristic r.
Suppose / <; S is of p-power index. In case r = p, Sylow ^-subgroup
of G acts transitively on G/K and so K acts transitively on the set
of Sylow p-subgroups of S. Thus Theorem A of Seitz [12] applies.
None of the possible groups / in his list has a composition factor
violating (1.1) and the only cases where I is solvable appear in our
list. Next assume r Φ p. Then a lemma of Tits [12, 1.6] implies
that a maximal subgroup K containing / is parabolic. Just as in
the proof of 3.1, let m be the maximum value of ί for which | S |
has a factor of the form (r* — 1)/(V — 1), i > j .

In case (rm — 1) has an r-primitive prime divisor s then s divides
the index of every parabolic subgroup of S and so r — s and K = I
corresponds to an extremal node in the associated diagram. Now
the nonsolvable composition factors of / are groups of Lie type and
so they satisfy hypothesis (1.1). The only way / can be solvable
is if S has (B, N) rank <£ 2 and the possibilities appear in our list.

In case pm — 1 has no r-primitive prime divisors then either
S = PSL (2, 2m - 1) (which appears in our list) or pm — 1 = 63,
Zsigmondy [15], and S is one of seven explicit groups. Of these
only PSL (2, 8) has a subgroup of prime power index.

A great deal is known about the 26 known sporadic groups
and none of them has a solvable subgroup of prime power index,
see Aschbacher and Seitz [1].
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