ON THE ORDER OF DIRICHLET L-FUNCTIONS

G. Kolesnik

1. Introduction. Let $L(s, \chi)$ be a Dirichlet L-function, where χ is a nonprincipal character $(\bmod q)$ and $s=\sigma+i t$. A standard estimate for $L(s, \chi)$ based on bounds for $\zeta(s, w)$, is

$$
\begin{equation*}
|L(s, \chi)| \leqq C_{1}(\varepsilon) \cdot \tau^{c(1-\sigma)+\varepsilon} q^{1-\sigma}, \quad \frac{1}{2} \leqq \sigma \leqq 1 \tag{1}
\end{equation*}
$$

where $\tau=|t|+2, c=1 / 6$ (see, for example, Prachar [5, (4.12)]), and in fact, c can be replaced by a constant $<1 / 6$. An immediate application of Richert's work [6] gives

$$
\begin{equation*}
|L(s, \chi)| \leqq C_{1} \tau^{10(1-\sigma) 3 / 2} q^{1-\sigma} \log ^{2 / 3} \tau, \quad \frac{1}{2} \leqq \sigma \leqq 1 \tag{2}
\end{equation*}
$$

which is better than (1) if σ is near 1.
Another estimate can easily be obtained from $|L(1+i t, \chi)| \leqq$ $C_{2} \log \tau q$ and the functional equation of $L(s, \chi)$ as follows. First,

$$
\begin{aligned}
& |L(i t, \chi)|=2 \cdot \mid(2 \pi)^{i t-1} q^{1 / 2-i t} \\
& \left.\times \cos \frac{1}{2} \pi\left(1-i t+\frac{1}{2}-\frac{1}{2} \bar{\chi}(-1)\right) \Gamma(1-i t) L(1-i t, \bar{\chi}) \right\rvert\, \\
& \quad \leqq C_{3} \sqrt{\tau q} \log \tau q
\end{aligned}
$$

Now the convexity principle yields for

$$
\begin{align*}
|L(s, \chi)| & \leqq\left(C_{3} \sqrt{\tau q} \log \tau q\right)^{1-\sigma} \cdot\left(C_{2} \log \tau q\right)^{\sigma} \leqq C_{4}(\tau q)^{1 / 2(1-\sigma)} \tag{3}\\
& \times \log \tau q, 0 \leqq \sigma \leqq 1
\end{align*}
$$

Neglecting dependence on τ, Davenport [2], improved (3):

$$
\begin{equation*}
|L(s, \chi)| \leqq C_{2}(\tau) q^{1 / 2(1-\sigma)}, \quad 0 \leqq \sigma \leqq 1 \tag{4}
\end{equation*}
$$

Also, Burgess [1] improved (4) by establishing

$$
|L(s, \chi)| \leqq C_{1}(\varepsilon, \tau) q^{3 / 8(1-\sigma)+\varepsilon}, \quad \frac{1}{2} \leqq \sigma \leqq 1
$$

By examining Burgess' proof, it can be seen that the constant $C(\varepsilon, \tau)$ can be taken to be $C_{2}(\varepsilon) \pi^{2(1-\sigma)}$ and his result can be further sharpened to yield

$$
\begin{equation*}
|L(s, \chi)| \leqq C_{6} \tau^{2(1-\sigma)} q^{3 / 8(1-\sigma)} C^{\omega} \log \tau, \quad \frac{1}{2} \leqq \sigma \leqq 1 \tag{5}
\end{equation*}
$$

where $\omega=\log q / \log \log q$. The estimates (3), (4), and (5) are better than (1) if q is large compared to τ.

For $\sigma=1 / 2$, the previous estimates were improved by Fujii, Gallagher and Montgomery, [3], who showed that if P is a fixed set of primes and q is composed only of primes in P, then

$$
\begin{equation*}
\left|L\left(\frac{1}{2}+i t, \chi\right)\right| \leqq C(\varepsilon, P)(\tau q)^{1 / 6+\varepsilon} \tag{6}
\end{equation*}
$$

In this paper we prove two more estimates which imply (1), (4), and (5) and which are better than (2), (3), and (6) in some range of σ, τ, and q. We prove:

