
PACIFIC JOURNAL OF MATHEMATICS
Vol. 82, No. 2, 1979

ON THE TOPOLOGY AND GEOMETRY OF ARCWISE
CONNECTED, FINITE-DIMENSIONAL GROUPS

SIGMUND N. HUDSON

If G is an arcwise connected, finite-dimensional group,
then it is known that there exists a connected Lie group
G~ and a continuous, one-one, onto homomorphism i: G~ —>
G. Results are obtained for describing the topology of G
in terms of the geometry of the manifold G~ and of i. The
major result is that there is a closed subgroup S of G~ and
arbitrarily small neighborhoods U at the identity of G such
that there are real numbers r and s satisfying i"1(Z7) is
the union of mutually disjoint open balls in G~ of radius r
scattered along the submanifold S in such a manner that
the balls are separated by at least s. In the case that G
is embedded in a locally compact group, more detailed infor-
mation is given for the distribution of the open balls in G~.

1* Introduction* If G is an arcwise connected, finite-dimen-
sional topological group, then Gleason, Palais, Montgomery, and
Zippin have shown that there is a Lie group (connected) G~ and a
continuous, one-one, onto homomorphism i: G~ —> G. Thereby the
study of the algebraic structure of an arcwise connected, finite-
dimensional group is reduced to that of connected Lie groups. The
main interest in this theorem is for the case that G is not locally
compact (for in the case of locally compact G, it follows that G is
a Lie group). In this paper the local and global topological structure
of G is studied (assuming G is not locally compact).

One may assume that as sets G — G~, and the topology of G~
is obtained by using as a base of open sets the arc components of
open subsets in G. Also i: G~ -*G is the identity function.

To describe the topology of G9 the geometry of the manifold
structure of G~ serves as a tool. It is shown below that there is
a right invariant Riemannian metric d for G~ and there is a base
& of neighborhoods at 1 e G such that for all r, n>0 there is We &
and subsets S and D of G with W = SD and with S x D and SD
homeomorphic, where S is an open ball in G~ of radius less than r
with respect to d and where I) is a discrete subset of G~ whose
members are separated by at least n. This means that no two of
them simultaneously belong to any translate of Bn, where B is the
open ball of radius 1 at 1. Also there is a closed subgroup L of
G such that for every We^ the arc components Sd of W all
intersect with L. With respect to this property, L is minimal in
dimension, and furthermore L is a normal subgroup and G/L is a
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Lie group (see Theorems 1,3, and 4). One could say that each
neighborhood in & is the union of its arc components, where each
arc component is an open ball of radius r, these components being
distributed along the subgroup and submanifold i~\L) in G~.

A special case of interest is the case that G is embedded in a
locally compact group (see Theorem 2). In this case it is shown
that there exists a discrete, abelian subgroup E of G~ such that
every D as given above is contained in E. If the locally compact
group is Lie, even more detailed information is obtained on E.

Examples show that, in the case that G is not embedded as an
analytic subgroup of a locally compact group, there may be no such
abelian, discrete subgroup E of G~. In fact, Nienhuys and Rolewicz
have constructed a topology for the real numbers R so that R is
a topological group with this topology, is arcwise connected, and
has only {0} and R as closed subgroups. Using modifications of the
method of construction for 22, examples are constructed for a topo-
logy for R% so that {0} and Rn are the only closed subgroups.

In the last section of this paper, a study is made of compact
subgroups of G and of the closure of arcwise connected subgroups
of G. It is shown that G has maximal compact subgroups; in fact,
they are i(K), where i:G~ -> (? and where K is a maximal compact
subgroup of G~. In proving this theorem, it is shown that for each
compact subgroup K of G, i~\K) is compact in G~. One can ask
whether for each compact subset C oί G i~\C) is compact in G~. An
example shows the answer to be no; however it is shown that for
each compact arcwise connected subset A of G, i~~\A) is compact in
G~. There are other examples to show that certain known results
for one-parameter or for closed subgroups of locally compact groups
cannot be generalized to the case of such subgroups of arcwise con-
nected, finite-dimensional groups.

2* Preliminary definitions and results* For a topological
group G, there is a topological group G~ obtained from G by using
the same algebraic structure for G~, and defining a topology for
G~ by using as a base for the topology the collection of all arc
components of all open subsets of G. The identity function i:G~-^G
is continuous; and if G is arcwise connected and finite-dimensional,
then G~ is a connected Lie group. Other relationships between G
and G~ are discussed in [4] and [10].

The following two theorems do not seem to be readily available
in the literature.

THEOREM. Let G be a compact connected ahelian group. Then
there is a compact totally disconnected subgroup D of G such that
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G/D is a toral group. A toral group is one isomorphic (as topologi-
cal groups) with the product of a collection of circle groups, the
collection possibly being infinite.

The proof of this theorem uses Pontrjagin duality and a Haus-
dorff maximality argument.

THEOREM. Let G be arcwise connected and finite-dimensional,
with i: G~ —»G. If S is a closed subgroup of G, then i~\S), as a
subgroup of G~ with the relative topology, is isomorphic to S~.

Proof. Since G^ is a connected Lie group, i~\S) is a Lie group
with a countable number of arc components. We define j n , 1 <Ξ n <;
3, as the identity function from a set onto itself, where j \ : ^(S)—>
S~, where j2: S~ —> S, and j3: i~\S) —> S. Clearly j2 and j3 are con-
tinuous. Then j \ is continuous by [4, p. 643]. So j t is a continu-
ous, one-one, onto homomorphism from a σ-compact locally compact
group to itself, so it is an isomorphism by [8, p. 7].

By a vector group it is meant a topological group isomorphic
to Rn for some n.

For a connected Lie group L, there exists a metric d on L and
a real number t > 0 such that (1) d is a so-called Riemannian metric
on L and d is right invariant {d(yx, zx) = d(y, z) for all x,y,zeL),
(2) the neighborhood JV(1, ί) = {x e L: d(x, 1) < t} is a normal neigh-
borhood of 1 e L with respect to exp: Sf(L) —> L and d, and JV(1, ί)~ is
compact (3) d(x, y) = inf {Σf=i (̂A> s<+i): #i = x, zk = y, and there is
a geodesic in L connecting zt to zi+1}. Such d are discussed in [6].
We assume without loss of generality that d has been "normalized"
so that t (from (2) above) is the real number 1. This may be done
by using a scalar multiple of d.

DEFINITION. Let L be a connected Lie group. We say that L
has a normalized Riemannian metric d in the case that a metric d
with respect to the above properties is used for L, including the
property that JV(1, 1)~ is compact.

