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THE RUDIN KERNELS ON AN ARBITRARY DOMAIN

SABUROU SAITOH

Let {G,} (Gy3x,t) denote a regular exhaustion of an
arbitrary domain G in the complex plane. For fixed «, t¢(€ ),
let B(z2, z), L”(z, z) and L{™(z, z) denote the Rudin kernels
of G,, respectively. The convergence of the sequences
{R™(z, )}, (L2, x)} and {L{™(z, %)} is discussed and some
properties with respect to their limit functions are investi-
gated. In the final Section, it is pointed out that in the
case of an arbitrary hyperbolic Riemann surface, the circum-
stances are quite different, in general.

1. Introduction. In [3] and [4], we have been concerned with
some properties of the Rudin kernels and the associated reproducing
kernels. Let G denote a domain in the extended complex plane such
that 0G is a2 compact subset in the finite plane and for fixed z, t(€ G),
let {G,.}i-, (G,2x,t) denote a regular exhaustion of G. If there
exists, let g4z, t) denote the Green’s function of G with pole at ¢ and
We(z, t) denote gu(2, t) + ig%(z, t), where g is a harmonic conjugate
of g;. For simplicity, we set W (z,t) = W.,(z,t). Let H,(G)(p > 0)
denote the analytic Hardy class on G and {i(z, x)},, the class of
meromorphic functions &(z, ) such that h(z, x) — 1/(z — z) € H,(G)
(x # ). Let Hy(G) (resp. {h(z, x)};,s) denote the subclass of H,(G)
(resp. {h(z, 2)},,;) such that f(z) = O(|z|®), 2 — co(resp. k(z, x) = O(|z| %),
2 — o) (in the case that G5 o).

For each G,, there exist the Rudin kernel function R{™(z, x)
analytic on G,, and the adjoint L-kernel L{"(z,x) dz meromorphic
differential on G, with one simple pole at = with residue 1, satisfy-
ing the following property:

(1) ™(z, x)id W,(z, t) = LLE"’(Z, x)dz along oG, .
1

Here and in this paper, without loss of generality, we assume that
x # co. The K-kernel R{™(z, x) is characterized by the following
reproducing property:

flo) = 2% Sw f(z) R™(z, x) idW,(z,t) for all fe H,(G,).

The L-kernel L{"(z, ) is characterized in the class {i(z, x)}is, by the
following orthogonality condition:

1
G Ddi—t =0 Il fe H{G,) .
(2) Swn F@LT, Dt — for all fe HG,)
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On the other hand, there exist the conjugate Rudin kernel
R (z, x)dz analytic differential on G, and the adjoint L-kernel L (z, x)
meromorphic function on G, with one simple pole at & with residue 1,
satisfying property:

(3) R"(z, 2)dz = _;_E;M(z, ©)idW,(z, t) along 3G, .

The K-kernel R{™(z, x)dz is characterized by the following reproducing
property:

fay = =\ f@dz R, ode =t
2T

d
26, N AC) for all fe H{(G,) .

The L-kernel L{™(z, ) is characterized in the class {h(z, )}s,6, by the
following orthogonality condition: :

(4) gw f(2) L™z, @) idW.(z, t) =0 for all fe H(G,).

In [4], we have dealt with some properties of the Rudin kernel
function on an arbitrary open Riemann surface. In the present
paper we shall be concerned with some properties of other kernels
on general regions. Especially, we shall show that if G is a hyper-
bolic region or simply-connected, the sequences {R{(z, )}, (L™ (z, x)}
and {L™(z, x)} do converge, respectively. This fact leads to natural
definitions of kernels of such a domain, respectively. Our results
should be compared with those of the Szego kernel (ef. [5] and [6])
and the Rudin kernel function ([4]).

In §2, we state some preliminary facts. In §3, we deal with
some fundamental properties of the kernels R™(z, ), L™(z, x) and
L (z, x) on general regions. In §4, we show that the sequence
{Ré”’(w, x)} is not monotone as n increases, in general. In the final
§5, we refer to the case of an arbitrary hyperbolic Riemann surface.

The author wishes to express here his sincere thanks to Profes-
sor N. Suita for his useful criticisms.

