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THE DESCENDING CHAIN CONDITION RELATIVE
TO A TORSION THEORY

ROBERT W. MILLER AND MARK L. TEPLY

A well-known theorem of Hopkins and Levitzki states
that any left artinian ring with identity element is left
noetherian. The main theorem of this paper generalizes
this to the situation of a hereditary torsion theory with
associated idempotent kernel functor σ. It is shown that if
a ring R with identity element has the descending chain
condition on σ-closed left ideals, then R has the ascending
chain condition on σ-closed left ideals.

The remainder of the paper generalizes some results of Faith
and Walker concerning artinian and quasi-Frobenius rings. In the
case that the localization functor J*fa is exact the following are
obtained: (1) a sufficient condition for the ring R to have the
descending chain condition on σ-closed left ideals and (2) characteri-
zations of the condition that every α -torsion-free injective left R-
module is codivisible (projective).

In this paper R always denotes ring with identity element, and
unless denoted to the contrary, all modules are members of the
category i?-mod of unital left i?-modules.

A subfunctor σ of the identity functor on ϋί-mod is called a
left exact radical (or idempotent kernel functor) if σ is left exact
and σ(M/σ(M)) = Q for every module M. Such a σ naturally determines
a torsion class J7~o = {M\σ(M) = M) and a torsion-free class &~9 =
{M\σ(M) = 0}. The pair (.j^, JK) forms a hereditary torsion theory
in the sense of [2], [10], [13], [14] and [15]. Then J ^ is closed
under submodules, homomorphic images, direct sums, and extensions
of one member of J7~σ by another; and ^~o is closed under submodules,
direct products, injective hulls, and extensions of one member of
J^Ό by another. Also associated with σ is the localization functor
£?o as defined in [2], [4], [13] or [14]. The module £fa(R) can be
made into ring by defining multiplication in a natural way; this ring
will be denoted by Qσ. A torsion theory is called perfect in [2],
[12] and [13] if £fa(M) ^Qσ<g>RM for every module M. For addi-
tional details on the concepts discussed in this paragraph, the reader
is referred to [2], [4], [9], [10], [13], [14], and their references.

A submodule N oi M is called σ-closed if M/Ne<β~σ. The lattice (

of σ-closed submodules has been studied in [3], [5], [9], [12], [14],
and [15]. Particular attention is usually given to chain conditions
on σ-closed modules. We continue this investigation and focus our
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attension on the descending chain condition for σ-closed submodules
of RR (i.e., the σ-closed left ideal).

A well-known theorem of Hopkins [6] and Levitzki [8] states
that any left artinian ring with identity element is left noetherian.
Manocha [9] has generalized this result by showing that if σ is
perfect and if R has the descending chain condition (dec) on σ-closed
left ideals, then R has the ascending chain condition (ace) on σ-closed
left ideals. The main result of the first section (Theorem 1.4)
removes the very restrictive hypothesis that σ is perfect from
Manocha's result. Proofs of the result of Hopkins and Levitzki all
seem to depend strongly on the nilpotence of the (Jacobson, or nil)
radical; Manocha's proof uses the Hopkins-Levitzki result on Qσ and
depends only on a lattice isomorphism between the σ-closed left ideals
of R and the left ideals of Qσ (a consequence of σ being perfect).
In our case where there is no restriction on σ, we can rely neither
on nilpotence nor on a lattice isomorphism; our method of proof
will depend on finding a substitute for actual nilpotence of the
(Jacobson) radical and applying Goldman's results on modules of σ-
finite length [5].

In the second section we generalize some results of Faith and
Walker [1] to obtain a sufficient condition for R to have dec on σ-
closed left ideals when &*o is exact. In particular, we show in
Theorem 2.3 that if £fo is exact and if each module in &~o is
contained in a direct sum of finitely generated modules, then R has
dec on σ-closed left ideals.

