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LATTICE VARIETIES COVERING THE SMALLEST
NON-MODULAR VARIETY

BJARNI JόNSSON AND IVAN RIVAL

There are sixteen varieties of lattices that are known
to cover N9 the variety generated by the five-element non-
modular lattice N. Fifteen of these are generated by finite
subdirectly irreducible lattices LlyL2y "-tLlΰ9 and the sixte-
enth is jointly generated by N and the diamond Mz. We
show that every variety of lattices that properly contains
N includes one of the lattices MZfLuL2t - ,Llδ. Of these
sixteen lattices, the first six fail to be semidistributive; in
fact, every variety of lattices in which the semidistributive
law fails contains one of these six.

I* Introduction* By a variety of lattices is meant the class
of all those lattices satisfying some fixed set of lattice identities.
With respect to set inclusion the set of all varieties of lattices itself
constitutes a lattice. The least element of this lattice is the class
of all one-element lattices and the greatest element is the class of
all lattices. Moreover, this lattice is distributive [5] and it has
cardinality 2*° [1], [7].

Let K denote a class of lattices and let K denote the variety
generated by K. To determine K by finding all of the identities
that hold in every lattice in K is often very difficult. On the other
hand, there is an alternative approach to the problem of describing
K which stems from the well known fact, due to G. Birkhoff, that
a variety of lattices is determined by its subdirectly irreducible
members. In fact, it is customary, where possible, to identify a
given variety of lattices with its subdirectly irreducible members.
For instance, in the lattice of varieties of lattices there is a unique
atom whose only subdirectly irreducible member is the two-element
chain: the variety of all distributive lattices. Covering this variety
are precisely two varieties: one is M3, the variety generated by the
diamond, Λf3 (the five element modular non-distributive lattice); the
other is N, the variety generated by the pentagon JV (the five-
element non-modular lattice). While there is a great deal known
about varieties of modular lattices (for instance, that the least
modular variety Mz is covered by precisely three varieties, each
generated by its finite subdirectly irreducible members [6] (cf. [4]))
the non-modular case has proved to be more difficult to describe.

In [8] R. McKenzie lists fifteen finite, subdirectly irreducible,
non-modular lattices Lί9 L2, , Llδ (Fig. 1) each of which generates
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Figure 1

a variety that covers N. A sixteenth cover is jointly generated by
N and M3. Our principal result shows that McKenzie's list is com-
plete.

THEOREM 1.1. Every variety of lattices that properly contains
N includes one of the lattices M39 Llf L2, , L15.

This theorem was first established by I. Rival [9] under the
additional assumption that the variety in question is generated by
a lattice in which every chain is finite. Subsequently, B. Jonsson
succeeded in removing this condition.

The proof of Theorem 1.1 consists of three main parts cor-
responding to a cumulative classification of the lattices Λf3, Lt, L2f , L15.

The first part concerns semidistributivity. A lattice L is semi-
distributive if, for all u, v, x, y, z e L, u = x + y = x + z implies
u = x + yz, and dually, v = xy — xz implies v = x{y + z). Call a
variety of lattices semidistributive if each of its members is semi-
distributive. The main result of this part of the proof is of some
independent interest.

THEOREM 1.2. A variety of lattices is semidistributive if and
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only if it contains none of the lattices ikf3, L19 L2, L3, L4, and L5.

This result was first proved by B. A. Davey, W. Poguntke and
I. Rival [2] for those varieties generated by a lattice satisfying the
double chain condition.

The second part of the proof concerns the behavior of con-
gruence relations in non-modular lattices. Let a, b, and c be elements
of a lattice L which generate a pentagon; that is, bc<a<c<a + b.
We write N(a, b, c) to indicate that this relation holds. Call a
quotient c/a of L an N-quotient if N(a, b, c) for some b. Let L be
a lattice in a semidistributive variety that contains none of the
lattices L6, L7, L8, L9, L10, Ln, and L12. The basic theme of this part
of the proof is that productivities between AΓ-quotients in L behave
like projectivities between quotients in a distributive lattice.