3. Main theorems* We begin with a theorem describing the
neighborhoods of 1 in an arcwise connected, finite-dimensional group
Gt a theorem of fundamental importance. The theorem says that,
with respect to the manifold G~ and its metric d, smaller neighbor-
hoods at 1 e G have arc components which have smaller diameter
and which are separated from one another by greater "distances".
The quotes are used for the following reason. Customarily one
defines subsets P and Q of G~ to be separated by at least n to mean
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that d(P, Q) > n for a metric d on G"\ For our purposes, this is
not appropriate, because N(l, n) may not have compact closure,
where Nil, n) — {x e G~: d(x, 1) < n), particularly if n is large enough
and if exp: £f(G^) —> G~ is not onto. However, if we let B denote
N(l, 1), which has compact closure by construction of d in § 2, then
Bn will have compact closure; because Bn c (B~)n.

DEFINITION. Let P and Q be subsets of a connected Lie group
G~ with normalized Riemannian metric d. Define B by B = N(l, 1),
so that B has compact closure. We say that P and Q are separated
by at least n (where n is an even natural number) in the case that
for all x e G~, P and Q do not both meet Bmx, where m = n/2. That
is, at least one of P and Q have an empty intersection with Bmx.
Informally, we think of Bm as having "width 2m" and having
"pseudo-radius m", and we think of P and Q being separated by
at least "width n". In fact, if G~ is isomorphic to the vector group
Rk, then d may be so chosen that P and Q being separated by at
least "width n" is equivalent to d(P, Q) ^ n.

THEOREM 1. Let G be arcwise connected and finite-dimensional,
and let i: G~ —» G, where G~ has metric d as above. There exists a
base £& of neighborhoods at 1 in G such that for any r, n > 0, n
a natural, even number, there is Ue& satisfying:

(a) U has a subset D discrete in G~ such that U = SD, where
S is an open ball at 1 in G~ with respect to d, where leD, and
S x D —> SD given by multiplication is a homeomorphism,

(b) the arc components of U are Sd, for deD, and if P and
Q are different arc components of U, then radius (P) < r, and P
and Q are separated by at least n,

(c) D is countable, totally disconnected, Hausdorff, hereditarily
paracompact, and ^-dimensional.

Proof. Let V be a neighborhood of 1 in G, and let r, n > 0.
We consider (?~ as a transformation group acting on the space G via
π: G~ x G —> G given by π(x, y) = xy. In as much as i: G~ —> G is
continuous then π is continuous and routine arguments verify that
(G~, G, π) is a topological transformation group. By the local cross-
section theorem (see [9, p. 314]) there exists a compact ball K at
1 e G~, where K c N(l, 1) and radius K = q, and there exists a closed
subset EdG with 16 i£ such that K x E —> KE is a homeomorphism,
that KE contains a neighborhood of 1 e G, and that JΏ£ c V. We
now let K denote the open ball of radius q at 1 e G~. We see that
JE contains no arcs, for otherwise dim KE > dim G = dim G~. Using
the projection K x E-> E, it is clear that the arcs of K x E are
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K x {y}, yeE. Since i~\KE) is open in G~, and because an open
subset of a connected Lie group has a countable number of arc
components, we have that E is countable. Since E is a subset of
G, E is completely regular; so E contains no connected, nontrivial
subsets, and E is totally disconnected.

Next we find an open subset D of E at 1 in E such that for
all different dlf d2eD we have {dj and {d2} are separated by at least
width n + 2. Suppose by way of contradiction that for all open
subsets D of E, with l e i ) , there exist different eD and fDeD such
that eD and fD are not separated by at least width n + 2. There-
fore, letting ά = O + 2)/2, for all D we have that eD and /# belong
to Bkz, that eD = b^- bkz, that fD = o^ "Ckz and that epfΰ1 —
&!- δife«s-1cϊ1 -cr1 e J52fe. Consequently, since ί?2fc has compact closure
in G~, e^/i1 has a convergent subnet in G~ converging to some
w e G~. This subnet we also call by the same name. Note that
w Φ 1, because ê  and /# belong to different open balls KeD and KfD

of i££7 for all D, making d(eD,fD) > q. Then d(eDfn\ 1) > g, imply-
ing that d(w, l ) ^ g and w =£ 1. On the other hand, because i: G^-+
G is continuous, i{eDfDl) converges to i(w) in G. In G the nets eD

and /D both converge to 1, so the net eDfo1 converges to both 1 and
w, a contradiction. So there is a desired subset D.

Next we define S = N(l, t), where t — min {r/2, q). Recall that
q < 1. Next we show that Sd1 and Sd2 are separated by at least
width n. If there should exist z such that Sdx and Sd2 both meet
-B*«(A? = n/2), then ueSd.D Bkz c 5d1 and v e Sώ2 Π Bkz c J5ώ2, and
d1 e β^ c ββ 7^, also d2eBv c ββfc5;, so ĉ  and cί2 are not separated
by at least 2(fc + 1) = 2(n/2 + 1) = n + 2. Therefore S^ and Sώ2

are separated by at least n.
We have established (a) and (b) of the theorem. To show (c),

we have that every subset of D is countable, hence Lindelof. So
every subset is paracompact [3, p. 174]. So D is hereditarily para-
compact. In as much as D is totally disconnected, every compact
subset F of D has cohomological dimension cdF equal to 0 [1, p. 218],
[10]; so cdD = 0. Note that the inductive dimension of D is also
0 [2, p. 279].

Next we prove in Theorem 2 that if the arcwise connected,
finite-dimensional G is contained in a locally compact group L, then
the structure of the D in the previous theorem is improved; in fact,
there exists a subgroup E of G~ isomorphic to Zk such that for
every U = SD of the previous theorem we have DaE. The closure
of E in L is a compact group. If furthermore L is a Lie group,
then the closure of E in L is a torus subgroup of L, as shown by
the next Theorem 2. We first present two lemmae.
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LEMMA 1. Let L be a compact group, let G be a subgroup of
L such that G~ is isomorphic to Rn and such that G is dense in
L, and let C be a compact subgroup of L with L = GC. Then
there exists a compact subgroup KaC such that G~ = GK, that
(G n K)~ = K, and i~\G Π K) is discrete in G~.