In the third section we apply the results of the first two sections
to answer the following question in the case where £fo is exact:
For which σ is every injective module in J^a protective? Our answer
to this question (given in Theorems 3.5 and 3.6) gives a generaliza-
tion of an important theorem of Faith and Walker [1, Theorem 5.3]
on quasi-Frobenius rings.

l DCC implies ACC* In this section we show that if R has
dec on σ-closed left ideals, then R also has ace on σ-closed left ideals.
In order to do this we first recall two definitions from [2] and [3].
A nonzero module M is σ-cocritical if Me^σ and every proper
homomorphie image of M is in ^"β. Nonzero submodules of σ-
cocritical modules are σ-cocritical modules. If M is a nonzero module
in J^o and if M has dec on σ-closed submodules, then M contains a
σ-cocritical submodule. A submodule N of a module M is called σ-
critical if M/N is σ-coeritical. Thus a submodule N of a module
M in ^ o is <7-critical if and only if N is maximal among the proper
σ-closed submodules of M. If there exist σ-cocritical modules, then
there exist cyclic σ-cocritical modules; so we may define
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V = Π{I\IQBf I ^-critical} .

Then V is σ-closed, and V is a proper two-sided ideal of R. If N
is a σ-cocritical module, then VN = 0. We continue to use F a s a
standard notation in this section.

Our first lemma is an analogue of the fact that, in a left artinian
ring, the Jacobson radical is nilpotent.

LEMMA 1.1. If R has dec on σ-closed left ideals, then there
exists a positive integer n such that Vn+q/Vn+q+1 e *ί/~a for all #2^0.

Proof. Suppose not. Then there exists a strictly increasing
sequence {nt} of positive integers such that each VnijVni+1 ί^Ό. Let
TnJVn*+1 = σ(V**/V**+1). Choose a left ideal Mt of R containing Tn.
which is maximal with respect to the property that Mt Π Vni = Γn<.
Via the natural map R/Tn.—> R/Mt we see that Vni/Tn.e^σ is
isomorphic to an essential submodule of R/Mt; hence Mt is a σ-closed
left ideal of R. For each positive integer j , let N3 = Πί=i M{. Since
intersections of σ-closed submodules are always σ-closed, then N, is
σ-closed. Now Nά 2 Tn. 2 Vn>'+1 2 V*>'+κ Furthermore Nj+1 g V*>'+i;
for if Vn<- QNiQ Mi9 then Vni/V"i+1 = TnJVn*+1 e^~o, which is con-
trary to the choice of the n/s. Therefore, for each positive integer
j , Nj Φ Nj+1, and we have an infinite, strictly descending chain {JVJ
of σ-closed left ideals of R. This contradicts our hypothesis that R
has dec on σ-closed left ideals.

In [5] a module M is said to have σ-finite length if there exists
a finite chain

( * ) 0 - Mn c Mn_, c Mn_2 c c MQ = M

of submodules of M such that Mi/Mi+1 is σ-cocritical for each i =
0, 1, 2, , n — 1; we call the chain (*) a σ-composition series of ϋί".
In [5] it is shown that (1) any two σ-composition series of a module
of σ-finite length have the same number of terms and that (2) a
module M has σ-finite length if and only if M has both ace and dec
on σ-closed submodules.

Our next lemma may be viewed as a specialization of [5,
Proposition 2.10] and [3, Proposition 2.1(3)].

LEMMA 1.2. Let M be a module for which 0 is an intersection
of finitely many σ-critical submodules of M. Then there exist σ-
cocritical submodules Nlf N2, , Nk of M such that Σ*=i ̂  ^s a n

essential direct submodule of M and Λf/(Σ*=i Nt) e J7~σ.

Proof. By hypothesis M is isomorphic to a submodule of a
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direct sum of finitely many σ-cocritical modules. Since this direct
sum clearly has σ-finite length, then by [5, Corollary 1.5 and
Proposition 1.2] M has both ace and dec on σ-closed submodules.
We now use induction to choose the desired modules iV*.

