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EXISTENCE OF A STRONG LIFTING COMMUTING WITH
A COMPACT GROUP OF TRANSFORMATIONS II

RUSSELL A. JOHNSON

Let G be a locally compact group with left Haar measure
γ. The well-known "Theorem LCG" of A. and C. Ionescu-
Tulcea states that there is a strong lifting of M°° (G,γ)
commuting with left translations. Our purpose here is to
prove a generalization of this theorem in case G is compact.
Thus let (GfX) be a free left transformation group with
X and G compact. Let v0 be a Radon measure on Y—X/G,
and let μ be the Haar lift of y0. Let ρ0 be a strong lifting
of M°°(Y,vQ). We will show that M°°(X, μ) admits a strong
lifting p which extends p0 and commutes with G.

In [6], the result just stated was proved when G and X
satisfied certain restrictions. The following theorem, which may
be of independent interest, enables us to remove the conditions
imposed in [6]: Let H be a closed normal Lie subgroup of a
compact group G: then there is a Όf sequence (see 1.2 and [1] in
H, consisting of compact neighborhoods Vn(n 7> 1) of the identity,
such that g-'V^ = Vn for all geG.

NOTATION 1.1. Let G be a compact topological group, H a
closed, normal, real Lie subgroup. Let y be normalized Haar
measure on (?, and let λ be normalized Haar measure on H. For
each geG, define ag: H —> H:h~> g~xhg. Let φ be the Lie algebra
of H\ let exp: φ —> H be the exponential map.

DEFINITION 1.2. ([1]). A D'-sequence in if is a sequence
(Wn)n=i of λ-measurable subsets of H such that ( i ) TΓW =) Wn+1(n ^
1); (ii) 0 < X{WnW~ι) < C-X(Wn) for some C> 0 and all n\ (iii) every
neighborhood of idy (= identity) e H contains some Wn.

PROPOSITION 1.3. There is a Dr-sequence (VJϊU in H, consist-
ing of compact neighborhoods of idy, such that g~LVng ~ Vn(n ^ 1,
geG).

Proof. Let If be a neighborhood of 0 in ξ) such that exp | ι r is
a diffeomorphism onto exp (W) c HQ, the identity component of H.
Define log to be the inverse of exp \w. There is a neighborhood
ΛΓcexp(W) of idy such that g~ιNg c W{geG). Let φg(x)—\og°ag°
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exp(aθ = log (fiΓ' exp (£)•#) for all xe W1 = log(iV). Then <pg: W1-^
W, and φg(0) = Q(geG).

Each map ag is a continuous isomorphism of H, hence is analytic
([9], Theorem 5.22). Let A.άg: φ -> $ be the derivative at idy e H
of αg. Then Ad^O) = Dφg(0) x(x e φ). The map #-> Adg is a
homomorphism of G into GL(SQ). We show that it is continuous.
Let Go = {g eGlg^hg — h for all heH0}. Then Go is a closed normal
subgroup of G. The group G/Go acts effectively on flo via the map
7}\ G/Go x HQ —> if0: (#G0, Λ) —> g^hg. Therefore G/Go is a Lie group,
and the map η is analytic ([8], pp. 208, 212, 213). It follows that
g —> Adg is continuous.

Let < , )i be an inner product on %>. Define an inner product
< , >, invariant under each Adff, by

<s, V> = \ <Ad,(x), AAa(y)\ dy(g)(x, y e φ) .

Observe that, if Br = {xeQ\\\x\\ <: r, where ||ίc||2 = <>, x>}, then
Adff(J5r) = Br(geG). Also observe that, if m is a Lebesgue measure
on Q, then there is a constant /9 such that m(Br) = /3rfe, where Λ =
dim £Γ.

Consider the measure λ|expTF. By ([7], Corollary 2, p. 106), there
is a Lebesgue measure m on φ and an analytic function ^: TF—>/J,

satisfying /o(0) = 1, such that λ(exp B) = i p(x)dm{x) for each Borel
set BczW. Let TΓ2 be a neighborhood of 0 6 § such that 1/2 <:
p{x) ^ 2(a? 6 Wι).

Now let 0 < ε < 1 satisfy (l-ε) f e > 1/2(Λ?= dimiϊ). Recall that
9 (̂0) = 0 for all geG, that Ad̂ (ίc) = Dφg(0) x, that G is compact,
and that (gGOf x) -> 9>β(a?): G/Go x TF2 -> W is analytic. We can there-
fore find r' > 0 such that

(*) 119,0*0 - Ad,(aO|| <e| |a? | | for all geG if \\x\\<,r' (recall
Ija 'll8 = (χ9 x}). Choose r0 ^ r' such that J53 rc TF2 and exp (2?r)
exp(βr)cexpjB3r if r ^ r0. Let rn = ro/n. Define CΛ = Γlα6G9ιr(-BrJ,
and let 7» = exp (CJ. By (*), ^ ^ c C , for each n. Hence Fw

is a compact neighborhood of idy for each n(n ^ 1).
We show that {VnX=1 is the desired D'-sequence in H. First note

that g~1Vng = αgoexv(CJ = exvo<pg(Cn)=exvCn=: Vn for all geG. Next,
observe that y»Vr,r1 = exp(CJ exp( —CJcexp(jBrJ-exp(-BrJcexpB8rit.
So exp(J3(1_i)rJc Vncz ̂ F ^ c e x p B^n. So, on the one hand, X(VnV^)^
λ(expjB3r ) = I ρ(x)dm(x) ^ 2 Ŝ 3* (rΛ)*, while on the other hand,

λ(FJ ^ \ p{x)dm{x) ̂  1/2/9(1 - β)»(r.)» > l/4/8(r.)*.