The final part concerns critical edges of a subdirectly irreducible
lattice L. We call a quotient c/a of a subdirectly irreducible lattice
L a critical edge if every non-trivial congruence relation on L iden-
tifies a and c. Let V be a variety that contains none of the lattices
M3, L19 L2, , L12 and let Le V be subdirectly irreducible and non-
distributive. We prove that L has a unique critical edge c/α, that
c/α is the only JV-quotient of L, and that the smallest congruence
relation con(α, c) which identifies a and c identifies no two distinct
elements besides a and c. Moreover, L/con(α, c) is distributive (cf.
L = L13, Lu or L15).

Therefore L is locally finite, and since every variety is deter-
mined by its finitely generated subdirectly irreducible members, we
may assume that L is finite. It is now only a matter of straight-
forward calculations to show that if V does not contain L13, L14 or
L15 then L must be a pentagon.

The final section of this paper is devoted to several results
related to Theorem 1.1.

We are indebted to Mr. Wilfried Ruckelshausen, who called our
attention to a gap in one of our proofs, and also pointed out simpli-
fications of two other arguments.

2. Semidistributivity* The principal aim of this section is the
proof of Theorem 1.2. This generalization of the main result of [2]
is realized by focussing attention on the lattices L% of all ideals of
L, and Lπ, of all dual ideals of L. Of course, each of L, Lσ, and 1/
generates the same variety of lattices. Moreover, L is embeddable
in both Lσ and Lπ. The advantage of Lσ over L lies in the fact
that Lσ is compactly generated, whence weakly atomic. For instance,
for a,beL there exists an element c in L° such that a <^ c and
which is covered by a + 6 (c < a + b).
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Theorem 1.2 is an immediate consequence of the following result.

LEMMA 2.1. // the lattice L is not semidistributive, then either
Lσπσ or Lπσπ contains a sublattice isomorphic to one of the lattices
Mz, Lγ, L2, L3, L4 or Lδ.

Proof. Let us suppose t h a t the semidistributive law fails in L.
By duality we may assume t h a t there exist u, x, y, zeL such t h a t

( 1 ) u = x + y — x + z ,

but not u = x + yz. We claim that in the larger lattice Lσπ we can
find elements u, x, y, z that satisfy not only (1), but also

(2) yz 5£ x < u, xy < y, xz < z .

In fact, given elements u, x, y, zeL such that (1) holds and
x + yz < u, we can find x' e Lσ such that x + yz ^ xf < u, and we
therefore have

u = x' + y = xr + z, yz ^ xf < u .

In La7t we can then find minimal elements y' and zf subject to the
conditions u = x' + y' = x' + z\ yf ^ky,z' ^ z. Then x'yf < y'. Fur-
thermore, if x'yf < t <> y\ then x' < xf + t ^ u and hence u = x' + t,
so that t = y\ Thus, yf covers x'y' and, similarly, zf covers x'zr.
Therefore (1) and (2) are satisfied if we replace x, y, and z by x\ y',
and z'.

We now assume that the elements u, x, y, zeLσπ satisfy (1) and
(2), and begin by looking at the sublattice generated by yf z, xy, and
xz. In view of (2) we have

y <> xy + z or y(xy + z) = xy ,

2 <J X2; + 2/ or zixz + y) — xz .

Of the four cases that arise, three easily yield one of the lattices
Lί9 i <; 5, as a sublattice of Lar. First, let y <; cπ/ + z and z.^ xz + y-
Let v = xy Λ- xz, and observe that y ^ a? and z ^ x, hence # ^ t;
and z Sv- Consequently, yv = α?2/ and «ι; = a?s. Also, i/ + « =
/̂ + v = a: + v, and, therefore, L2 is a sublattice of Lσ7r (Fig. 2).

Next, let us suppose that y(xy + 2) = xy and 2 ^ x^ + y. The
lattice generated by y, z, xy, and xz is a homomorphic image of the
lattice in (Fig. 3). Let v = xy + z. If x(?/ + z) + v = 2/ + z, then
2/, v, and x(y + z) generate a lattice isomorphic to L5, or to ikf3 if
ίcv = xy, while if a?(# + z) + t; < y + 2, then a?, ?/, and 05(2/ + 2) + v
generate a lattice isomorphic to L3 (Fig. 4). The case in which
y ^ xy + z and z(xz + y) ~ xz is symmetric to the preceding case,
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and it remains, therefore, to consider only the case in which
y(xy + z) = xy and z(xz + y) = xz.