Proof. Note that G and L are abelian. We let D be a closed,
totally disconnected subgroup of the component J at 1 in C such
that J/D is a toral group (possibly infinite-dimensional). We let φ:
GC-^GCjD be the coset homomorphism, with φ(G) = G19 φ(J) = Jί9

and φ(G) — Cx. Then GXCX has the same properties as GC, except
that the identity component Jx at 1 in Gx is a toral group. This
implies that Jγ is a direct factor of Cγ [7, p. 419], so that there
exists a subgroup E of d such that Cx = E (g) Jlm Clearly E is
totally disconnected. We let π: G& —> GγCJE be the coset homomor-
phism with π(fiC) = G2, with π(jCx) = C2. Then G2C2 satisfies the same
properties as G& and GC, except C2 is a toral group, whereas G%

or possibly C is not a toral group. We now prove Lemma 1 for
G2C2, rather than GC; and Lemma 2 below, applied to GxCγ and
G2C2, then next applied to GC and GλC19 will finish the proof of
Lemma 1. Therefore we may assume without loss of generality
that C is a toral subgroup of L = GC (C possibly infinite-dimensional).
In the closed subgroup i"λ{G Π C) of G~, we let V denote the com-
ponent of i~\G Π C) containing 1. Then V is a vector group in
G~. Using [5, p. 164] we may find a neighborhood U of 1 in V~
and a toral subgroup K of the toral group C such that UK is a
neighborhood of 1 in C and such that U x K-+ UK is a homeomor-
phism and a local homomorphism. The countability assumptions of
[5] are satisfied in the setting of Lemma 1, Lemma 2, and Theorem
2, by using the fact that ί(G~) is dense in L. We will prove that
K is the desired subgroup. If i~\G Π K) should contain a one-para-
meter subgroup P, then U Π K contains V Γ\ P, a contradiction.
Next, to show GK = GC, we have that GK = GVK - GC. Finally
to prove that (G Π K)~ = iΓ, we denote (G Π JBΓ)" by F, and establish
that GF is a compact subgroup of GC. To do this, we consider
GF/F. This group is arcwise connected and finite-dimensional. Also
φ: GF/F-+GK/K defined by φ{xF) — xK is a one-one, onto homo-
morphism, using that FczK and the definition of F. Since GK/K
is a torus group and since (GF/Fy is a Lie group, it is clear that
φ is an isomorphism. So GF/F is compact. Since J?7 is compact,
we have that GF is compact. Because GF is a compact subgroup
containing the dense G, we have that GF = GC = GiΓ. We use the
equality GF = GK to prove that F = K. Already FczK, so let
x e K. Then as e GF, so # = #c, where # e G and c e (G Π JBL)~. SO
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ceK, so geK, so geGΠK, so geF, and xeF. So K(zF. So
Lemma 1 is proved. We note that if L is a Lie group, then if can
be chosen to be a torus subgroup of L.

LEMMA 2. Let a: GK —> ϋ M δe an onto homomorphism of com-
pact abelian groups, with the kernal of a being totally disconnected
and contained in K, with a{G) = H and a(K) — M, with G~ and
JEΓ~ isomorphic to Rn, and with G and H dense in GK and HM
respectively. If HM satisfies the conclusion of Lemma 1, then GK
satisfies the conclusion of Lemma 1.

Proof. By hypothesis, there is a compact subgroup M1aM
such that H~ = HMlf etc. One defines C by C = ar\M^. Then
arguments such as used at the end of Lemma 1 show that CaK,
that G~ = GC, etc.

THEOREM 2. Let G be arcwise connected and finite-dimensional,
and suppose that G is a dense subgroup of the locally compact
group L. Then there exist έ%? and d as in Theorem 1, and there
exists an abelian compact subgroup K, with Ka Z(L)-R, for R =
the radical of L and Z(L) = the center of L, such that for any
r, n > 0, there exists Ue.^ satisfying:

(a) letting A denote the subgroup G Γ) K, the neighborhood U
has a subset D, with Da A, such that D is discrete in G~ and
that U — SD, where S is an open ball at leG~ with respect to d,
where leD, and where S x D —• SD is a homeomorphism,

(b) the arc components of U are Sd for deD; and, if P and
Q are different are components of U, then radius (P) < r and P
and Q are separated by at least width n,

(c) A is a countable subgroup of G, discrete in G~ and totally
disconnected in Gf and the closure of A in L is K,

(d) G~~ = GK and G is a normal subgroup of G~. If L is a
Lie group, then K is a torus subgroup of G~.

Proof. The proof consists of the cases for G abelian, for G
solvable, for G semisimple, and then the general case.

In the case that G~ is abelian, we have that L is abelian. It
is known that there are subgroups B2, B3, B4 of G such that G =
BJBJBH where B± is a vector subgroup of G~, of G, and of L, and
where B2 is the maximal compact subgroup of G~, and where Bs is
a vector subgroup of G~* such that every one-parameter subgroup
of B3 is nonclosed in L, and where G~ is the direct product of the
Bt. It follows that G~ = B2BfB4. Using the known facts about the
product structure of locally compact, connected, abelian groups [7,
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pp. 90, 95] we may assume that G = B3, in as much as J52 and BA

are direct factors in G and L. We now have that L = J53J52 = GB2,
where G is dense in L and where G~ is isomorphic to j?%, so that
Lemma 1 is applicable. Therefore, the major part of the abelian
case of Theorem 2 has been established, and we omit the remaining
parts of the abelian case.

Next assume that G~ is semisimple. To give an example of
this situation, let H be a connected semisimple Lie group such that
there exists d e Z(H) with the group D generated by d isomorphic
to the integers (and discrete in H). Let K be a compact, monothe-
tic group with the powers of e dense in K (here K may possibly be
disconnected or may be infinite-dimensional). In H x K let D* be
{(d, e)n: n is an integer}. Note that D* is discrete and central in
H x K. Letting φ: H x K-+ {H x K)/D* be the coset homomor-
phism, we have that φ(H) is dense in the locally compact (H x K)\
D* and that φ(ΈLY is isomorphic with H. Continuing with the
the proof, we let {dί9 , dt} be a set of generators for the finitely
generated, central subgroup Z(G), such that {dlf -- ,dk} generates a
discrete subgroup of L, and each element of {dk+1, * ,(ί j generates
a nondiscrete subgroup of L. If we let Γ(x) denote the closure of
the group generated by x, then Weil's lemma shows that Γ(xt) is
compact for k + 1 ̂  j ^ t [7, p. 84]. We let R be the radical of L,
and one proves that every element of R is the limit of elements
from the group D generated by {dk+ί,

 mm ,dt}. Furthermore, it can
be seen that R is the connected component of D~ containing 1. If
we define K to be D~, if we let S be an open ball at 1 e (?~ such
that S2 Π Z(G~) = {1}, then it can be shown that S x D' -> SD~ is
a homeomorphism, and the other conclusions of the theorem follow
readily. If L is a Lie group, it is clear that D" = R is a torus
subgroup of L.

We omit the proof of the solvable case of the theorem, since
the methods of proof are similar to those in the other cases.