Theorem 1. Let χ be a nonprincipal character $(\bmod q)$. Let $1 / 2 \leqq \sigma \leqq 1, \tau=|t|+2$ and $\omega=\log q / \log \log q$. Then

$$
\begin{equation*}
|L(s, \chi)| \ll \tau^{-\sigma} q^{3 /(1-\sigma)} C^{\omega} \log \tau, \tag{7}
\end{equation*}
$$

where C is some absolute constant.
Theorem 2. Let χ be a character $(\bmod q)$. Let $1 / 2 \leqq \sigma \leqq 1$ and $\tau=|t|+2$. Then

$$
\begin{equation*}
|L(s, \chi)| \ll \tau^{35 / 108(1-\sigma)} q^{1-\sigma} \log ^{3} \tau q . \tag{8}
\end{equation*}
$$

In particular, (7) and (8) imply

$$
\left\lvert\, L\left(\frac{1}{2}+i t, \chi \mid\right) \ll \sqrt{\tau} q^{3 / 16} C^{\omega} \log \tau\right.
$$

and

$$
\left|L\left(\frac{1}{2}+i t, \chi\right)\right| \ll \tau^{35 / 26} \sqrt{q} \log ^{3} \tau q
$$

The estimates of $L(s, \chi)$ for $\sigma \in[0,1 / 2]$ can be obtained by using (7) or (8) and the functional equation of $L(s, \chi)$.

The author expresses his gratitude to Professors P. X. Gallagher and Lowell Schoenfeld for valuable suggestions.

2. Notation.

$$
\begin{aligned}
e(f(x)) & =\exp (2 \pi i f(x)) \\
\omega & =\log q / \log \log q \\
s & =\sigma+i t, \frac{1}{2} \leqq \sigma \leqq 1 \\
\tau & =|t|+2
\end{aligned}
$$

C denotes some appropriate absolute constant, not always the same.
3. Application of the estimate of Burgess. In this section we will show that

$$
|L(s, \chi)| \ll \pi^{1-\sigma} q^{3 / 8(1-\sigma)} C^{\omega} \log ^{3} \tau
$$

We need the following result of E. Bombieri:

Lemma. Let N and m be nonnegative integers. Let α_{j}, β_{j} be numbers such that $\left|\alpha_{j}-\beta_{j}\right| \leqq\left(2 \pi m N^{j}\right)^{-1}$ for $1 \leqq j \leqq m$, and let $f(x)=\alpha_{1} x+\cdots+\alpha_{m} x^{m}, \quad g(x)=\beta_{1} x+\cdots+\beta_{m} x^{m}$. Let c_{1}, c_{2}, \cdots be complex, and let

$$
S(\bar{\alpha}, N)=\max _{1 \leqq N_{1}<N}\left|\sum_{1 \leqq n \leqq N_{1}} c_{n} e(f(n))\right|
$$

where $\bar{\alpha}=\left(\alpha_{1}, \cdots, \alpha_{m}\right)$. Then $S(\bar{\beta}, N) \leqq 6 S(\bar{\alpha}, N)$.
Proof. For every $N_{1} \in[1, N]$ we have:

$$
\begin{aligned}
& \sum_{1 \leqq n \leqq N_{1}} c_{n} e(g(n))=\sum_{1 \leqq n \leqq N_{1}} c_{n} e(f(n)) \prod_{j=1}^{m} e\left(\left(\beta_{j}-\alpha_{j}\right) n^{j}\right) \\
& \quad=\sum_{k_{1}, \cdots, k_{m}=0}^{\infty}\left(\prod_{j=1}^{m} \frac{\left\{2 \pi i\left(\beta_{j}-\alpha_{j}\right)\right\}^{k_{j}}}{k_{j}!}\right) \sum_{1 \leqq n \leqq N_{1}} c_{n} n^{m k_{m}+\ldots+k_{1}} e(f(n)) .
\end{aligned}
$$

Using Abel's summation formula, we obtain:

$$
\begin{aligned}
S(\bar{\beta}, N) & \leqq \sum_{k_{1}, \ldots, k_{m}=0}^{\infty} \prod_{j=1}^{m} \frac{\left|2 \pi\left(\beta_{j}-\alpha_{j}\right)\right|^{k_{j}}}{k_{j}!} \cdot N^{m k_{k_{m}}+\ldots+k_{1}} \cdot 2 S(\bar{\alpha}, N) \\
& \leqq 2 S(\bar{\alpha}, N) \cdot \sum_{k_{1}, \ldots, k_{m}=0} \prod_{j=1}^{m} \frac{\mid\left(\left.2 \pi\left(\beta_{j}-\alpha_{j}\right) N^{j}\right|^{k_{j}}\right.}{k_{j}!} \\
& \leqq 2 S(\bar{\alpha}, N)\left(\sum_{k=0}^{\infty} m^{-k} / k!\right)^{m} \leqq 6 S(\bar{\alpha}, N)
\end{aligned}
$$