Let yQ = y and z0 = z, and, for w = 0, 1, , let

Vn+ι = V + xzn, zn+1 = z + xyn .

Then (1) obviously holds with y and z replaced by yn and zn. Denote
by (2J the formula obtained from (2) be replacing y and z by yn

and zn. Suppose (2W) holds, and consider (2Λ+1). We may assume
that ynzn+1 = xyn and znyn+1 — xzny for otherwise one of the three
cases already considered would apply with y and z replaced by yn

and zn. As before, we can assume that yn(xyn + zn) = xyn and
zn(xzn + yn) = 05«Λ, for otherwise we are done. We have z <; 3Λ+1

and z ^ x, so £Λ + 1 ^ #, and hence, α:^w+1 < zn+1. If #2Λ + 1 < t < 2%+1,
then the elements, sc, £Λ and ί generate a lattice isomorphic to LB

(Fig. 5). We may, therefore, assume that xzn+1 < zn+ι and, similarly,
%y*+i < 2/n+i We may also assume that yn+1zn+1 <^ x, for otherwise
yn, xyn+1 and τ/%+12;%+1 generate a lattice isomorphic to L5. Thus, we
may assume that (2J holds for all %.

In Lσ;r<7 we now form the join y^ of all the elements yn9 and the
join z^ of all the elements zn. Obviously

u = x + ^ = x + ««,, 7/̂  + Zoo = 2/ + s

Furthermore, x S Vn for all w and, therefore, sc ^ y^. Thus, aj^^ < 2/00,
and since xyn < yn for all n we have in fact that xy^ -< ^ similar-
ly ^z^ -< z^. Finally, from the fact that xyn + xzn ^ yn+1zn+ι <; a?
for all n we infer that XT/̂  = xz^ — y^z^.

Dropping the subscripts in order to simplify the notation, we
now have four elements u, x, y, and z in Lσπσ that satisfy (1) and (2)
and, in addition, xy — xz = yz. Letting v = x(y + z), we consider
four cases depending on whether or not the equations y + z = y + v
and y + z = z + v hold. If both equations fail, then the elements
y, z, y + v, and z + v generate a homomorphic image of Lλ (Fig. 6).
We may assume that this is a proper homomorphism, so that v — yz;
then x, y, and z generate a lattice isomorphic to L4. If just one
equation holds, say, y + z^y + v^z + v, then y, z, and v generate
a lattice isomorphic to L4. Finally, if both equations hold, then
y, z, and v generate a diamond.

This completes the proof of Lemma 2.1, and therefore also the
proof of Theorem 1.2.

The remainder of this section is concerned with the behavior
of congruence relations in a semidistributive lattice. We first dis-
pense with the necessary preliminaries.

Given two quotients p/q and r/s in a lattice L if r = p + s and
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s ^ q then we say that p/q transposes weakly up onto r/s and that
r/s is a weak upper transpose of p/q, —in symbols p/q/* w r/s, —and
we refer to the map t —• t + s (t e p/q) as a weak upper transposition.
Dually, if qr = s and r ^ p then we say that p/q transposes weakly
down onto r/s and that r/s is a weαfc Zowβr transpose of p/g, —in
symbols p/q\wr/s, —and we refer to the map£->£r (tep/s) as a
weαfc Zower transposition of p/g onto r/s. If there exists a sequence
of quotients xo/yo, xjylf , xjyn with £0/:2/0 = p/q and &»/#, = r/s such
that, for each i < n, xjyt transposes weakly up or down onto xi+j
yί+1, then we say that p/q projects weakly onto r/sy and we refer
to the composition of the weak transpositions of xt/yt onto xi+1/yi+1

for i = 0,1, , n — 1 as a weak projectivity of p/q onto r/s.
If both p/q /w r/s and r/s \ w p/q, that is, if p + s = r and

ps = q, then we say that p/g transposes up onto r/s and that r/s
transposes down onto p/g, —in symbols p/q S r/s and r/s*\p/q,
— and we say that r/s is an upper transpose of p/g and p/q is a
lower transpose of r/s. In this case the maps ί —>t + s (tep/q) and
t—>tp (ter/s) are referred to as an upper transposition of p/g onto
r/s and a ίower transposition of r/s onto p/g, respectively. If there
exists a sequence of quotients xo/yo, xjy^ , &»/#» with xo/yo — p/q
and xjyn = r/s such that, for each i<n, xjyi transposes up or down
onto Xi+Jyί+1, then p/q is said to project onto r/s, and the composi-
tion of the transportations of xjy^ onto xi+1/yi+1 for i < n is called
a projectivity of p/g onto r/s.