Since M has dec on σ-closed submodules, we can choose a σ-
cocritical submodule N± of M. Let O^aceJVΊ. There exists a σ-
critical submodule Cι such that s c ί d by hypothesis. Now 0 ^
NJiNiΠCJ = (CΊ + NJ/QeJK; so, since N, is σ-cocritical ^ n d = 0.
Suppose that Nί9 Nif , Nt and Cί9 Cif , Ct have been chosen such
that Ni is σ-cocritial, Ct is σ-critical, Nt £ Πi^-i C/> a n ( ί NiΓiCι = 0
for each i <̂  t. If Π$=i C3- Φ 0, then we can choose Nt+1 to be a σ-
cocritical submodule of Π5 =i^i ^ s ^n the discussion of case Nί9 we
can find a σ-critical submodule Cί+1 of M such that JVί+1 Π Ct+1 = 0.
Since Λί has dec on σ-closed submodules, there exists an integer k
such that Πi=i Cj — 0; so the inductive process stops after k steps.
It follows from the construction that Σ?=i -Ni is direct.

It remains to show that M/(Σ$=i Nt)6 *^Z- To do this it is
sufficient to show by induction that Λf/((Σi=i N<) + (Π<=i Q ) 6 ^Ό
for each t = 1, 2, •••,&. Since ikf/d is o -cocritical and (Nt + CO/d ^ 0,
then M/iCi + NJ e ά7~a', so the first case is established. We now
assume that the result is true for all integers < t. Since 0 Φ
(Nt + Ct)/Ct £ ((Πί=ί Ct) + Ct)/Ct and M/Ct is σ-cocritical, then

(**) ((fi Ct) + Ct)/(Nt + Ct) 6 j / ' σ .

Since Nt C O*=ϊ C^ for each α? e flί=i Ct we obtain (isrt + fl<=i Ci *) =
( P t + Q n t n S Q . ^ ^ t W + Q ίc). Thus by (**) we obtain
(Γ\i=l Ct)/(Nt + Πί=i Ci) e - ^ Since ^ ^ is closed under homomorphic
images, we have ((Σί=ί W + (Πί=ϊ Q)/((ΣU iVJ + (Π
Thus from the induction hypothesis and the exact sequence

Σ
ί=i

M_ M

+ ή c4 Σ Nt + n c,

we obtain Jlf/((Σi=i ^ ) + (ΓIUi Q ) e J/, as desired.
As an immediate consequence of Lemma 1.2, we have the follow-

ing analogue for σ of the structure theorem for semisimple rings
with dec.

COROLLARY 1.3. If R has dec on σ-closed left ideals, then there
exist σ-cocritical submodules AJV,AJV, -,AJV such that Σ?=i
is a direct essential submodule of R/V and (R/V)/(BΪ==1(AJV)ej
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We can now obtain the main result of this section.

THEOREM 1.4. Let R have dec on σ-closed left ideals. If a
module B has dec on σ-closed submodules, then B also has ace on
σ-closed submodules. In particular, R has ace on σ-closed left
ideals.

Proof. Let B be a module with dec on σ-closed submodules.
Let Io = σ(B). For j ^ 1, define Iά by Jy/Jy_! is a minimal, nonzero,
σ-closed submolde of B/Ij^; such an I3 exists whenever 0 Φ JS/Zy-i
(as JS/Jy.iG.^ and has dec on σ-closed submodules). Moreover,
I ill3-ι is σ-cocritical by the minimality. It is sufficient to show that
Is = B for some index s; for then B/Io has ace on σ-closed submodules
by [5, Proposition 1.2], and hence B has ace on σ-closed submodules
(as the lattice of σ-closed submodules of B/IQ is clearly isomorphic
to the lattice of σ-closed submodules of B).