2. Some preliminary facts. In our investigation, the following
lemma is fundamental:

LEMMA 1. For an arbitrary H(G)-function f(5£0), the following
limit exists and is determined independently of the choice of regular
exhaustions {G,}:

limg L AD idW.t),

n >0 3an_x
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if and only if G 1s a hyperbolic region or simply-connected.

Proof. It is sufficient to show the sufficiency. If f is a constant
function, the assertion is clear. Hence we assume that f is not
constant. Especially we note that in this case G is a hyperbolic
region. Let {4,,,} be discs such that 4, ., = {z|]z — 2| < r,, 7, > 0},
4, ., @G, for all m and n, and r,, tends to zero as m tends to infinity.

Let G, , denote G, — 4, ,. Then we consider the following limit:

n—co
m—00

I = lim Sw ;i_x TG — @) idW,, (21),

which is well-defined and is determined independently of the choice
of regular exhaustions {G,} and the discs {4,.}, as we see easily.

Since (f(z) — f(x))/(z — z) is bounded about z, on letting m tend to
infinity and then n tend to infinity, we have

I=lm| L G~ @) idW, 0

- 1im§ L TR idW,(z,t)— 227 <L—1im Wz, t)) . @w£t),
noco JaG, Z—X t—x 2w

which implies the desired result. Here if x = ¢, we can modify the
above argument. Next we give the following lemma:

LEMMA 2. Let G be a hyperbolic region. Then for each h(z, x) <
{h(z, D)}s,6) we have

(5) tim | [h(z, o) exp (— Waz, o) id Wiz, 1

n—00

(6) = lim S b ) AWz, 1)

N —00

Proof. From the subharmonicity of |Ai(z, x) exp (— Wy(z, x))%?, we
note that the limit (5) is well-defined and determined independently
of the choice of regular exhaustions {G,}. As to the limit (6), the
similar assertion is valid, as we see from Lemma 1. Let 4, denote
{2 G|gez, ) > 06, > 0}. Then 4, is the subdomain of G and 04,
consists of some analytic Jordan curves g4z, ) = d,, except for a
subset E, of G of logarithmic capacity zero, in general. Let 4,
denote the regular subregion 4, U K, of G. Without loss of generality,
we can assume that 4,5¢. Since Cap E, = 0, h(z, ) can be extend-
ed on 4, — {x} analytically (cf. [4], Theorem 5.1). Hence we can
take a regular subregion D, of 4, such that for fixed M > 0,
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(7) Hwn Wz, ©)*id Wy, (2, ) — Saznlh(z, )Fid Wi (2, t)’ <M,
and
1[,,. 10z @)L — exp (~ 20062, D))id W, 2, )
= |, G @)~ exp (~200(z, 2))id Wiz, )] < 2
that is,
) [, IhG oFQ — exp (~200(z, ©)id W,z ©
(1 —exp(—2-5,) Sﬁn Wz, )P id W3 (2, t)’ < % .

Next for 6,.,(>0, <§,), we consider 4,., and D,., such that for
n+1, (7) and (8 are valid and further D,c D,,,. Thus for a
sequence {6,}(0, > 0,., > 0) converging to zero, we can obtain a
regular exhaustion {D,} of G which has the properties (7) and (8).

Since the sequence {S |h(z, ©)[Pid W), (2, t)} is bounded,
.

a

{1, I, o iaws, @, )

ad,

is also bounded. Hence from (8) we have
lim | 14z, @) (1 — exp (~200(z, ©))idWa, 5 8) = 0 .
n—0 Dy,

Thus we have the desired result for {D,} and hence for every
regular exhaustion of G.

Now we have a lemma of Fatou’s type in the theory of integrals:

LEMMA 8. Let G be a hyperbolic region. Let {h,(z, %)} be a
sequence of h,(z, x) € {h(z, ¥)}s,a, sSuch that h,(z, x) converges to h(z, x) €
{h(z, )} uniformly on every compact subset of G — {x}. Then we
have

lim | b, @FiaWae ) Slim | @)rid W )
Gy n—00 n

n—o00

Proof. From Lemma 2, we have

lim Sw 1z, @) id W, (z, t)

n—sc0 ”

= lim Sw 1z, %) exp (— Wz, @) id W, (z, t)