Our next lemma concerns the possibility of shortening a sequ-
ence of weak transpositions. Let us suppose that p/q projects weak-
ly onto r/s in n steps, say

Let % > 2. If there exists a quotient u/v such that

Bo/2/o \*™ u/v ^ \ xjy2 ,

then we can shorten the sequence of weak transpositions by replac-
ing the two quotients xjyx and xjy2 by the single quotient u/v. In
a distributive lattice this can always be done, and the non-existence
of such a quotient u/v is therefore connected with the presence of
a diamond or a pentagon as a sublattice of L. If L is semidistri-
butive, then this sublattice must of course be a pentagon. The aim
of the lemma is to describe the location of the pentagon relative to
the quotients Xi/y^

LEMMA 2.2. Let L be a semidistributive lattice, and let xJyQ9

#1/2/11 and xJVz be quotients in L such that xjyo /w xjyt \ w x2/y2.
Then either there exists a subquotient p/q of xQ/y0 such that, for
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Fig. 2 Fig. 3

yz

some quotient u/v, p/q \ u/v /* xjy2, or else there exist a, b, ceL
with N(a, bt c) such that either b/bc is a subquotient of xofyo, or else
(a + b)/b transposes down onto a subquotient of xo/yo.

Proof. Let x[ = xQ{yx + x2). If x[ + yx < x2 + yί9 then the ele-
ments a = x'o + y19 b = x0 and c = yx + xΛ satisfy N(a, 6, c), and b/bc —
xJxΌ is a subquotient of xQ/yQ (Fig. 7).

Let ficό + Vi — χz + Vi- By the semidistributivity of L, a?2 + 2/i=
0̂̂ 2 + Vι = ô̂ 2 + 2/i If ô̂ 2 + 2/2 < #2> then the elements a = ccô 2 + 2/2>

b — y^ and c = α;2 satisfy iV^α, &, c), and (a + &)/& transposes down
onto the subquotient xΌ/xoy! of xo/yo (Fig. 8).

Finally, if x0x2 + y2 = xif then the subquotient (xQyx + x0x2)/x0y1

of #02/0 transposes down onto the quotient x0x2/x0y2, which transposes
up onto xjy2.
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3 . Project iv i t ies b e t w e e n iSΓ-quotients* Consider a v a r i e t y V

that contains none of the lattices Λf8, L19 L2, , L12 and a lattice
Le V. Our aim in this section is to show that projectivities be-
tween iV-quotients in L behave like projectivities between quotients
in a distributive lattice.

To this end we require a preliminary result concerning lattices
determined by defining relations (relative to the variety of all lat-
tices). The result is most easily formulated by means of a dia-
gram; indeed, the proof itself becomes quite transparent when pre-
sented pictorially.

LEMMA 3.1. Let L be a semidistributive lattice generated by
three elements x, y, and z, with x <; xy + z and xz ̂  y. If L does
not have a sublattice isomorphίc to L7, L8 or L12, then L is a homo-
morphic image of the lattice in Fig. 9.

Proof. It is easy to check that Fig. 9 represents the lattice
with the defining relations x <5 xy + z, xz ̂  y, (x+y)z — yz, (x + yz)y=
xy + yz9 and x + y(x + z) — (x + y)(x + z). It therefore suffices to
show that under the hypotheses of the lemma the last three of these
relations hold.