In the general case, we let R denote the radical of G~f we let
S be a maximal semisimple analytic subgroup of G~ such that G~~
SR, and we let P be the radical of L. It is easily shown that Re
P. Since R and S are arcwise connected and finite-dimensional, we
may assume using the solvable and semisimple cases for the theorem
that there exists a compact abelian subgroup K2czR~cL (given
by the solvable case) and a compact subgroup Ktc Z(L) c S " c L
(given the semisimple case), satisfying the appropriate conditions.
(If L is a Lie group, then Kt and Kz are torus subgroups.) It is
tempting to define A and K = A~ by letting A~ = KJK.^ but it may
happen that Kγ Π R and possibly KtK2 Π G contain a nontrivial one-
parameter subgroup, an undesirable property if we wish K Π G to
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be discrete in G~. So we "rechoose" as follows. The purpose of
the following discussion is to obtain an appropriate subgroup of
KXK2. We have that KJ£% Γϊ G is closed in G, and so KλK2 Π G is
closed in G~. So the identity arc component of i'^KJC^ Π G), denoted
by E, is a closed vector subgroup of i~\KγK2 ΓΊ G). Since E is a
vector subgroup of KJί^ there exists a neighborhood U of 1 in 2£~
and a compact subgroup i£ of KXK2 such that ?7iί is a neighborhood
of 1 in KJ£2 and U x K-^ UK is a homeomorphism and local homo-
morphism. We obtain such U and K by using a compact, totally
disconnected subgroup D of iξiζj such that KxK2jD is a toral group,
by using [5, p. 164], and by using the above Lemma 2. We will
prove that K is the desired subgroup of L. Note that KaZ(L)P.
Further note that if L were a Lie group, then Klf K2, and K would
be torus subgroups of L.

We prove first that G Π K is dense in K. For any xeK, and
any V open in K containing x, we have that UV is open in UK,
where U is as above. Since G ΓΊ -KΊJBΓa is dense in K±K2f there exists
g 6 G Π 17 V. Because g •= uv and gr and u belong to G, we have
that veG. So veG Γ\ V, and G Π K is dense in K. Next we show
that G Γ) i£ is discrete in G~. If F is a one-parameter subgroup of
G P\ K, then 7 c £ . Since E f] K is discrete in i£~, we have that
V = {1}. Finally we show that Gif = L. Using normality of G in
L (a well-known result, for example see [5]), it follows that GK is
a subgroup of L. Next we show that GK contains a neighborhood
in L, and connectedness of L will imply that GK = L. We have
that GKz)GUKz)GW, where TF is a neighborhood in JBΓ^. But
GT7 clearly contains a neighborhood in SKλRK2 = L.

The proof of Theorem 2 is now easily finished by using Theorem 1.

REMARKS ON THEOREM 2. Several authors, particularly Goto,
have proved results similar to Theorem 2. Their results are not as
detailed about K as the present Theorem 2. The subgroup K must
satisfy several competing conditions. First, it must be "large
enough", because GK must be all of L. Next it must be "small
enough", because K must satisfy that G Π K is discrete. Finally K
must be "appropriately orthogonal to a neighborhood in G," because
K must satisfy that G Π K is dense in K.

Next we show that for an arcwise connected, finite-dimensional
group G, there is a subgroup S, closed in G and G~, such that
arbitrarily small open sets at 1 in G have all of their arc compo-
nents concentrated on S and that G/S is an analytic manifold.

DEFINITION S^. Let G be arcwise connected, finite-dimensional,



438 SIGMUND N. HUDSON

with i: G~ -> G. We let £f be the collection of all subgroups S of
G satisfying (1) i~\S) is a closed subgroup of G~, and (2) there
exists a neighborhood base & at 1 6 G of open sets in G such that
for all B e ̂  and for any arc component A of 5, we have

THEOREM 3. Let G be arcwise connected and finite-dimensional,
with i:G~->G. ( i ) If R and Se^, then Rf]Se^. (ii) Every
SeS^ is a closed subgroup of G. (iii) £f is nonempty, because
G 6 S*. (iv) G~/i~\S) and G/S are homeomorphic coset spaces, so
that G/S is an analytic manifold, (v) If SeS^ and xeG, then

-16 Sf.

Proof. ( i ) Clearly condition (1) of the definition of £f is
satisfied by R Π S. To prove (2) of the definition, let £& be a
neighborhood base for R and g* a neighborhood base for S, each
satisfying (2). In order to construct a neighborhood base ^ for
R Π S, let U be any neighborhood of 1 in G. Choose W a neighbor-
hood of 1 in G such that W* c U and such that the arc components
of W are open balls of radius r > 0, using Theorem 1. There is a
ΰ e ^ such that DaW, and there is an Eeg7 such that S C J D .

We define JB to be the open ball of radius r at 1 (so that B c W),
and we define C = .RBϋ/. Then C is a neighborhood of 1 in G, and
C is a candidate for <g*. It is clear that Call, because BBE a
Wz c £7. In order to show that every arc component of C meets
R Π S, we let A be some arc component of BBE. Then be belongs
to A for some b e BB and some eeE. Then e is contained in some
arc component Ee of the neighborhood E, and the arc component
Ee satisfies Eef] S Φ 0. Therefore A ΓΊ S Φ 0 . Furthermore, Ee

is contained in some arc component De of D. We will show that
DeaA. It is sufficient to show that DeaBBEe. Let xeDe. Since
x and e are both in the same arc component De, which is contained
in W, there is an open ball of W, whose center is y, containing x
and e. Since d{y, x) < r, we have x e By, and since d{y, e) < r, we
have ye Be. So xeBBecBBEe. So we now have that AΓ\R Φ 0 ,
in as much as DeΠR Φ 0 . So the arc component A of BBE meets
72 Π S. So such a neighborhood base ^ exists as claimed.

(ii) Let SeS^. If xeG, and x&S, for a Riemannian metric ώ
given by above, we have that d(x~\ S) > 0, since ^ ( S ) is a closed
subgroup of Gr~. Again by Theorem 1, let U be a neighborhood of
1 in G such that every arc component of U has diameter less than
d(x~\ S), and let VaU, where V is a neighborhood of 1 in G with
every arc component of V meeting S. Suppose by way of contradi-
ction that xVf]Sφ 0 . Let sexVft S; then s e xA, where A is
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some arc component of V. Then x~ιseA, and furthermore there is
an element aeAf]S. Hence both x~ιs and a belong to A. Con-
sequently d(x~ιs, a) < diam A, so that d (x~\ as'1) as well as d(x~\ S)
are less than diam A. But AcVaU, and we recall that an arc
component A of V satisfies diam A < d(x~x, S), a contradiction. So
we have that xV f] S = 0 . Hence S is a closed subgroup of G.

To prove (iv), we have the fallowing commutative diagram:

G~—*—+G

where π and ψ are the coset mappings, and j(xS) — xS. Then j is
clearly continuous, one-one, and onto. To show j is open, since
G~/i~\S) and its image are homogeneous, it is sufficient to prove
j is open at i~\S)eG^/i~1(S). Let Ui~\S) be an open set at i~\S),
where U is open at 1 e G~. Then there exists an open ball BaU,
with l e S , the radius of B is r > 0, and BSc Ϊ7S. Then there
exists an open set W in G at 1 such that every arc component of
W has nonempty intersection with S and such that the arc compo-
nents of W have diameter less than r/2, using Theorem 1 and that
for S the definition above gives us a base of neighborhoods. Then
routine arguments prove that WS c BS c US.