Assume for contradiction that I3 Φ B for each j e Z+, which Z+

denotes the set of positive integers. Set m0 = 0, and let mt+1 = max Γt,
where Γt = {j e Z+ \ Vx £ Im% for some x e Iά — Iy_J. Note that
mt + 16 Γt as V(Imt+JIm) = 0. Inductively, assume that mt exists;
we show via the next three paragraphs that mt+ί exists.

Suppose not. Then for an infinite set Ω of indices j > mt + 1,
we may choose Xjβlj — I5_γ such that Vx3 S Imt By Corollary 1.3
RJV contains an essential submodule of the form ©£=i(AJF), where
each AJV is σ-cocritical and (R/V)/(&Li(Ai/V)eS\. If for each
i = 1, 2, , k we have A&j £ Imt, then (Σ*=i ^)χs C Imt'>

 s o ° φ

(Rxj + Imt)/Imt e J7~σ- But Bjlmt e J ^ by construction, which yields
a contradiction. Thus for at least one of the AJV, Atxa §£•£**•

Next assume that, for any such AJV with AtXj ξ£ Imt, we have
{Aixό + Im) n !,_! 5 I« f. Since {Aixj + Imt)/Imt £ B/Imt e jrσ and AJV
is σ-cocritical, we see that the natural epimorphism AJV-+
(AiXj + Imt)/Imt is an isomorphism. Thus (Atxβ + Imt)/Imt is σ-cocritical,
and we have

(AiXj + IUt)/(Aixs + Im) Π /,-_!

by assumption. But we also have ( A ^ + /mt)/(ilta?y + 7mt) Π /,-_! =
(A^i + Ij-J/Ij^ Q #//;_! 6 ̂ . We conclude that i ^ £ 1^ for any
A,/F with AfXj ξj£ Imt. Now for each of the remaining AJV, we
have AtXj C /Wt £ ly^. Hence (Σ*=i AJ)XJ C Ii_i, which leads to a
contradiction as i?/Σ<=i ^ t e ^ a n ( ^ ^//y-i e ^ .

We have now established that, for each j e Ω, there exists a
left ideal Ay of R and an »y e I5 — iy^ such that Ayθ?y g /m.,
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+ Imt)/Imt is σ-cocritical, and {Aόx§ + Im) Π 1;_! = Imt. One

easily checks t h a t Σiex?[(Aya?y + i» 4)/I»J S 5// m ( is direct. Let 42 =

{ii, Λ, •••}- Set M1 = Bf and for w > l choose Mu maximal wi th

respect to M^Σΐ=u{Ahxh +Imt), MuQM^l9 and Mun(Σ?-ί^y, +
ITOί) = /Wί. Then then set {Λftt}«βl forms a strictly descending chain
of σ-closed submodules of B, which contradicts our assumption that
B has dec on σ-closed submodules. Hence mt+1 exists.

Since Imt+1/Imt is σ-cocritical, V(Imt+JImt) = 0; so for each t > 0,
mt+ι ^ mt + 1 > mt. Hence the sequence {mί}Γ=i is strictly increasing
and infinite. By Lemma 1.1 there exists a positive integer n such
that 7 + g/7 + ? + 1 6 ^ ; for all g ^ 0. Let xelm%+1 - I w . . Then
Fee §= /»„_/, thus we have vxx $ Imn_t for some vx e F. But Vvxx g
^ . 2 - So we inductively obtain v2, v3, , vn_γ e V such that
Vvn.t Vgt;̂  g£ ίm%_, for each i = 1, 2, , n — 1. In particular,
Vv»-iV»_2 ^ ^ ^ g /mo = Io; hence Vnx g /0. However, since sc e
/w%+1, we have that Vmn+1x Q Io as IJIW-1 is σ-cocritical for all w ^ 1.
It follows that there exists an integer d ^ n such that P*# g /0,
but F d + 1 ^ £ / 0 .

Now (JRB + /0//0) is the homomorphic image of R/ Vd+1 via r +
F<m Λ rx + Io. We note that 0 Φ a(Vd/Vd+1) £ B/Ioe ^ . However,
since d ^ n, a(Vd/Vd+1)e^~σ. This contradicts the fact that ^ Π
^ ^ = 0. Hence Is — B for some s as desired.