The lattice determined by x9 z, xy, and yz and the defining rela-
tions x <; xy + z and xz <^ y (relative to the variety of all lattices)
is pictured in Fig. 10. In order to avoid L12 we must have xx — x2,
where xx = xy + (x + yz)z and x2 = yz + xxx. Since (xy + yz) + x2x —
x2 = Xί = (xy + yz) + (a; + yz)z, semidistributivity yields x2=(xy + yz) +
x2x(x + yz)z = xy + yz. As z(xy + yz) — yz9 we conclude that
(x + yz)z = (x + yz)zxγ = (x + yz)z(xy + yz) — yz. Hence, by the
semidistributivity of L, (x + y)z = yz. Next, check that the ele-
ments x9 z9 xy9 yz and (x + yz)y generate a homomorphic image of
the lattice in Fig. 11. To avoid L8 we must therefore have
(x + yz)y = xy + yz. Finally, observe that the elements y9 z9 x + y9

x + z and x + y(x + s) generate a homomorphic image of the lattice
in Fig. 12. To avoid L7 we must therefore have x + y(x + z) —
(x + y)(x + z).

For the remainer of this section let L be a lattice in a variety
that contains none of the lattices Λf8, L19 L2f , L12.

LEMMA 3.2. // α, 6, c, α', c' e L, i\Γ(α, b, c), and c/a / c'/a'9 then
N(af

9 δ, c') and, for all t e c/a and V 6 cf\a'9 (t + a')c = t and
t'c + af = V.

Proof. We have cα' = a and c + af = c'. Taking α? = c, ̂ / = α',
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x+z

c+α'b

α+α'b

Fig. 15
Fig. 16 Fig. 17

and z = b in Lemma 3.1, we see that N(a\ δ, c') For 1e c/a we
must have (t + a'b)c = t, for otherwise the lattice generated by α',
6, e, and £ has a sublattice isomorphic to Ll0 (Fig. 13). Similarly,
for t'e(c + α'δ)/(α + a'b) we must have et' + a'b = t' to avoid L8

(Fig. 14). Dually, for t' e c'/α' and 16 c'(c + b)jaf{c + δ) we must
have ί'(c + δ) + α' = ί' and (ί + α')(c + δ) = t. Finally, for t e
(c + a'b)/(a + α'δ) and t' 6 c'(c + b)/a'(c + δ) we must have
(ί + α'(c + 6))(c + α'δ) = t and f(c + α'δ) + α'(c + δ) = f in order to
avoid I/6 (Fig. 15).

We conclude that the transpositions t —> t + α' and £' —> £c are
isomorphisms between the quotients c/a and c'/α', and are inverses
of each other, as was to be shown.

COROLLARY 3.3. If the N-quotient cja in L projects onto a
quotient u/v then u/v is an N-quotient, and the projectivity is an
isomorphism.
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COROLLARY 3.4. // an N-quotient c/a in L projects weakly
onto a quotient u/v, then a subquotient of c/a projects onto u/v.

LEMMA 3.5. If ct/aif i = 0, 1, 2, are N-quotients in L with
CoK / GJai \ ca/α2 then cQ/a0 \ cocjaoa2 / c2/a2.

Proof. We have ct = cQ + a^ = ax + c2, hence by the semidistri-
butivity of L, cx — aγΛ- cQc2. It follows by Lemma 3.2 that

and, similarly, α2 + c0c2 = c2. Also, ao(coc2) = c0αxc2 = αoα2 and

COROLLARY 3.6. If the N-quotient c/a in L projects onto a
quotient u/v, then c/a /x/y\u/v for some quotient x/y.

Proof. Apply Corollary 3.3 and the dual of Lemma 3.5.

COROLLARY 3.7. If c/a is an N-quotient in L, then con (α, c)
does not collapse any nontrivial quotient u/v with u ^ a or c ^ v.

4. Critial edges. Let F be a variety that contains none of
the lattices Mz, L19 L2, , Ll2 and let L e V be a subdirectly irreduc-
ible, non-distributive lattice. Our aim in this section is to show
that L has a unique critical edge c/a and that c/a is also the only
iV-quotient of L. It follows that L/con(α, c) is distributive and that
L is locally finite.

LEMMA 4.1. // c/a is a critical edge of L, then c covers α, and
c/a is an N-quotient.