7-+00 n
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— lim <lim S  [lalz, @) exp (= Walz, 2)Fid Wz, t))

n—0 M—>0

< tim (lim | 1z, ) exp (= Wa(z, @) id Wz, 1)

n—00 \m 0o

= lim S (2, @A Wz, £) .
m -+ JaG,,

3, The kernels on general regions. At first we deal with the
convergence of the sequence {L™(z, x)}. Let R.,(y, 2)(e H,G)) denote
the Rudin kernel function of G with respect to z and t(eG) ([4]).
Then we have the following theorem:

THEOREM 1. Let G be a hyperbolic region or simply-connected.
Then the sequence {L{™(z,x)} converges to an amnalytic function
L,(z, x) uniformly on every compact subset of G — {x}. Further
L.z, x) i1s independent of the choice of regular exhaustions {G,} and
can be represented as follows:

1 1

(9) Lo =—timn | L Emwiawwo.
2=  noe 21 Jig, Y — 2

Proof. For each regular exhaustion {G,} of G, we consider the
limit
Hzo, t) = lim -] 1 B, ») idW.@,1),
noco AT VoG, Y — 2
which is well-defined and is independent of the choice of regular
exhaustions {G,}, as we see from Lemma 1. Since {R{™(y, )} con-
verges to R,(y, x) in Hy-norm ([4], Theorem 2.1), we have

Hz; w, £) = 1imi§ 1 R, w) idW.y, b

n-w 2 Jog, Y — 2

L 11wy, z)dy
6y Y — 2 1

=1im—s

= lim (sz, z) + —L ).
o T —2z
Thus we set L,(z, x) = H(z; 2, t) + 1/(z — x).

Next we deal with the convergence of the sequence {ﬁé”’(z, x)}.
Since L{™(z, x) = —L{™(x, z) ([3]), we conclude that if G is a hyper-
bolic region or simply-connected, {I:t‘”’(z, x)} converges to — L,(x, 2).
In these cases, we set L,(z, x) = —L,(x, 2). Since R,(z, x) = 1(x #1) if
and only if G € Oy, ([4], Corollary 2.2), from (9), we have the follow-
ing fact:

COROLLARY 1. If G is a hyperbolic region or simply-connected
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and further G e Oy,, then we have

fz, 2) = —2— 4 lim Wi, ) — —2— @ =1).
2= e t—2x

If © =t, we can modify the above representation, slightly.
Furthermore we have the following theorem:

THEOREM 2. Let G be a hyperbolic region or simply-connected.
Then the sequence {ﬁé“’(z, x) — 1/(z — x)} converges uniformly on every
compact subset of G to the H,(G) fumction L,z x) — 1/ — x) and
Further it converges to L.z, ) — 1/(z — x) in Hynorm in the sense of
Theorem 2.1 in [4]. The limit function L,(z, x) is independent of the
choice of regular exhaustions {G,} and can be represented as follows:
1 1 1

~tim=| L B saww, b
2 — X 1»—»0027'[ WGy Y — X

10) Lz @) =

Furthermore L,(z, %) is characterized by each of the following
orthogonality condition and the following extremal property im the
class {h(z, x)}sq:

11 lnl_{g gaa f(z)f/,(z, )idW,(z,t) =0 for all fe H)(G),

and
12) 1im( min S bz, %)[Fid Wz, t))
n—co \hiz,2)}2,6, J3Gy
13) ~ min (1im§ 1, D) id Wiz, )
{h(z,2)}g,q \moo0 J3G,
(14) =limgw Lz, ) Fid Wz, ©)
respectively.

Proof. Since {L{™(z, #) — 1/(z — )} is locally uniformly bounded
(see the following (15)) and L™ (z, ) converges to —L,(x, 2), we note
that {ﬁé"’(z, x) — 1/(z — x)} converges uniformly on every compact
subset of G to L,z x) —1/(z — z), independently of the choice of
regular exhaustions {G,}.

In order to see that L,(z, z) — 1/(z — «) belongs to Hy(G), we
consider the following limit:

1

bz, 0) — -2 | idw.z, t) .

J=limS :
3Gy, 2 —

n—co
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Then we have

(15) J = lim < im S Lo (z, x) — {%d W.(z, t))
n—oo0 \Mm—oo aG,n z — X
A~ 2
< lim <hms (2, 2) — } iAWz, t)>
n—00 m—oo BGm z — X
<1lim 2 S (;I:;m>(z, Bt + —2 2)idWm(z, £ .
m oo m z — xl

Since L{™(z, x) is the extremal function which minimizes H,-norms
among the class {h(z, ®)}.¢, ([3]), we have

ngimzxg L iaW,z,t) < o,
Mmoo 3G, {z - x|2
which implies the desired result.