2* Finitely generated injective modules in F0. In this section
we study the relationship of finiteness conditions on injective hulls
of cyclic modules and the dec on tf-closed left ideals, where £fa is
exact. We obtain generalizations of several results of Faith and
Walker [1].

A module M is called ^-finitely generated if M has a finitely
generated submodule N such that M/Ne J^σ. Any finitely generated
module is σ-finitely generated.

We use E{M) to denote the injective hull of a module M, and
we let φM be the natural homomorphism from M into Sfa{M) (see
[2], [4], [13] or [14]). If a is perfect, then the correspondence
K —> £fa(K) gives a lattice isomorphism from the lattice of σ-closed
submodules K of M to the lattice of Qσ-submodules of submodules
of J*fσ(M); the inverse isomorphism is given by X-+φϊί(X) for each
Qσ-submodule X of £fσ(M) — see [2], [4], [13] or [14]. If £fσ is
exact and R has ace on σ-closed left ideals, then Qσ must be a left
noetherian ring by this lattice isomorphism (with R — M), and thus
Qσ will contain a maximal two-sided nilpotent ideal N.

THEOREM 2.1. Let =9fa he exact, and let R have ace on σ-closed
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left ideals. Let N be the maximal nilpotent ideal of Qσ. If
E(Rlφ^\N)) is σ-finitely generated, then R has dec on σ-closed left
ideals.

Proof. Let N' = ΦΈ\N). Then N' is a nilpotent, two-sided ideal
of R; since σ is perfect, N' is also σ-closed and N = J*fσ(N') =
Qσ ®iί N. Let J be the injective hull of Qo/N as a Qσ-module. Since
σ is perfect, we have

R/N' ^ Qσ ®R (R/N') ~ QJQσ ®B N' = QJN g j c E(R/N') .

Since E(RjNr) is σ-finitely generated by hypothesis, then E{RjNf)
has ace on σ-closed submodules by [9, Proposition 3.20]. Since σ is
perfect, then E(R/N')/Je^~σ by [2, Proposition 17.1], hence J also
has ace on σ-closed ίJ-submodules. Since every Qσ-submodule of J
is σ-closed as an ϋJrsubmodule of J (as a is perfect) then J has ace
on ζ>σ-submodules. Consequently / is finitely generated as a Q-module.
By [1, Theorem 2.2] Qσ is a left artinian ring. Thus R has dec on
σ-closed left ideals via the lattice isomorphism between the lattice
of σ-closed left ideals of R and the lattice of left ideals of Qo.

COROLLARY 2.2. Let J?fσ be exact, and let R have ace on σ-closed
left ideals. If injective hulls of cyclic modules in ^ are finitely
generated, then R has dec on σ-closed left ideals.

It is now easy to obtain the main result of this section.

THEOREM 2.3. Let ^fσ be exact. If each module in ^ o is con-
tained in a direct sum of finitely generated modules, then R has
dec on σ-closed left ideals.

Proof. By [15, Theorem 1.2] R has ace on σ-closed left ideals.
Let E be the injective hull of a cyclic module in J^Q. By hypothesis,
E is contained in a direct sum of finitely generated modules; so E
is finitely generated by [1, Proposition 2.4]. The result now follows
from Corollary 2.3.

3* A generalization of quasi-Frobenius rings* A ring is called
quasi-Frobenius (QF) if it is both left and right artinian and left
self-injective. A well-known theorem of Faith and Walker [1] states
that a ring is QF if and only if every injective module is projective.
It is also known [11, page 37] that R is QF if and only if R is left
artinian (or noetherian) and R is a cogenerator of i?-mod. In this
section we generalize these results.
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We call a module W an ,^-cogenerator if every member of
can be embedded in a product of copies of W. Following [10], [12],
and their references, we say that a module C is σ-codivisible if and
only if Ext1* (C, F) = 0 for every F e ^ . By [12, Theorem 8] a
module C is σ-codivisible if and only if Cfσ(R)C is a protective

PROPOSITION 3.1. If every injectίve module in J^ is σ-codivisi-
ble (projective), then R has ace on σ-closed left ideals and Rjσ(R)
(R) is an J^σ-cogenerator.