Proof. Since L is non distributive and semidistributive, it has
an iV-quotient u/v. Since con(w, v) identifies a and c, there exist
elements x0, xlf , xn e L with c = x0 > xx > > xn — a such that
u/v projects weakly onto each of the quotients Xi/xi+ι. By Corol-
laries 3.3 and 3.4, all the quotients xjxi+1 are iV-quotients, and, of
course, they are all critical. Hence, all the congruence relations
con^, xi+1) are equal, and by Corollary 3.7 this implies that n = 1.
Thus, c/a is an iV-quotient. To show that c covers a we again ap-
peal to Corollary 3.7.

LEMMA 4.2. All the N-quotients in L are critical edges of L,
and they are all projective to each other.
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Proof. Choose a critical edge c/a of L. By the preceding lemma,
a -^ c, and c/a is an iSf-quotient. By Corollary 3.4, every i\Γ-quotient
i φ has a subquotient u'/v' that is protective to c/a, and is there-
fore a critical edge of L. Furthermore, v!/v' cannot be a proper
subquotient of u/v, for if, say, uf < u, then con(u, u') collapses u'fv',
contrary to Corollary 3.7. Thus u/v = u'/v' is a critical edge of L
protective to c/a.

LEMMA 4.3. Let Θ be the smallest non-trivial congruence rela-
tion on L. Then Ljθ is distributive and, for all u,veL with u > v,
θ identifies u and v if and only if u/v is an N-quotient.

Proof. By the preceding lemma, θ collapses all the jV-quotients
of L, whence it follows that L/θ cannot contain a pentagon. Since
L/θ belongs to F, it does not contain a diamond either, and it must
therefore be distributive. The second part of the lemma follows
from the fact that, by Lemmas 4.1 and 4.2, the AΓ-quotients in L
are precisely the critical edges.

The next step is to prove that con(α, c) idenitίies no two distinct
elements other than a and c.

LEMMA 4.4. If c/a is a critical edge of L, then a is meet ir-
reducible and c is join irreducible.

Proof. By Lemma 4.1, a < c and c/a is an ΛΓ-quotient. Let us
assume that a is meet reducible; that is, a = cd for some d > a.
Then con(α, d) identifies a and c, and, hence, there exist quotients
Xi/Vu i = 0, 1, •- -, n, with xo/yQ = d/a, y% — a and xn ^ c, such that,
for i < n, Xi/Vi transposes weakly up or down onto xi+ί/yi+ί. We as-
sume that n has been chosen as small as possible. Clearly, n ^ 2.

The first two weak transpositions go one up and the other
down, and the order cannot be reversed by replacing xjy1 by another
quotient. This is obvious when n > 2, for if the order could be
changed, then the sequence of quotients could be shortened by re-
placing xjyt and xjy2 by a single quotient. Regarding the case
n — 2, we need only observe that we cannot have d/a \ w u/v /*w s/a
with 8 Ξ> c, for then c <Ξ u + a ^ d.

First, let us suppose that d/a /w xjy1 \ w x2/y2. By Lemma 2.2,
there exist α', 6, c' e L with N(a', 6, cr) such that either b/bcf is a
subquotient of d/a, or elso (α' + b)/b transposes down onto a sub-
quotient of d/a. In either case, a <; b. By Lemma 4.2 c/a and c'/af

are projective, whence it follows by Lemma 3.2 that N(a, 6, c).
However, this is impossible since a ^ b.

Next, let d/a \ w xjyx /w xjy2. By the dual of Lemma 2.2 there
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exist α', δ, cf e L with N(a', δ, c') such that either {a! + δ)/δ is a sub-
quotient of d/a, or else δ/δc' transposes up onto a subquotient of
d/a. As before, N(a, b, c), thus α -$> δ, and (α' + δ)/δ cannot be a
subquotient of d/a. Also, δ/δc' cannot transpose up onto a sub-
quotient of d/a, for this would imply that a + δ <; d; hence, c <ί d.

COROLLARY 4.5. L fcαs O Ϊ̂T/ one critical edge c/a, and con(α, c)
identifies no two distinct elements of L other than a and c.

Proof. By Lemmas 4.1 and 4.2, all the critical edges of L are
protective to each other, but by Lemma 4.4, a critical edge cannot
be protective to any quotient distinct from itself. Hence, L has
only one critical edge. The second statement of the lemma follows
by Lemma 4.3.