Lemma 2. Let $q \geqq 2$ and let M, N be integers. Let χ be a primitive character $(\bmod q)$. Then

$$
\left|\sum_{1 \leqq n \leqq N} \chi(n+M)\right| \leqq \sqrt{N} q^{3 / 16} C^{\omega}
$$

This lemma can be proven similarly to Theorem 2, [1].

Lemma 3. Let q and N be integers such that $q \geqq 2$ and $N \leqq \tau q$. Let χ be a primitive character $(\bmod q)$. Then

$$
\left|S=\max _{N \leq N_{1} \leq 2 N}\right| \sum_{N+1 \leq n \leq N_{1}} \chi(n) n^{-i t} \mid \ll \sqrt{N \tau \log \tau} \cdot q^{3 / 16} C^{\omega}
$$

Proof. We can obviously suppose that $\tau \log \tau q \leqq N$ since otherwise the estimate is trivial. Taking $H=\left[N(\tau \log \tau q)^{-1}\right]$ and $m=$ $[\log \tau q]$, and dividing the sum in S into $\leqq 2 N H^{-1}$ subsums, we obtain:

$$
|S| \leqq 2 N H^{-1} \max _{N \leqq M \leqq 2 N} \max _{1 \leqq H_{1} \leq H}\left|\sum_{M+1 \leqq n \leqq M+I_{1}} \chi(n) n^{-i t}\right|
$$

For every M and H_{1} in the above range, we get

$$
\begin{align*}
& \quad \sum_{M+1 \leqq n \leqq M+H_{1}} \chi(n) n^{-i t}\left|=\left|\sum_{1 \leqq n \leqq H_{1}} X(n+M)\left(\frac{n+M}{M}\right)^{-i t}\right|\right. \tag{6}\\
& \leqq\left|\sum_{1 \leqq n \leqq H_{1}} \chi(n+M) e\left(-\frac{t}{2 \pi}\left\{\frac{n}{M}-\frac{n^{2}}{2 M^{2}}+\cdots+\frac{(-1)^{m} \cdot n^{m}}{m M^{m}}\right\}\right)\right| \\
& +\frac{|t| H^{m+2}}{M^{m+1}}
\end{align*}
$$

Let $\beta_{j}=0$ and $\alpha_{j}=(-1)^{j} t / 2 \pi j M^{j}$. Then for $1 \leqq j \leqq m\left|\alpha_{j}-\beta_{j}\right|=$ $|t| \cdot\left(2 \pi j M^{j}\right)^{-1} \leqq\left(2 \pi m H^{j}\right)^{-1}$. Applying Lemmas 1 and 2, we obtain:

$$
\begin{aligned}
& |S| \leqq\left|2 N H^{-1} \max _{N \leqq M \leqq 2 N} \max _{1 \leqq H_{1} \leq H}\right| \sum_{1 \leqq n \leqq H} \chi(n+M) \left\lvert\,+2 \frac{\tau H^{m+1}}{N^{m}}\right. \\
& \quad \ll N H^{-1} \sqrt{H q^{3 / 16}} C^{\omega}+N \tau(\tau \log \tau q)^{-\log \tau q} \\
&
\end{aligned} \ll \sqrt{N \cdot \tau \log \tau q} q^{3 / 6} C^{\omega} . ~ \$
$$