Hence λCF^y-1) ^ 8 3fcλ(yj, so (ii) of 1.2 is satisfied with C=8 3fc.
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It is easy to see that (FJSU satisfies (i) and (iii) of 1.2. This
completes the proof of 1.3.

REMARK 1.4. The sequence (FJ^U is also a ^''-sequence ([1]);
that is, each Vn contains a subset Un such that Un U UnU~ιaVn,
and λ(FJ < C'X(Un) for some ^constant C\n ^ 1). To see this, let
sn = (1 ~ s)rJZ, and let Un = exp B8n. Then Un- U*1 c exp i?(1_β)rnc
Vft, and it is easy to see that we may choose C = 8 3\

2* The reader is warned that much of the terminology of
this section was discussed in ([6]); that discussion will not be
repeated in all detail.

NOTATION 2.1. Let X be a compact Hausdorff space, and let
G be a compact Hausdorff topological group. Suppose (G, X) is a
(left) transformation group (thus there is a continuous map Φ:G x
X-> X:(g,x)-±g-x satisfying (i) idy x = x; (ii) gx (g2 a) = (g1g2)
x(xeX; g, glf g2eG)). Suppose also that G acts freely (thus g x =
x=>g = idy (geG,xe X)). Let Γ = X/G be the space of G-orbits,
with the quotient topology; let ττ0: X—> Ybe the canonical projection.
Let 7 be normalized Haar measure on G, and fix a Radon measure
v0 on Y. Let Λf°°( Y, v0) be the algebra of all bounded immeasurable
complex functions on Y, and let L°°( Y, v0) be the (usual) space of
equivalence classes in M°°(Y, v0).

DEFINITION 2.2. The Hααr Zi/ί μ of v0 is defined as follows:

μ{f) = \γ(^/{Q'x)dΊ(g))dvly) for each feC(X).

DEFINITION 2.3. Let p0 be a fixed strong lifting ([6], 1.4; see
the references given there) of M°°(Y, ι>0). Let p be a linear lifting
of M°°(X, μ). Note that M°°(F, v0) may be embedded in M°°(X, μ)
via f-+foπ. Say p extends p0 if iθ|,¥-(F^o) = /o0. Say ^ commutes
with G if

here (f-g)(x) = f(g-x).

The following theorem was proved in ([6]) subject to various
additional assumptions. We prove it here in full generality.

THEOREM 2.4. Suppose (G, X) is a free left transformation
group. Let p0 be a strong lifting of M°°( Y, v0). Then there exists
a strong lifting p of M°°(X, μ) which extends p0 and commutes with
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G, where μ is the Haar lift of v0.

More notation is necessary before we can discuss the proof of
2.4.

NOTATION 2.5. Let H be a closed, normal, real Lie subgroup
of G. Let Z = X/H, and let π:X—>Z be the projection. Note
(G/H, Z) is a free left transformation group. Write g-z for (gH)
z(g eG, zeZ). Define a Radon measure v on Z by v = π(μ). Let
λ be normalized Haar measure on H. For each ^ e Z , let Xz be the
Radon measure on X defined by λ2(/) = l f(h x)dX(h) for one (hence
all) xeπ~\z). Then μ{f) = ( XΛ(f)dv(z) for all feC(X).

JZ

It can be shown that 2.4 follows from 2.6 below. See the
paragraphs under "Proof of 2.2, using 2.7" in ([6]), and the reference
given there. See also the proofs of Theorems 2 and 3 in ([5], Chpt.
IV).

THEOREM 2.6. Let H, Z,v,π be as in 2.5, and suppose there
is a strong lifting δ of M°°(Z, v) which commutes with G/H. Then
there is a strong lifting p of M°°{X, μ) which extends δ and com-
mutes with G.

To prove 2.6, we need only revise the proof of Proposition 3.11
in ([6]). For each z0 e Z and / β M°°(X, μ), define Rf(z0) as in ([6],
3.3-3.5). Thus Rf(z0) is an element of L°°(X, λ,0). Abusing nota-
tion, we think of Rf(z0) as a function on π~\zQ). We repeat Proposi-
tion 3.9 of ([6]):

PROPOSITION 2.7. Rf-9(z0)(h xQ) = Rf(g z^ghg'1 gzo)(xQ e X, z0 =
π(x0), heH, geG).

DEFINITION 2.8. Let (FJSU be the J9'-sequence of §1. Let
x0 e X, z0 — 7i(x0). As in ([6], 3.10, Case I), define

(here ψ denotes characteristic function).

PROPOSITION 2.9. Tl'g(xQ) = T^(g xQ)(g eG,xoe X).
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Proof.

Tl%x0) = — 1 — ί Rf'%zo)(h.χo)irVn(h)dX(h)
M v n) J H

= (by 2.7 above)

= (by ([2], 28.72e))—^— ί

2.10. Proof of 2.6. Combine the following: (i) the just-proved
2.9; (ii) the reasoning of the Case I portions of ([6], 3.12, 3.13, and
3.14); (iii) ([6], 3.15).
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