COROLLARY 4.6. L is locally finite.

Proof. If φ{ri) is the order of a free distributive lattice with
n generators, then an ^-generated sublattice of L can have at most
φ(n) + 1 elements.

5* Proof of Theorem 1Λ. Let V be a variety that contains
none of the lattices M3, Lί9 L2, , L15 and let L e V be a subdirectly
irreducible, non-distributive lattice. Since any variety is determined
by its finitely generated subdirectly irreducible members we may
take L to be finitely generated; whence, by Corollary 4.6, L is, in
fact, finite. Let c/a be the unique critical edge of L. To complete
the proof of Theorem 1.1 it would suffice to show that L must be
a pentagon. This is the objective of this section.

L E M M A 5.1. There exists beL such that N(a, δ, c), be < a and

c < a + δ.

Proof. Choose beL with N(a, δ, c) so that the quotient
(a + δ)/δc is minimal. Given c < t <; a + δ, we cannot have bt = be,
for then t/c would be an iV-quotient, contrary to the fact that c/a is
the only jV-quotient in L. Letting δ' = bt, we therefore have
a < a + δ', and hence, c ^ a + δ' by the meet irreducibility of a.
Thus N(a, δ', c), and in view of the choice of δ this yields a + b' =
a + δ; hence, t = a + δ. Thus, c < a + δ and, by duality, be < b.

LEMMA 5.2. The elements a and c are doubly irreducible.

Proof. B y t h e p r e c e d i n g l e m m a w e c a n c h o o s e beL w i t h



LATTICE VARIETIES COVERING THE SMALLEST NON-MODULAR VARIETY 475

N(a, 6, c), be < a and c < a + b. According to Lemma 4.4, a is meet
irreducible and c is join irreducible, so that by duality it suffices
to show that c is meet irreducible. If this is not the case, then
there exists deL with c = (α + b)d and c < d. As in the proof of
Lemma 4.4, we see that there exists a quotient u/v such that one
and only one of the following two statements holds:

( i ) d/c transpose weakly up onto a quotient that transposes
weakly down onto u/v;

(ii) d/c transposes weakly down onto a quotient that transposes
weakly up onto u/v.

We shall show that either case leads to a contradiction.

Case (i). By Lemma 2.2 and the fact that c/a is the only
iV-quotient in L, there exists V eL with N(a, &', c) such that either
V/Vc is a subquotient of d/c, or else (a + V)/V transposes weakly
down onto a subquotient of dfc. Regardless of which alternative
applies, we have c <; 6', contrary to the fact that N(a, &', c).

Case (ii). Using the dual of Lemma 2.2, we obtain δ 'eL with
N(a, &', e) such that either (a + b')/bf is a subquotient of d/c or else
V\Vc transposes up onto a subquotient of d/c. The former case is
excluded by the fact that c £ &'. In the latter case &' <; d, and
hence, (α + b)(a + V) = c. The elements α, &, and &' generate a sub-
lattice K of L with the property that the congruence relation
θ = con(α, c) identifies no two distinct elements of K except a and
cf and that K/θ is distributive. Since θ identifies the elements
(α + &)(α + V) = c and α, iΓ/0 is a homomorphic image of the lattice
in Fig. 16.

Let a > aV + ab. Then 0 does not identify c and α&' + ab.
Also, 0 does not identify c with either α + b or α + bf. Consequent-
ly, a + 6, α + δ\ and δ + &' generate, in this case, an eight element
Boolean algebra. Then a + b, a + 6', 6 + 6', and α generate a lattice
isomorphic to L13.

Thus, we must have a — ab + α&', and K/θ must be a homo-
morphic image of the lattice in Fig. 17. Actually, this homo-
morphism must be an isomorphism, since no two of the elements
6, 6', and c are comparable modulo θ. However, this implies that K
is isomorphic to L15, so this too leads to a contradiction.

LEMMA 5.3. L is a pentagon.

Proof. By Lemma 5.1 we can choose k L so that N(a, b, c),
be < a and c < a + b. Let u = a + b and v = be.



