A REMARK ON GENERALIZED HAAR SYSTEMS IN L_p , 1

A. D. ANDREW

We show that any chain from a generalized Haar system in L_p is equivalent to the unit vector basis in l_p . The constant of the equivalence depends only on p.

We answer a question raised in [1]. Specifically, we prove

THEOREM. Let 1 . There exists a constant K, depending $only on p, such that whenever <math>(h_n)$ is a chain from a generalized Haar system in L_p , (h_n) is K-equivalent to the unit vector basis in l_p .

Our notation and terminology is standard. If A is a subset of a Banach space, [A] denotes the closed linear span of A. The unit vector basis in l_p is denoted by (e_n) , and μ denotes Lebesgue measure on (0, 1).

A generalized Haar system [1] in L_p is a sequence (h_n) defined as follows. Let $\{A_{n,i}: n = 0, 1, \dots; 0 \leq i < 2^n\}$ satisfy $A_{0,0} = (0, 1);$ $A_{n+1,2i} \cup A_{n+1,2i+1} = A_{n,i}$; and $A_{n+1,2i} \cap A_{n+1,2i+1} = \phi$. Let

$$H_{n,i} = rac{1}{\mu(A_{n+1,2i})} \chi_{{}_{A_{n+1,2\,i}}} - rac{1}{\mu(A_{n+1,2i+1})} \chi_{{}_{A_{n+1,2i+1}}},$$

and define $h_0 \equiv 1$, $h_{2^{n+i}} = H_{n,i}/||H_{n,i}||$.

A chain from (h_n) is a subsequence (h'_n) such that supp $h'_{n+1} \subset$ supp h'_n .

In [1] it is proved that a generalized Haar system is a monotone, unconditional basic sequence in L_p , with unconditional constant λ depending only on p.

The proof of the theorem is based on the following lemma (see [2] and [3]).

LEMMA. Let $1 \leq \lambda < \infty$, $\delta > 0$, $1 \leq p \leq 2$, and (x_n) be a normalized unconditional basic sequence in L_p with unconditional constant $\leq \lambda$. Then,

(a) $||\sum a_n x_n|| \leq \lambda (\sum |a_n|^p)^{1/p}$, and

(b) If there exist disjoint sets (B_n) with

$$||x_n| B_n|| \ge \delta$$
, then $\frac{\delta}{\lambda} (\sum |a_j|^p)^{1/p} \le ||\sum a_n x_n||$,

for any scalar sequence (a_n) .

A. D. ANDREW

Proof of theorem. We shall denote the chain by (h_n) , and let $A_{n,1} = \operatorname{supp} h_n^+$, $A_{n,2} = \operatorname{supp} h_n^-$. We will assume $\operatorname{supp} h_{n+1} \subset A_{n,1}$.

Any chain in L_2 is an orthonormal system, so a chain in L_2 is isometrically equivalent to the unit vectors in l_2 .

We consider now the case $1 . Let <math>N_1 = \{n: ||h_n| A_{n,2}|| \geq 2^{-1/p}\}$, $N_2 = \{n: ||h_n| A_{n,1}|| > 2^{-1/p}\}$, and consider first the chain $(h_n)_{n \in N_1}$. Setting $B_n = A_{n,2}$ and $\delta = 2^{-1/p}$, it follows from the lemma that for all sequences (a_j) ,

(1)
$$\frac{2^{-1/p}}{\lambda} \left(\sum_{j \in N_1} |a_j|^p \right)^{1/p} \leq \left\| \sum_{j \in N_1} a_i h_j \right\|.$$

As for the chain $(h_n)_{n \in N_2}$, note that for each $n \in N_2$, we have $\mu(A_{n,2}) > \mu(A_{n,1})$. Thus, if j is the successor (in N_2) of n, $\mu(A_{n,1} - A_{j,1}) > (1/2)\mu(A_{n,1})$. Setting $B_n = A_{n,1} - A_{j,1}$ we have $||h_n| |B_n|| > 2^{-2/p}$, so that

$$(2) \qquad \qquad \frac{2^{-2/p}}{\lambda} \left(\sum_{j \in N_2} |a_j|^p \right)^{1/p} \leq \left\| \sum_{j \in N_2} a_j h_j \right\| \,.$$

Using (1), (2), part (a) of the lemma, and the unconditionality of (h_n) we have

$$egin{aligned} &rac{2^{-2/p}}{\lambda^2}(\sum |a_j|^p)^{{}^{1/p}} &\leq rac{2^{-2/p}}{\lambda^2} \Big(\sum_{j \in N_2} |a_j|^p\Big)^{{}^{1/p}} + rac{2^{-1/p}}{\lambda^2} \Big(\sum_{j \in N_1} |a_j|^p\Big)^{{}^{1/p}} \ &\leq rac{1}{\lambda} \Big\| \sum_{j \in N_2} a_j h_j \, \Big\| + rac{1}{\lambda} \Big\| \sum_{j \in N_1} a_j h_j \Big\| \ &\leq 2 \,\|\sum a_j h_j\| \leq 2 \lambda (\sum |a_j|^p)^{{}^{1/p}} \;, \end{aligned}$$

as desired.

Now suppose (h_n) is a chain from $L_p, 2 . Then <math>[(h_n)]$ is isometric to l_p , as we may regard $h_n = c_n e_1 + b_n e_n - \sum_{j=n+1}^{\infty} b_j e_j$. The biorthogonal sequence (h_n^*) is a chain from a generalized Haar system in L_q , with 1/q + 1/p = 1. Since 1 < q < 2, (h_n^*) is equivalent to e_n^* . Letting $T: l_q \rightarrow l_q$ be the isomorphism realizing this equivalence, we have that $T^*e_n = h_n$ and T^* is an isomorphism. Hence (h_n) is equivalent to (e_n) .

References

1. L. E. Dor and E. Odell, Monotone bases in L_p , Pacific J. Math., 60 (1975), 51-61.

2. W.B. Johnson and E. Odell, Subspaces of L_p which embed into l_p , Comp. Math., 28 (1974), 37-49.

3. H.P. Rosenthal, On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from $L_p(\mu)$ to $L_r(\nu)$, J. Functional Anal., 4 (1969), 176-214.

Received January 30, 1978.

GEORGIA INSTITUTE OF TECHNOLOGY Atlanta, GA 30332