Proof. Let Me ̂ a be injective. By assumption M is projective
as an Rjσ{R)-m.oάvλe (jβ-module). Thus M is a direct summand of a
direct sum of countably generated modules. By Kaplansky's theorem
[7] M is a direct sum of countably generated modules. Hence R
has ace on σ-closed left ideals by [15, Theorem 1.2].

Now let Nej^σ. Then E(N) is σ-codivisible (projective) by
hypothesis, which implies that N is contained in a direct sum of
copies of R/σ(R) (R). So R/σ(R) (R) is an ^-cogenerator.

PROPOSITION 3.2. If R has dec on σ-closed left ideals and R/σ(R)
is an S^-cogenerator, then every injective module in ^ is codivisible.

Proof. By Theorem 1.4 R has ace on σ-closed left ideals. Let
, ^ be injective. By [15, Theorem 1.2] ikf is a direct sum of

indecomposible modules. Thus we may assume that M is indecom-
posible (as a direct sum of σ-codivisible modules is σ-codivisible).
Since ikfeJ^J and R has dec on σ-closed left ideals, M contains a σ-
cocritical submodule N. By assumption M = E{N) is embedded in
a direct product U of copies of R/σ(R). Choose a projection map
p: U->R/a(R) such that p(N) Φ 0. We see that the restriction of
p to N is one-to-one as N is σ-cocritical and R/σ(R) e ̂ o . Since N
is essential in Mt p must also be one-to-one on M. Consequently,
M is isomorphic to a direct summand p(M) of R/σ(R); this implies
M is σ-codivisible since R/σ(R) is.

Let Wej^σbe an injective module that cogenerates the torsion-
free class J^a. Using a proof similar to the one just given, one
easily shows that if R has dec on σ-closed left ideals and W is σ-
codivisible (projective), then every injective module in ^ a is σ-
codivisible (projective).

COROLLARY 3.3. R has dec on σ-closed left ideals if and only if
every injective module in ^ a is a direct sum of injective hulls of
σ-cocritical modules.
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Proof. The proof of the" "only if" part is contained in the proof
of Proposition 3.2.

Suppose that Iγ 2 I2 2 is a descending chain of σ-closed left
ideals of R, and let 1= Π?=iA Since R/Ie^l is cyclic, it follows
from the hypothesis that E(R/I) contains a finite, essential, direct
sum M of 6r-cocritical submodules. By [5, Corollary 1.5] M Π {R/I)
has σ-finite length.

We claim that

(***) M n {RID n {IJD 2 M n {RID n {IJD 2

is a descending chain of ^-closed submodules of M f\(RII). To see
this, let fj be the natural composition

{RIDIM n dill) — > {R/DKIJID — > Rlh •

Let gs be the restriction of /,- to (Mf) (i2//))/(Λf Π (/,-//)). Then ker ^ =
kerΛ Π [M/(ln (/,-//))] = [(Is/I)l(Mn di/I))] Π [ikΓ/(Mn dj/D)] = 0; so
ŷ is a monomorphism into JB/^ e ^~σ. Hence (M Π {R/I))/{M Π (/y//)) 6

^ ^ for each j .
By [5, Proposition 1.2] the chain (***) must terminate. Since

Γϊn=i {IJD = 0, then there exists a positive integer k such that
M n {RID n (IJ/) = 0. Since M is essential in E(R/I), then (Λ/J) n
(IJI) = o, and hence Ik = J. Therefore, the chain Ix 2 I2 2
terminates.