Next we shall show that the sequence {At"”(z, z) — 1/(z — x)}
converges to L,z %) — 1/(z — #) in Hynorm; that is, {Eé”’(z, x)} con-
verges to L,(z, ) in H,norm in the obvious sense. From the ex-
tremal property of L™ (z, 2) on G,, we have

n—00

lim Swn |Ly(z, @) id W,(2, t) = Erg Smn |L™ (2, 2)*%d Wz, t) .

Hence if G is a hyperbolic region, from Lemma 3, we have
lim gwn Lz, ) id W (2, t) = lim Saan |L (2, 2)Pid W,(z, t) .

Here we use the identity:

Sae,,, L2, %) LGz, @) id Wiz, t)

= S Lz, 2) 2R (2, 2)dz = 22 R (3, 1)
n 1

= |, LG oriaw,e ) .

Thus we have the desired result.

On the other hand, if G is a parabolic region and simply-connected,
from the proof of the following Theorem 8 for such a domain, we
have the desired result, directly.

Since ﬁ{”’(z, %) converges to L.z, %) in H,norm, from (4) we
have (11). From (11) and the extremal property of L®(z, ) on G.,,
we obtain the extremal property of I;t(z, xz) on G.

We define two functions I{™(z, 2) and [,(z, 2) as follows:

1

Iz, @) = LMz, ©) — ,
T — 0
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and

1
2—x

l(2, ®) = Li(z, %) —

(in the cases that G is a hyperbolic region or simply conneActed).
At last we deal with the convergence of the sequence {R{™(z, x)}.
We have the following theorem:

THEOREM 3. If G is a hyperbolic region or simply- connected
then the sequence {R‘”’(z x)} converges to an analytic function Rt(z, x)
uniformly on every compact subset of G. The function Rt(z, x)
18 independent of the choice of regular exhaustions {G,} and can be
represented as follows:

1

(16) Rz %) = lim |,

1
6 (Y — 2)(Y — )

—mngm%Mwmwmmw.
2 Jaa,

n—00

tdW.(y, 1)

Proof. At first we assume that G is a hyperbolic region. Then
from the identity:

1
docy (Y — 2)(y — @)
1

- L 1wl @ dWw ),

Ba, ) = o= |, iaW,(y, 1)

which is obtained from (3) and since [{(y, z) converges to l(y, 2)
in H,-norm, we have the desired result.

Next we assume that G is not a hyperbolic region and simply-
connected; that is, G = {¢}. Then we see that for an arbitrary
regular exhaustion {G,}, lim,_., Ri"(z, x)=0, directly (cf. Theorem 4).
From the identities:

1 1 . 1
m-— — i d W,y t) = — e
wmmgm@—@@—m (@ —2)(g— =
and
Zt(yy x) = — 1
qg—X

(which is obtained from Corollary 1), we have the desired result.
(We note that in this case {{{”(y, )} converges to [,(y, ) in Hy-norm.)

As to the degeneracy of the quantity R,(x,x), we have the
following theorem:
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THEOREM 4. If G is a hyperbolic region, then IAEt(x, x) >0 for
all x,teG. If G is a parabolic region, then for any fixed x,t <G,
there exists a regular exhaustion {G,}(G,>z,t) of G such that
lim, ., Rt‘“’(x, x) = 0.

Proof. We assume that G is 2 hyperbolic region and Rz, x) =0
for some x, t; that is,

n-—oc0 n

on Rz, x) = lim 27 R (z, &) = lim S Lz, @) Pid Wz, )
o0 JoGy,
= lim SBG Lz, ) Fid Wa(z, £) = 0 .
Then we have

lim | |L.(z, @) exp (— Wale, 9)|id WGz, 0

n—00

< lim (Swn Lz, ©)Fid Wz, t))”

% lim (gG lexp (— Wiz, 2)Fid Wz, t))m

n —»co

=0.

Hence L,(z, x) exp (— We(z, x)) = 0, which is absurd.
Next we assume that G is a parabolic region. We take ¢ ecodG.
Then for an arbitrary regular region G,,GD>G,>x, t, we have

1L 1 [%Gaw.e, ).

z2—x q—

[ 1L oidWae, 0 < |
oGy,

Gy
Thus we have the desired assertion.