From this, the result is easily obtained.
Now we can prove Theorem 1. First, we suppose that χ is primitive. Let $N=[\tau q], \quad M=\left[\tau q^{3 / 8}\right], \quad L=\log (N / M) / \log 2, \quad N_{l}=$ $M 2^{l}(l=0, \cdots, L)$. Using Abel's formula, the Polya-Vinogradov estimate for character sums and Lemma 3, we get:

$$
\begin{aligned}
& |L(s, \chi)| \leqq \sum_{n<A l} n^{-\sigma}+\left|\sum_{M \leqq n \leqq N} \chi(n) n^{-\sigma-i t}\right|+\left|\sum_{n>N} \chi(n) n^{-s}\right| \\
& \quad \ll M^{1-\sigma} \log M+\sum_{l=0}^{L} \max _{N_{l} \leqq N_{l}^{1} \leq 2 N_{l}}\left|\sum_{N_{l} \leqq n \leqq N_{l}^{1}} \chi(n) n^{-\sigma-i t}\right| \\
& \quad+\sum_{n>N} \tau n^{-\sigma-1}\left|\sum_{N \leqq x \leqq n} \chi(n)\right| \\
& \ll M^{1-\sigma} \log M+\sum_{l=0}^{L} N_{l}^{-\sigma} \max _{N_{l} \leqq N_{l}^{1} \leq 2 N_{l}}\left|\sum_{N_{l} \leqq n \leqq N_{l}^{1}} \chi(n)^{-i t}\right| \\
& \quad+\tau \sqrt{q} N^{-\sigma} \log q \\
& \ll M^{1-\sigma} \log M+\sum_{l=0}^{L} N_{l}^{1 / 2-\sigma} \sqrt{\tau} q^{3 / 16} C^{\omega} \sqrt{\log \tau}+\tau \sqrt{q} N^{-\sigma} \log q \\
& \ll M^{1-\sigma} \log M+L M^{1 / 2-\sigma} \sqrt{\tau} q^{3 / 16} C^{\omega} \sqrt{\log \tau}+\tau \sqrt{q} N^{-\sigma} \log q \\
& \ll \tau^{1-\sigma} q^{3 / 8(1-\sigma)} C^{\omega} \log \tau .
\end{aligned}
$$

If X is not primitive, then there is a $q_{1} \mid q$ and a primitive
character $\chi_{1}\left(\bmod q_{1}\right)$, associated with χ, such that we can write (see, for example, $[5,(6.12)]$):

$$
|L(s, \chi)|=\left|L\left(s, \chi_{1}\right)\right| \prod_{p \mid q}\left|1-\frac{\chi_{1}(p)}{p^{s}}\right| \leqq\left|L\left(s, \chi_{1}\right)\right| \cdot \prod_{p \mid q} 2 \leqq\left|L\left(s, \chi_{1}\right)\right| \cdot 2^{\omega}
$$

and the theorem follows.
4. The proof of Theorem 2. To prove Theorem 2, we need two lemmas.

Lemma 4. Let $t \geqq 0,0 \leqq a \leqq 1$, and let X and X_{1} be integers such that $0<X \leqq X_{1} \leqq 2 X \leqq \tau^{133 / 108}$. Then

$$
S_{1} \equiv \sum_{x \leqq x \leqq X_{1}} e(t \log (x+a)) \ll \sqrt{X} \tau^{35 / 216} \log ^{2} \tau
$$

Proof. If $X \leqq \sqrt{\tau}$, then the result can be proven similarly to Corollary 2, [4]. The same method yields

$$
\begin{equation*}
\sum_{x \leq x \leq X_{1}} e(t \log x-a x) \ll \sqrt{X} \tau^{35 / 216} \log ^{2} \tau, \tag{9}
\end{equation*}
$$

for $X \leqq \sqrt{\pi}$. If $\sqrt{\tau} \leqq X \leqq \tau^{143 / 108}$, then, by Lemma 3 of [4]

$$
\left.\left|S_{1}\right| \leqq \sum_{t /\left(X_{1}+a\right) \leqq n \leqq t /(X+a)} \frac{\sqrt{t}}{n} e(t \log n-a n) \right\rvert\,+0\left(X \tau^{-1 / 2}\right) .
$$

Here $t /(X+a) \leqq \sqrt{\tau}$. With the use of Abel's inequality, (9) yields the result for $\sqrt{\tau} \leqq X \leqq \tau^{143},^{108}$.