DEFINITION. For a topological group H, the component of the
identity 1 in H will be denoted by £Γ0, and the arc component of
the identity will be denoted by Ha. So Ha c HQ.

THEOREM 4. Let G be arcwise connected and finite-dimensional,
and let £^ be as in Definition S. Let S e S^ be minimal among
elements of Sf with respect to dim i " 1 ^ ) . Then i~\Sa) is a closed
normal subgroup of G~. If T is another member of S^ satisfying
dim i~\Ta) — dim i~\Sa), then Ta = Sa. If S is arcwise connected,
ψen for every T e ^ , S c T .

REMARKS ON THEOREM 4. If G is a Lie group, then {1} is the
minimal member of £f. Examples in the next section show that if
G is non-Lie, then G may be the only member of £f. Other ex-
amples in the next section show that S may have any dimension
between 0 and the dimension of G~. Theorem 2 above shows that
a minimal member of &* with respect to dimension must have
dimension zero whenever G is embedded in a locally compact group.

Proof of Theorem 4. Since i"\S) [is a closed subgroup of G~,
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we have that i~\S)Q = i~\Sa) is a closed subgroup of G~. Next let
xeG. By Theorem 3, xSx~ι e ^ , and S Π aSar1 6 ^ . So S Π ccSar1

has the same dimension as S, since S was minimal. Using standard
facts about Lie groups and their closed, connected subgroups having
the same dimension, it follows that x^i^S^x"1 — i~ι(S)0, so that
i~\S\ is a normal subgroup of G~. If T is another member of S^
as in the theorem, then the same type of argument proves that
i~\S\ = i~\T\. If S is arcwise connected, and if Te<9*, then S=
Sa = TaaT.

COROLLARY. If G is additionally abelian9 then there exists
Se£^ SUC}1 that s is minimal with respect to dim i"\Sa) and with
respect to the number of independent generators of i~1(S)/i~1(Sa).
For any TeS^ also minimal in these respects, S/SΓ\ T and T/Sf]
T are finite abelian groups, that is S and T are commensurable in
the sense of the theory of discrete subgroups of Lie groups.

Proof. Clearly one can find a subgroup SeS* such that Sa has
minimal dimension. Since S/Sa is a discrete subgroup of the analytic
abelian group G~/S7, it is a finitely generated, abelian group; so
that one may choose S e y so that additionally S/Sa has a least
number of generators. Then S satisfies the required conditions.

The proof of this corollary raises questions for the general case,
where G may be nonabelian. The goal is to obtain a "minimal"
member of &*, where "S is minimal" means that S e y is minimal
with respect to the two conditions of the previous corollary. For
example, in the case for G nonabelian, is the discrete group S/Sa

a finitely generated subgroup of G~/S~?

4* Arcwise connected subgroups and examples* In this section
there are results and examples which have been motivated by
theorems about certain subgroups of locally compact groups. In
the next two theorems, we study the compact subgroups of an
arcwise connected, finite-dimensional group G and how they are
related to the compact subgroups of G~. The next theorem describes
a curious situation for the preimages of compact subsets of G with
respect to i: G~ —> G.

THEOREM 5. Let G be arcwise connected and finite-diminisional,
and let i: G~ —> G.

(a) If K is a compact subgroup of G, then i~ι(K) is compact
in G~.

(b) If K is a compact subset of G, then i~\K) may not be
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compact in G~.
(c) If K is a compact, arcwise connected subset of G, then

i~~\K) is a compact subset of G~.

Proof, (a) We have that i~\K) is a closed subgroup of the
connected Lie group G~. Hence i~\K) is a Lie group with a count-
able number of arc components. Hence by [7, p. 42], i is an open
homomorphism, and K and i~\K) are isomorphic by i. Hence i~\K)
is compact.

(b) Let G be the arc component at 1 of a one-dimensional
compact, solenoidal group, so that G~ is isomorphic to the real
numbers R with its usual topology. It is known that G is arcwise
connected, one-dimensional, and has a sequence {xn} converging to 1
in G, such that i~~\{xn}) is an unbounded sequence in i~\G). Hence
K = {1} U {xn} is the desired compact subset of G.

(c) Our first goal is to construct a certain cover of G (not K)
which has no finite subcover. We present several lemmae:

LEMMA 3. Let U be a neighborhood of leG such that (a) the
arc components of U each have diameter less than r, where r < l ,
(b) the arc components of U are separated by at least width 4,
using a normalized Riemannian metric and the terminology from
§2. Let V be a neighborhood of l e G , with VaU, and assume
the arc components of V are separated by at least width 4. Define
W by W ~ I) {A: A is an arc component of U and Af] VΦ 0}.
Then W is a neighborhood of leG.

Proof. Define Y = BV, where B is the open ball at leG~ of
radius r, that is B — N(l, r). Then Y is open in G. The proof
will be finished when it is shown that B V Π U = U {A: A is an arc
component of U and A n U Φ 0}. If Vt and V2 are two arc com-
ponents of V, then routine arguments show that BVX and BV2 are
separated by at least width 2. This implies that BVΠ U is contain-
ed in the above union. Next, let x belong to the union; that is,
x 6 A where A is an arc component of U and A Π U Φ 0 . Let P
be the arc component of V contained in A. There exists y eP with
d(x, y) < 1, since diam A < 1. Therefore xeByaBPcBV. So a e
BV ΓΊ U, and the union is contained in BVΠ U, ending the proof.

For each natural number n, choose Un such that (1) Un is a
neighborhood of 16 G and Un+1 c Un9 (2) the arc components of UΊ
are balls with radius less than 1, and (3) the arc components of Un

are separated by at least width An+1. Define B to be the ball of
radius 1 in G~ at 1, so that B~ is compact. Define W1 = U19 and
define Wn = (I?*"1- U {A: A is an arc component of C7Ί and A Π Un Φ
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0}) U Wn_γ. In other words, Wn is the union of Wn_, with Bn~ιVny

where Vn = U {A: A is an arc component of Ux and i n Un Φ 0}.
The previous lemma may be used to show that Wn is a neighbor-
hood of 16 G. So, informally, W1 is the union of open balls of
radius less than 1 and separated by at least width 16; and W2 is
the union of a certain subcollection of the open balls from W1 (this
subcollection determined by ϋ72), each such ball "expanded by B"
members of this subcollection separated by at least width 64, unioned
with the remaining open balls of Wγ. We call the B A, such that
A is an arc component of UL with A Π U2 Φ 0 , by the name "the
building blocks of W". In general, we obtain Wn+ι from Wn by
using Un+1 to determine a certain subcollection of building blocks
Bn~'A from Wn. We then form B-Bn~ιA = BnA, obtaining the
building blocks for Wn+1, so that Wn+1 is the union of these building
blocks BnA with all the previously determined building blocks in
Wn, Wn-ίf etc. We note that for all n, Wn c Wn+1, and each Wn is
the union of sets of the type BkA, where 0 <^ k ̂  n — 1, and where
A is an arc component of Ut. Of course, B° = {1}. We remark
that for n small, the arc components of Wn are just the building
blocks Bn~λA of Wn, but when n becomes larger, an arc component
of Wn may be the union of several building blocks.