REMARK 1. We assume that G is a parabolic region and not
simply-connected. Then from the identities

Li"(z, t) = —Li(t, 2) = — Wiz, t)
(which is obtained from (1) and R{™(z,t) =1 ([3])) and
—Wie, )+ = L[ 2
G Y — %

= _— 3 t
T o WdW.(y, 1) (& + 1)

we see that the limits lim,., L®(z, «) and lim,.. L"(z, ) do not
exist, in general.

REMARK 2. From the theory of the Szego kernel function, it
is well-known that the following limit exists:
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lim( min S Iz, x)lzdsz> (G3).
n—eo \{h(z:2)}s,q, JGp
Further the degeneracy of such a quantity was investigated by P. R.
Garabedian [1].

On the other hand, the convergence of the sequence of the
Szego kernel functions was investigated by N. Suita [6] and E. P.
Smith [5].

4. An example. Here we shall show that the sequence
{I?é’”(x, x)} is not monotone as m increases, in general.

For fixed « = 0 and #(>0), let G, be the disc {z||z2| < #}. Then
we can take as a complete orthonormal system (which defines the
kernel R (z, ) of G,)

{(T z—t >”,r r? — }“’ ,
r*—tz/ (r* — tz)?

7n=0

as we see by the simple computation. Hence we have

B0 =3 (r2 by m ot (Y

a=0 \ p* —tz/ (r* —tz)*\ 7r 7
P —
ot —t2)

and so

A 2 _ 42

R, 0 =2 F

7

Thus

for m t<r <12 t, R"0,0) increases as r increases,
for »: V2 t <, R0, 0) decreases as 7 increases .

Now let E be a compact subset of G such that G — E is con-
nected. Then we note that a property of E for which for fixed
x,t(e G — B), RO, x) = R¢ 2 (x, x) is valid is quite different from
the properties of E in the cases of other various kernel functions
(cf. [4], §5).

5. The case of an arbitrary hyperbolic Riemann surface. Let
S denote a hyperbolic Riemann surface. For simplicity, we shall
use the same notation for a point on S and a fixed local parameter
around there. For fixed local parameter around z and fixed ¢(€S),
let {h(z, %)}; s(» > 0) denote the class of meromorphic functions h(z, )
such that Z(z, ) are analytic on S except for a simple at # with
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residue 1 and for some compact subset K>z, {S |k (z, x)|7id Ws, (2, t)}
as.

is bounded for all regular subregions S,,S> S, :)KU{t}

In this paper we needed essentially a function A(z, ) and the
class {h(z, 2)};s instead of the Cauchy kernel and the class {i(2, 2)}s.s
respectively. But there exist hyperbolic Riemann surfaces S such
that {k(z, 2)};.s(p > 0) are all void.

We introduce two copies S, and S, of {z][z| > 1} and distinguish
the segments [2n,2n + 1] (n=1,2, ---). We construct the desired
surface S by joining S, and S, along their common distinguished
slits in the usual manner. Let {Q, Q,} be the preimage of z(]z] > 1)
with respect to the projection map @. Then we see that SeOHp
(» > 0) and f(Q,) = f(Q.) for all fe H,(S) (cf. [2], pp. 36-37). Now
we assume that for fixed =z, ¢e S,(Im @(x), Im @(t) > 0), there exists
an h(z, ) e {h(z, x)};s. Then we see that for a regular exhaustion
{S.}(S,2x,t) of S,

lim Sas lﬁ(z, x) exp (— Ws(z, @))[?id W, (2, t) < oo .

Hence there exists a harmonic majorant w(z) satisfying
|h(z, ) exp (— Wi(z, 2))]” < u(z) on S.

Let D denote a small dise such that S,>Ds% (Im@(D) > 0) and
exp (— Ws(z, #)) is univalent on D. Then there exists § such that
lexp (— Wiz, 2)) =6 >0 on S — D. Hence we get

lh(z, 2)) <67 -u@) on S—D.

Hence %(z, #) must be extended on D analytically, which is absurd.

Therefore we see that for such Riemann surfaces, all the theorems
in this paper are not valid. For example, Theorems 2 and 3 are not
valid.
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