476 BJARNI JONSSON AND IVAN RIVAL

We claim that u(s + t) = us + ut for all s,teL. By Lemma
4.3 and Corollary 4.5, this holds modulo con(α, c), and the only way
the equation can fail is if u(s + t) = c and us + ut = α. Since c is
doubly irreducible c = s + t; hence, s — c or £ = c, so that %s + ut =
c > α.

Defining ŝ £ by us = t&£, we infer that φ is a congruence rela-
tion on L. Since ^ does not identify a and c, ^ must be trivial.
From this we infer that t <; u for all t e L, since φ always identifies
u + t with %. Similarly, t ^ v for all £ 6 L.

No element other than a, c, w, and v is comparable with either
a or c, for if t <; α, then t — a or t = v, while if α < £, then c ^ t
by the meet irreducibility of a, and therefore, £ = c or £ = u. If £
is not comparable with α or c, then a + t = u and cί = v, so that
N(a, t, c). From this, we infer that v <b < u, for if b < t < u,
say, then N(b, c, t), contrary to the fact that c/a is the only N-
quotient of L. Thus if t eL is distinct from α, 6, c, u, and v, then
6 + ί = c-ί-ί = u and bt = ct = v, so that 6, c, and ί generate a
diamond.

6. Related results* While semidistributivity as applied to vari-
eties of lattices, rather than individual lattices, is not equivalent
to a conjunction of identities the next result shows that semidis-
tributivity is equivalent to the disjunction of countably many
identities.

THEOREM 6.1. Let yQ — y, z0 — z and, for n = 0,1, 2, , let

ynV1 •= y + χzn, zn+1 = z + xyn. Then a variety V is semidistributive
if and only if, for some n = 0, 1, 2, , x(y + z) = xyn =. xzn and
its dual hold in V.

Proof. If L e V is not semidistributive then there are elements
x, y, z in L such that xy — xz < #(τ/ + s) say. Then, for all n =
0, 1, 2, .-.fyn = y and sΛ = « whence xyn = x^w < a?(y + s).

Conversely, let us suppose that V is a semidistributive variety.
It suffices to show that, for some n, x(y + z) = a?2/Λ •= ££„ in the free
lattice FV(Z) of F generated by x, y, and 2;. In Fv(2)a let /̂̂  be the
join of the elements yn and let z^ be the join of the elements zn.
Then xyn ^ ^ % + 1 and xzn ^ α??/%+1 so that xy^ = xz^. Now, 2/Λ + «n =
y + 2?, and semidistributivity implies that &(# + ») = xy^ — xz^. It
follows that, for some n, x{y + z) —• xyn — xz%.

The proof of Theorem 6.1 yields the next result.

COROLLARY 6.2. A variety V of lattice is semidistributive if
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and only if the lattices Fv(Z)σ and Fv(S)π are semidistributive.

As we mentioned at the outset the problem of finding a set of
identities which describes a given variety is usually quite difficult.
This task was accomplished by R. McKenzie [8] in the case of the
smallest non-modular variety N. Once these identities are exhibited,
however, the matter of verifying that they describe precisely N is,
in view of Theorem 1.1, a simple computation.

THEOREM 6.3. N is precisely the class of all lattices satisfying
the two identities.

χ(y + z)(y + w) s χ(y + zw) + xz + xw

and

x(y + z(x + w)) — x(y + xz) + x{xy + zw) .

A lattice L is said to satisfy (W) if, for all x, y, u, v e L,
xy <ί u + v implies that either xy <Ξ u or xy <i v or x <J u + v or
y <; u + v. It is easy to verify that each of the lattices
M"3, L19 L2, - , L15 satisfies (W). According to a result of B.A. Davey
and B. Sands [3], every finite lattice satisfying (W) is a retract of
any finite lattice of which it is a homomorphic image. On the
other hand, each subdirectly irreducible member of a variety L
generated by a finite lattice L is a homomorphic image of a sub-
lattice of L [5]. Combining these observations with Theorem 1.1
yields our final result.

THEOREM 6.4. Let L be a finite non-modular lattice. If L is
not a member of the smallest non-modular variety then L contains
a sublattice isomorphic to one of Λf8, Llf L2, , L15.
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