We note that {Wn} forms an open cover of G, because {Bn}
covers the Lie group G~, and Bn c Wn+1. It is our next goal to
study the arc components of Wn. The next lemma says that the
arc components of Wn cannot be too large.

LEMMA 4. For each n, there is no arc component of Wn which
contains two or more building blocks obtained at stage n9 that is,
having the form Bn~ιA, where A is an arc component of Uγ.

Proof. For n = 1, the lemma is clear, because W1 = U^ Sup-
pose the lemma is true for all j < n. By way of contradiction,
suppose Bn~ιAx and Bn~ιA2 are contained in an arc component of Wn.
We may suppose that there is a collection of building blocks
{Clf , CJ satisfying C, = Bn-'AU Cm = Bn~ιA2, Ct Π Ci+ι Φ 0 , and
each Ci is of the form Bk~xA, for 1 <; k < n, where each Bk~1A is
a building block from stage k<n. In other words, there is a finite
sequence of building blocks connecting Bn~ιA1 with Bn~1A2, all of
these in-between building blocks obtained at a stage k < n. Let
Ch be a building block obtained at level k, where k is as large as
possible and k < n (so \Φ 1, iλ Φ m). If there were two such Chf

then we would have obtained a finite sequence of building blocks
at stage k < n, thereby contradicting the induction hypothesis.
Next we let Ch be a building block obtained at a stage j , where
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j is as large as possible and j < k < n. There can be at most two
such Ch; for if there existed three such, at least two of them would
have subscripts i2 and % satisfying i2 and ΐ3 are between 1 and ίlf

or else i2 and i8 are between \ and m. In either case the sequence
from Ch to Ch would be a sequence connecting Ch and GH at stage
j < n, again a contradiction to the induction hypothesis. Consequent-
ly there are at most two such, say Ch and Ch, with 1 < i2 < iγ <
i3 < m. Continuing inductively, there can be at most 4 members of
{d: 1 < i < m} having the form JS^'A, with i < n — 2, at most 8
members of {d: 1 < i < m) having the form B5~ιA with j < n —
3, , and finally, at most 2n~2 members of {Ĉ : 1 < i < m) having
the form Bά~ιA with j < n - (n - 2) = 2 (that is, i = 1 and B3~1A =
A). Consequently we can estimate the size of (J {Cέ: 1 < i < m}.
Analogous to the situation that, if JV(1, j) Π iV(x, fc) Φ 0 for 1, a; e
G~, then for any zlf z2 e N(l, j) U N(x, k) one has d(zlf z2) < 2j + 2&,
there is the fact that if Bj Π Bkz Φ 0 , then for any zlf zzeBj\jBkz,
one has that {sj and {̂  J are not separated by at least 2j + 2k.
Applying this fact to U {d: 1 < i < m), where each Ct is of the
form Bό~xA, which is contained in Bjz for some z, we obtain that
for any z19 z2 e U {C^ 1 < i < m}, the sets {zj and {z2} are not separat-
ed by at least width

2(n - 1) + 2 2O - 2) + • + 2*~2.2 ,

where the 2{n — 1) comes from the one CijL, where 2*2(n — 2) comes
from the at most two Ch and C<3> •••, and the 2%"2 2 comes from
the at most 2n~2 members of {C*: 1 < i < m) which were building
blocks at stage 1. But routine use of inequalities shows that

2{n - 1) + 2 2(w - 2) + + 2%-2 2 < n(2n - 2) < An - 2n+ί .

Consequently for any zx and z2 e U {d: 1 < i < m}, we have that {«J
and {̂ 2} are not separated by at least width An — 2n+1.

However, U {C/. 1 < i < m} must "span the gap between Cλ and
Cm," where Cx = BnlA1 and Cm = B^-'A^ Using arguments similar
to those above, one shows that Bn~ιA1 and Bn~ιA2 are separated by
at least width 474"1 — 4 — 2(w — 1), which is greater than 4\ Con-
sequently two elements of U {C*: 1 < i < m} must be separated by
at least 4%, a contradiction. So Lemma 4 is proved.

To conclude the proof of (c), let K be an arc wise connected,
compact subset of G, and it will be shown that i " 1 ^ ) is compact
in G~. By using a translate, we assume 1 e K. The collection {WJ
forms an open cover of K by open sets in G, so a finite number of
the collection {Wn} cover K. So there exists n such that Kc Wn.
Since 1 6 K and K is arcwise connected, K is contained in the arc
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component of Wn at 1. We now prove by induction that for all n,
each arc component of Wn is the union of a finite number of build-
ing blocks. It is clear for n — 1, and we suppose it true for all
j < n. Let C be an arc component of Wn. In the case that C con-
tains no building block Bn~1A obtained at stage n, then in fact
C c Wj for j < n and our claim is true for C. By Lemma 4, C
does not contain two or more building blocks of the form Bn~1A.
So we may suppose that C contains exactly one Bn~ιA. It can be
shown that C = Bn~ιA U (U {Ct}), where each Ct is an arc component
in Wn_u where Ct Π Bn~ιA Φ 0 , and where C8 D Ct = 0 for s φ t.
In other words, C is the union of all the arc components of Wn^
which meet Bn~ιA, along with Bn~ιA. Since each Ct is the union
of a finite number of building blocks by the induction hypothesis,
it suffices to show that {Ct} is a finite collection. For each Ct, since
Ct Π Bn~ιA Φ 0, there exists x and an open ball Bt of radius 1 con-
tained in Ct satisfying x e Bn~γA Π Bt. The {Bt} is a mutually dis-
joint collection, since the {CJ were such. Since Bn~ιA has compact
closure in G~ (recall that B~ was compact in G ,̂ that a translate
of A is contained in B, that Bn~'A c (β-y-'A-, and that {B~)n~ιA-
is the continuous image of a certain compact product space), there
exists a subnet of {xt} converging to some x e G~. Denoting the
subnet also by {xj, we have that xtx~ι converges to 1 e G~, and each
xtx~ι e Btx~\ with {JB^"1} being a collection of mutually disjoint open
balls of radius 1. This can happen in a normal neighborhood of 1
in a Lie group only in the case that the collection is a finite collec-
tion. So the induction is finished. So K is contained in the union
of a finite number of building blocks. By the argument just given
above, each building block has compact closure. Since K is contain-
ed in a subset of G~ having compact closure, and since K = i~\K)
is closed in G~, we have that i~\K) — K is compact in G~, prov-
ing (c).