As usual, we call the torsion class S~a a TTF class if ^~a is
closed under direct products. If ^7~a is a TTF class, then there exists
a (necessarily unique and idempotent) ideal T in the filter F{^~σ) =
{I\RIIe ,5Q. If iV is a σ-cocritical module in ^a, then ΓiV is a simple
module. Indeed, 2W^ 0 since Ne^a\ and if K is a nonzero sub-
module of TN, we must have TN/K = T{TNIK) = 0 as 2W is ί7-
cocritical. Thus in the TTF case we have the following result.

COROLLARY 3.4. Let S~a he a TTF class. Then R has dec on
σ-closed left ideals if and only if every injective module in ^r

a is
a direct sum of injective envelopes of simple modules.

In case £fa is exact, we can strengthen Propositions 3.1 and 3.2
considerably.

THEOREM 3.5. If S^a is exact, then the following statements are
equivalent:

(1) R has dec on σ-closed left ideals, and R/σ(R) is an
cogenerator.

(2) R has ace on σ-closed left ideals, and R/σ{R) is an
cogenerator.
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(3) Every injectίve module in J^σ is σ-codivisible.
(4) R has dec on σ-closed left ideals, and any injective

cogenerator in JFΌ is σ-codivisible.
(5) R has ace on σ-closed left ideals, and any injective ,^r

σ-
cogenerator in ^ a is σ-codivisible.
Furthermore, any of these five equivalent statements imply that Qσ

is a QF ring.

REMARK. In analogy with QF rings, one might expect to find
that Rjσ{R) is σ-injective (that is, R/σ(R) = Qo) and hence that R/σ(R)
is QF when the hypotheses of Theorem 3.5 are satisfied. However,
it is trivial to give examples where this is not the case. In parti-
cular, let R be then 2 x 2 upper triangular matrix ring over a field
F, and let J7~σ be the class of all modules annihilated by the top
row of R; then R and σ satisfy the hypotheses of Theorem 3.5,
R = R/σ(R) is not QF, and Qσ is the full 2 x 2 matrix ring over F.

Proof of 3.5. That (1) implies (3) is Proposition 3.2. That (3)
implies (2) follows by Proposition 3.1.

If (2) holds, then σ is perfect, and hence Qσ is left noetherian
via (2). We claim that Qa is a cogenerator in the category ζ^-mod
of unital left (^-modules. Since any left Qσ-module M is in ^ a when
viewed as an iu-module, then M is embedded in a direct product of
copies of Rjσ(R). Thus there is an 2?/σ(i?)-monomorphism a: M—> N,
where N is a direct product of copies of Qσ. Let qeQσ, let meM,
and consider (qm)a — q((m)a). Since QJ(R/σ(R)) e J^, there is a left
ideal K e F ( J Q = {7| R/Ie ^~a) such that Kq £ R/σ(R). Now for any
k e K, we have k((qm)a — q((m)a)) — k{qm)a — kq((m)a) = (kqm)a —
(kqm)a = 0. Hence a is a Qσ-monomorphism; that is, Qσ is a
cogenerator for Qσ-mod. Consequently, Qσ is a QF ring [11, page
373]; so Qσ is left artinian. Since σ is perfect, it follows that R has
dec on σ-closed left ideals, and (1) follows.

(3) ==> (4). In view of (3), any injective ^^-cogenerator is
certainly codivisible. Moreover, R has dec on σ-closed left ideals
since we have shown that (3) implies (1).

That (4) implies (5) follows from Theorem 1.4.
(5)=>(2). Let WeJ^bean injective <i^-cogenerator. Since W

is σ-codivisible by (5), then W is a direct summand of a direct sum
of copies of Rjσ{R)\ hence R/σ(R) must also be an .^-cogenerator.

THEOREM 3.6. Assume that (i) R has dec on σ-closed left ideals,
(ii) R is an J^-cogenerator, and (iii) if M contains an essential σ-
cocritical submodule N which is isomorphic to a submodule of a
direct product of copies of σ(R), then Mis isomorphic to a submodule
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of a projective module. Then every injective module in J^Ό is
projective. The converse is true if £fa is exact.