LEMMA 5. Let $1 / 2 \leqq \sigma \leqq 1, t \geqq 1$ and $0 \leqq a \leqq 1$. Then

$$
\zeta(s, a) \equiv \sum_{n=0}^{\infty}(n+a)^{-s} \ll a^{-\sigma}+\tau^{35(1-\sigma) / 108} \log ^{3} \tau
$$

Proof. Let $N=\tau^{143 / 108}$. Using the Euler-Maclaurin formula [see, for example, [5], (1.7), p. 372]), we obtain similarly to [5], (5.8), p. 114:

$$
\begin{aligned}
& \zeta(s, a)-\sum_{n=0}^{N-1}(n+a)^{-s}=\frac{(N+a)^{1-s}}{1-s}-s \int_{N}^{\infty} \frac{x-[x]}{(x+a)^{s+1}} d x \\
& \quad=\frac{(N+a)^{1-s}}{1-s}-\frac{1}{2} s \frac{(x-[x])^{2}}{(x+a)^{s+1}} \int_{N}^{\infty}+\frac{1}{2} s(s+1) \int_{N}^{\infty} \frac{(x-[x])^{2}}{(x+a)^{s+2}} d x \\
& \quad \ll 1+\tau^{2} \int_{N}^{\infty} u^{-\sigma-2} d u \leqq 1+\tau^{2} \cdot N^{-\sigma-1} \ll \tau^{35(1-\sigma) / 108}
\end{aligned}
$$

If we denote $M=\left[\tau^{35 / 108}\right], \quad L=[\log (N / M) / \log 2], \quad N_{l}=M \cdot 2^{l}$ for $l=0, \cdots, L$ and $N_{L+1}=N$, then we have

$$
S \equiv \sum_{n=0}^{N-1}(n+a)^{-s} \lll \sum_{0<n<M}(n+a)^{-\sigma}+\sum_{0 \leq l \leq L}\left|\sum_{N_{l} \leqq n<N_{l+1}}(n+a)^{-s}\right|
$$

Using Abel's formula and Lemma 4, we obtain:

$$
\begin{aligned}
S \ll & a^{-\sigma}+M^{1-\sigma} \log M+\sum_{0 \leq l \leq L} N_{l}^{-\sigma} \max _{N_{l} \leq N_{l}^{\prime} \leq N_{l+1}}\left|\sum_{N_{l} \leq n \leq N_{l}^{\prime}}(n+a)^{-i t}\right| \\
\ll & a^{-\sigma}+M^{1-\sigma} \log M+\sum_{0 \leq l \leq L} N_{l}^{1 / 2-\sigma} \cdot \tau^{35 / 216} \log ^{2} \tau \ll a^{-\sigma} \\
& +\tau^{35(1-\sigma) / 108} \log ^{3} \tau .
\end{aligned}
$$

This proves the lemma.
To prove Theorem 2 , we can obviously suppose $t \geqq 1$, otherwise the result follows from (1). Using Lemma 5, we obtain:

$$
\begin{aligned}
& |L(s, \chi)|=\left|q^{-s} \sum_{m=1}^{q} \chi(m) \zeta(s, m / q)\right| \\
& \quad<q^{-\sigma} \sum_{m=1}^{q}\left((q / m)^{\sigma}+\tau^{35(1-\sigma) / 108} \log ^{3} \tau\right) \ll \tau^{35(1-\sigma) / 108} q^{1-\sigma} \log ^{3} \tau q
\end{aligned}
$$

Note Added in Proof. We would like to draw attention to a recent paper by D. R. Heath-Brown, "Hybrid bounds for Dirichlet L-function," Inventiones Mathematicae, 44 (1978), 149-170, which contains a better result than our Theorem 7.

References

1. D. A. Burgess, On character sums and L-series, II, Proc. London Math. Soc., (3), 13 (1963), 524-536.
2. H. Davenport, On Dirichlet's L-function, J. London Math. Soc., 6 (1931), 198-202. 3. A. Fujii, P. X. Gallagher, H. L. Montgomery, Some hybrid bounds for character sums and Dirichlet L-series, Colloquia Math. Soc. Janos Bolyai, 13 (1974), 41-57.
3. G. Kolesnik, On the order of $\zeta(1 / 2+i t)$ and $\Delta(R)$, Pacific J. of Math., submitted.
4. K. Prachar, Primzahlverteilung, Springer-Verlag, 1957.
5. H. E. Richert, Zur Abschätzung der Riemannschen Zetafunction in der Nähl der Vertikalen $\sigma=1$, Math. Ann., 169 (1967), 97-101.

Received January 25, 1977.
California Institute of Technology
Pasadena, CA 91125
AND
State University of New York at Buffalo
Buffalo, NY 14214