The next theorem discusses the existence of maximal compact
subgroups of G.

THEOREM 6. Let G be arcwise connected and finite dimensional,
and let i: G~ —» G. Then G has maximal compact subgroups, and
each one is of the form i(K), where K is a maximal compact sub-
group of G. Consequently each such is a compact, connected Lie
subgroup.

Proof. Use continuity of i, use (a) of the previous theorem,
and use the results on the existence of maximal compact subgroups
of Lie groups (for example [8, p. 180]). Other properties for i(K)
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may be established by using the corresponding properties for K.

In the abelian case, G^ has a unique maximal compact subgroup
K which is a direct factor in G~. In fact, G~ is isomorphic with
Rn (x) K. However, the author cannot answer the question whether
i(K) is a direct factor in G.

There are other results on certain subgroups of G; these results
are suggested by surveying the known results on subgroups of Lie
groups. Typical of these is the following theorem.

THEOREM 7. Let G be arcwise connected and finite-dimensional,
and let i: G~ -» G. Then there exists a unique maximal closed con-
nected normal solvable subgroup R of G. If P denotes the radical
of G~, then R = i(P)~ and Re Z(G) i(P). The subgroup R, although
connected, may not be arcwise connected.

Proof. Define R to be i(P)~. Then clearly R is a connected
normal solvable subgroup of G. If RXZ)R and if Rt has these pro-
perties, then, making use of i~\Ri) and i~\R) in (?~, it can be shown
that RJR is a connected, countable topological group (in fact abelian).
Using the fact that RJR is completely regular, RJR is the one-
element group. The other conclusions follow routinely.

We now give some examples of arcwise connected, finite-dimen-
sional groups in order to illustrate some limitations on the structure
theorems which one might conjecture.

EXAMPLE 1. There exists a topology for Rn such that Rn is a
topological group, Rn is arcwise connected and finite-dimensional,
and Rn has no closed subgroups other than {0} and Rn.

Proof. Nienhuys [11] and Rolewicz [12] have given a construc-
tion to obtain such a topology on R1. We indicate how to alter
their construction to obtain a topology on R2 with the desired pro-
perties. It will then be clear how to obtain the topology for Rn.
We will use the notation of Nienhuys [11]. In particular additive
notation is used for groups in this example. The group G is defined
by Nienhuys to be a certain subgroup of (R/Z)c, where c is the
countable cardinal. For xe(R/Z)c, \\x\\ is defined to be lub{|#J
mod Z:neN). T h e m e t r i c f o r G i s g i v e n b y d(x, y) = \\x — y\\.
Also Pn: (R/Zy -> {RjZy i s def ined b y Pn(y) = (Vι, V*,---, V., 0, 0, . . •),
where 0 is the identity of R/Z.

As Nienhuys does for R\ we will construct a subgroup A of G,
and then embed R2 in G/A. In fact, A is the infinite cyclic sub-
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group of G generated by aeG, where a is defined on p. 168 [11].
In order to embed R2 in G/A, we pick inductively the irrational
numbers Xn and Ύn so that (1) {1, \, λ2, , yίf 72, } is a linearly
independent set over the rational numbers, (2) |τ»| < (2n'kn_1)~1 and
| λ j < (2n-kn_1)~ί, where kn is the smallest integer such that for every
y eG there exists some k <= K satisfying

\\kPn(X) - Pn(y)\\ ̂  1/2* and || kPn(y) - Pn(y)\\ ̂  l/2 ,

(3) | λ n + 1 | ^ 2 - | λ Λ | and | <γn+ί \ ̂  2-17 J for all neN, (4) if pn

denotes the nth prime number, then λΛ = rn{pn)
ι/? and τ» = sn(pn)

1/3,
where rn and sn are rational numbers chosen inductively so that (1),
(2), and (3) above hold. The existence of such k follows from a
version of Kronecker's approximation theorem (see [7], § 26.19(d),
p. 436). The sequences {λj and {yn} then determine elements X and
7 in G, by defining the wth coordinate of X to be Xn + Z, similarly
for 7. We define f:R2->G by /(r, s) = rX + SΎ. It is clear that /
is a continuous homomorphism where R2 has its usual topology and
G has the relative topology from (R/Z)c. We show / is one-one.
Suppose rX + SΎ is the identity of G for some r, s eR. Then for
all ίeN there exists zteZ such that rλ^ + s7* = zt. So rλ1 + 87i = »i
and rλ2 + s72 = £2 The determinant of this system is not zero (it
is Xt72 — λ27i); so that, after solving for r and s, we find that r, s
belong to the subfield JP\ generated by {1, X19 λ2, y19 72}. In a similar
manner, using the equations rXt + S7* = «<, for i = 3, 4, we find that
r, s belong to the subfield of the reals generated by {1, Xίf 7*: i = 3, 4},
where, from above, λ, = n(^i)1/2 and 7* = Si(Pi)1/3. Since ί7! Π F2 is
the rational numbers, r and s are rational numbers. However,
using linear independence of the λ's and the 7's over the rationale,
it follows that r and s are zero. So / is one-one.

Next we let p:G —> G/A be the coset homomorphism, and we
show that p restricted to f(R2) is one-one. We show that if rX +
S7 e A, then rX + s7 is the identity of G. Suppose that rX + SΎ =
jfcα, where fc is an integer. Then rλTO + syn = fc ίjwmod ^ for all
w. Since tn ^ 1/4, we have that \ktjn\ ^ \k\/4n. On the other
hand \ktjn\ = \rXn + 87»| ^ | r | |λn | + |s | |7 Λ | mod Z. Furthermore,
using property (3) above, we get |λΛ | ^ \\\/29n and \yn\ ̂  |7i|/2 *,
where 8n is the sum of the first n — 1 natural numbers. If fc is
not 0, then (using linear independence) at least one of i and j is
not 0, and therefore for large n the two inequalities \ktjn\ ^\k\/4n
and \ktjn\ ^ 2"s^(|rλ1| + |s7i|) mod Z are both valid. This is clearly
impossible, in as much as the sequence {1/4w} goes to zero much
slower than the sequence {2~s*}. Therefore k = 0, and rX + SΎ is
the identity of G. Consequently pf is a one-one homomorphism and
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can be used to define a topology on R2. Since pf is continuous, it
follows that this topology is arcwise connected and finite-dimensional.