Proof. L e t i l ί e ^ be an injective module. As in the proof of
Proposition 3.2, we may assume that M = E(N), where N is σ-
cocritical. By (ii) M is embedded in a direct product U of copies of R.
If there is no projection map p: U—>R such that p(N) §£ σ(R), then
N is embedded in a direct product of copies of σ(R). Thus by (iii) M
is isomorphic to a submodule of a projective module; this implies
that M is projective, as M is given to be injective. Now assume
that there is a projection map p:U-^R such that p(N)ξ£σ(R).
Then the restriction of p to N is one-to-one, as N is σ-cocritical.
Since N is essential in M, we also have that p is one-to-one on M.
Consequently M is projective as it is isomorphic to a direct summand
of R.

For the converse assume that Sfσ is exact and that every injec-
tive module in ^ σ is projective. By Proposition 3.1, R is an «^-
cogenerator. By assumption every module in &~9 is contained in a
projective module, namely its injective hull. Thus (iii) holds trivial-
ly, and (i) holds by Theorem 2.4.

REMARKS. We note that conditions (i), (ii), and (iii) are indepen-
dent; that is, there exist σ such that ^σ is exact and any two of
(i), (ii) or (iii) hold while the remaining condition fails. Moreover,
each of the following conditions is sufficient to imply condition (iii)
of Proposition 3.6.

(1) For each σ-cocritical module N, Homβ (N, σ(R)) = 0.
(2) ^Z is a TTF class.
(3) Z(R) Π σ{R) = 0, where Z(R) denotes the singular sub-

module of R.
(4) σ(R) contains no nilpotent ideals of R.
As a question related to the ideas in this paper, one might ask

whether every injective module in ^ a being σ-codivisible is equiva-
lent to every σ-codivisible module in ̂ a being injective. We easily
resolve this question in our closing result.

PROPOSITION 3.7. The following statements are equivalent.
(1) Every σ-codivίsible module in J^a is injective.
(2) R/σ(R) is a QF ring.
(3) Every injective module in ^r

a is σ-codίvisible9 and J^a is
closed under homomorphic images.

Proof. (1) => (2). Let X be a projective jR/<7(jR)-module. As an
J?-module, J e ^ , and X is α-codivisible by [12, Theorem 8], By
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(1) X is injective as an iϋ-module, and hence X is also injective as
an i?/(7(i?)-module. That every projective R/σ(R)-modu.le is injective
is well-known to imply that R/σ(R) is QF.

(2)^»(1). LetXe ^ a be σ-codi visible. Then X is projective as
an i2/σ(jβ)-module by [12, Theorem 8]. Hence X is an injective
i?/σ(i2)-module since R/σ(R) is QF by assumption. Since J e ^ ,
then X is also injective as an J?-module by [9, Proposition 4.8].

(2)=>(3). If Me^a is injective, then M is also injective as an
R/σ(R)-moάule. Hence Mis a projective R/σ(R)-moάxύe by (2). This
implies M is σ-codivisible by [12, Theorem 8].

If Y is an i?-homomorphie image of Mej^\,, then Y is also an
R/σ(R)-moά\xle as σ(R)M = 0. However, R/σ(R) is a cogenerator for
R/σ(R)-moά by (2), which implies that YQΠR/σ(R). Hence Γe

(3) => (2). Let M be injective as an R/σ(R)-moάule. Since
is closed under homomorphic images, every jβ/σ(i2)-module when
viewed as an ϋ?-module is in ^ a . Thus by [9, Proposition 4.8] M
is injective as an iϋ-module. By assumption M is σ-codi visible; and
therefore, as an i2/<7(7i!)-rnodule M is projective [12, Theorem 8].
Thus Rjσ{R) is QF as every injective R/σ(R)-moάu\e is projective.
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