Next we show that R2 has no closed subgroups other than the
identity and R2. We do this by proving that for all (r, s) e R2, with
(r, s) Φ (0, 0), the subgroup generated by (r, s) is dense in R2. So
let d = rX + $y ef(R2). To show cί generates a dense subgroup of
G, we let ε be any positive real number and let y eG. We imitate
the proof of [11] with minor modifications. From the definition of
G, there is a natural number N such that for all n > N, \\Pn(y) —
y\\ < e/3. Let c = | r | + |s | . Let us first suppose that r and s are
both different from 0. For every n, there exists k <; kn such that
||fcPΛ(λ) - P.(»/2r)||^l/2 , that ||fcPΛ(λ) - Pn(y/2s) \\ ^1/2% that |λ.|<
1/2"•&»_!, and that \yn\ < l/2nkn^. Then we have that \\kPn(d)-
Pn(y)\\ ^ \\kPn(rX + sy) - Pn(y/2) - Pn(y/2)\\ ̂  \\kPn(r\) - Pn(y/2)\\ +
\\kPn{sy) - Pn(y/2)\\ = |r|.||fcP.(λ) - P.(»/2r))|| + |β|-11*if̂ (τr) - P.(W
2s) 11 ^ |r|/2w + \s\/2n = c/2%. Consequently, there is a natural num-
ber M such that for all n > M, \\kPn(d) - Pn(y)\\ ^ c/2n < e/3. Also
note that for any n > M, we have ] k \ | dn \ = | fc | | rλ% + sτ% | ^ (|A?|c)/
2n+1kn £ (c/2n+1)(\k\/kn) ^ c/2w+1 < e/3. Hence for such n, \\kPn(d) -
kd\\ < e/3. So we see that \\kd - y\\ ^ | |M - kPn(d)\\ + ||fcPβ(ίi) -
P»(y)\\ + l|P»(l/) - 1/11 < 3 (ε/3) for sufficiently large n. A similar
proof is made in the case that one of i or j is zero. Consequently
we have shown that the group generated by (r, s) is dense R2 (it
is easily shown that pf(rf s) is dense in G/A once one has shown
that /(r, s) is dense in G).

In the case for constructing a topology for Rn, n > 2, we indi-
cate some of the changes needed to alter the above proof for R2.

(a) Instead of determining λ and 7 in G, one determines n
elements δίf , δn in G so that similar statements to (1)—(4) hold.
For example, in (1), all coordinates of ^ for all i must form a
linearly independent collection of irrational numbers; in (2) and (3)
instead of two inequalities there are n inequalities; and in (4) (δj)k =
rk(pk)

ί/2

9 (d2)k = r2k(pkr\ •-., and (δn)k - rnk(pkγ»*.
(b) Instead of defining / as above, one defines /: Rn —• G by

(c) Instead of knowing that the determinant is X1Ύ2 — X2ylf

which is not zero, one notes that the determinant of the matrix
[Φi)i\f with 1 <; i, j <; n, is not zero.

(d) Instead of obtaining two subfields JF\ and F2 of the real
numbers, one obtains n subfields whose intersection is the rational
numbers.

DEFINITION. The topology obtained above for Rk will be called
the N-topology (for no nontrivial closed subgroups).
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subgroup of Rk, the relative topology for Zk obtained from the N-
topology on Rk will be called the ilf-topology. Note that with the
ilf-topology, Zk has no nontrivial closed subgroups.

Next we use Example 1 to aid in the construction of other
examples. One version of WeiPs lemma states that if G is a locally
compact group, and if P is a one-parameter subgroup of G, then
either P is isomorphic to R, or P~ is compact.

EXAMPLE 2. There is an arcwise connected, finite-dimensional
group G with a one-parameter subgroup P such that P is not iso-
morphic to R, such that P~ Φ P, and such that P~ is not compact.
Also P~ is not arcwise connected (although P is connected).

Proof. Let Z2 have a ikf-topology T given in the above defini-
tion. For each open neighborhood B — N(Q, δ) in R2 with its usual
metric d, where 0 is the identity of R2, and where δ > 0, and for
each De Γ, we define W(D, δ) = D + B = {d + x:deD and xeB}.
Then the set of all such D + B forms a neighborhood base & at
0 e R2 for a topology Z7 making G = (iϋ2, Ϊ7) into an arcwise connect-
ed, two-dimensional topological group. Note that & is of the type
described in Theorem 1. Also Z* is a closed subgroup of G, and Z2

is a minimal member of S^ in the sense of Theorems 3, 4. Let / =
{(x, 0): O^cc^l}. Then I is a compact subset of G. Hence # 2 + I is
a closed subset of G. But # 2 + I = : i 2 x Z . Hence i2 x Z = (Λ x {0})~ =
P~. Then P is a one-parameter subgroup such that P meets the
desired conditions.

For a locally compact group G with one-parameter subgroup P,
the subgroup P~ has either one or uncountably many arc compo-
nents. Note that P~ in Example 2 has a countably infinite number
of arc components.

EXAMPLE 3. There is an arcwise connected, finite-dimensional
group G with a one-parameter subgroup P such that P is not iso-
morphic with iϋ, such that P~ Φ P, and such that P~ is not com-
pact. Also P~ is arcwise connected.

Proof. Let i2 have a iV-topology T; and let H = (R, T), in
order to distinguish the two different topologies for R. Let C =
{exp (ir): 0 <; r ^ 2τr} be the usual circle group. Then define G = C(x)
H, where G has the product topology. Define the one-parameter
subgroup P c G by /: R-+G where f(r) = (exp (ir), r) for r 6 R. We
will prove that P~ = G. Note that {(exp (0), 2πw): w is an integer}
is a subgroup of P Π ({exp (0)} x H). So the closure of {(exp (0),
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2πn):n is an integer} = {exp (0)} x H. So PU{exp(0)} x HaP .
So G c P". (The symbol (x) means direct product).

Note that in this example G has a nontrivial compact Lie sub-
group. Another example meeting the conditions of this Example 3
could be given. Let G be R2 with a iSΓ-topology, and let P = {0} x
R. Then P~ = R2 = G.

We now give an example of a group G as mentioned in Theo-
rem 7.

EXAMPLE 4. There exists a G as in Theorem 7 whose radical
R is not arc wise connected.

Proof. Let S be a simple Lie group whose center Z is isomor-
phic to the integers, and let w be a generator of Z. We let A =
P~, where P~ is given in Example 2, and P~ = R x Z as sets. We
let D be the subgroup of S(x)4 generated by (w, (0, 1)). Then Z)
is a discrete central subgroup of S (x) A, discreteness following
from the facts that w generates a discrete subgroup of S and the
topology for £ (x) A is the product topology. Then we define G =
(S (x) A)/Zλ Note that S (x) A is not arcwise connected, because A
is not; however (S(x)A)/D is arcwise connected. Also (Z®A)/D is
the R of Theorem 7, and (Z (x) A)/JD is not arcwise connected. In
fact, (Z (x) A)/D is isomorphic to A.
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