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HYPERSPACES OF COMPACT CONVEX SETS

SAM B. NADLER, JR., J. QUINN, AND NICK M. STAVRAKAS

The purpose of this paper is to develop in detail certain
aspects of the space of nonempty compact convex subsets of
a subset X (denoted cc(X)) of a metric locally convex T V.S.
It is shown that if X is compact and dim (X)^2then cc(X)
is homeomorphic with the Hubert cube (denoted o,c{X)~IJ).
It is shown that if w^2, then cc(Rn) is homeomorphic to 1^
with a point removed. More specialized results are that if
XaR2 is such that c c C X ) ^ then X is a two cell; and that
if XczRz is such that ccCX)^/^ and X is not contained in a
hyperplane then X must contain a three cell.

For the most part we will be restricting ourselves to
compact spaces X although in the last section of the paper,
§ 7, we consider some fundamental noncompact spaces.

We will be using the following definitions and notation. For
each n = 1,2, , En will denote Euclidean w-space, Sn~ι =
{xeRn: \\x\\ = 1}, Bn = {xeRn: \\x\\ ^ 1}, a n d °Bn = {xeRn: \\x\\<l}.

A continuum is a nonempty, compact, connected metric space. An
n-cell is a continuum homeomorphic to Bn. The symbol 1^ denotes
the Hilbert cube, i.e., /«, = ΠΓ=i[-l/2*, 1/2*]. By II we will denote
the pseudo interior of the Hilbert cube, II = Π£=i( —1/2*, 1/2*). We
let I+ denote the set of natural numbers. We use cl and co, re-
spectively, to denote closure and closed convex hull. If Y is a
subset of a space Z, then int[F] means the union of all open sub-
sets of Z which are contained in Y. The notation X ~ Y will
mean that the space X is homeomorphic to the space Y.

All spaces are considered in this paper to be subsets of a real
topological vector space. Since we are restricting our attention in
this paper to separable metric spaces this is no restriction topolog-
ically or geometrically (cf. Vol. I of [14, p. 242]). If X is a space,
by cc(X) we will mean the hyperspace of all nonempty compact
convex subsets of X (with the Hausdorff metric). We will call
cc{X) the cc-hy'perspace of X.

If x and y are points in a real topological vector space V,
then xy or [x, y] denotes the convex segment or point (if x — y)
determined by x and y, i.e., xy — {tx + (1 — t)y: 0 ^ t ^ 1} = [x, y].
Let X(zV. If xeX, we let S(x) denote {yeX: xyczX}9 and we let
Ker(X) denote Γ\χeχS(x); the set Ker(X) is called the kernel of X.
We say X is star shaped if and only if Ker(X) Φ 0 . For A c Γ , a
point p in A is called an extreme point of A if and only if no
convex segment lying in A has p in its (relative) interior. The
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symbol e#£[A] denotes the set of all extreme points of A. If X is
a subset of Rn, for some n, a point peX is said to be a point of
local nonconvexity of X if every neighborhood of p in X fails to
be convex. We will denote the set of all points of local nonconvex-
ity of a set X by LN(X). For spaces X and Y with I c Y the
boundary of X, denoted Fr(X), is defined by Fr(X)=cl(X)n
cl(F — X). A closed subset A of a metric space X is a Z-set
in X if for any nonnull and homotopically trivial open set U a X
it is true that U — A is nonnull and homotopically trivial (see
[1]).

The paper is organized as follows: In § 2 we give some general
results which are closely related to early work of Klee. One of the
results of this section establishes that if K is a compact convex
subset of a metrizable locally convex topological vector space and
dim[i£] ;> 2, then cc(K) = 1^. This sets the stage for the remainder
of the paper, as one of our major concerns becomes obtaining ans-
wers to the following question:

(1.1) For what continua K is cc(ϋΓ) = IJ! In § 3, we show
that if KczR2 is as in (1.1), then K is a 2-cell. Thus, for R\ a
complete answer to (1.1) becomes a matter of determining which
2-cells K in R2 have their cc-hy per space homeomorphic to 1^. Re-
sults about this are in § 5, where we show that there is a 2-cell in
R2 whose cc-hyperspace is not homeomorphic to 1^ and we obtain
some geometric results which give sufficient conditions on a continu-
um X in order that cc(X) = 1^. Many of the results in § 5 are for
continua more general than 2-cells in the plane.

Though KaR2 as in (1.1) must be a 2-cell, KczR" as in (1.1)
need not be a 2-cell or 3-cell (see (4.7)). However, in § 4, we show
that if KczR3 is as in (1.1) and K is not contained in a 2-dim hy-
perplane in iϋ3, then K must contain a 3-cell (see (4.1)). Some
lemmas about arcs of convex arcs in R2 and arcs of convex 2-cells
in J?3, which we use to prove (4.1), seem to be of interest in them-
selves.

In § 6 we give some examples and state some problems. Many
of these help to delineate the status of the problem of which 2-cells
in R2 have their cc-hyperspace homeomorphic to /«,. The technique
used in (6.4) is particularly noteworthy since using it in combina-
tion with suitable results for 2-cells with polygonal boundary can,
perhaps, lead to a satisfactory solution of (1.1).

The final section, § 7, begins to touch on the problems connected
with determining the topological type of the cc-hyperspace of some
noncompact subsets of topological vector spaces. The main result
of this section is that, for n ^ 2, cc(iϋ%) = /«, — {p} for p e 1^.
Several open questions are also posed in this section.
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2 Some basic results*

(2.1) LEMMA. Let K be a compact convex subset of a metriz-
able locally convex real topologίcal vector space L, dimfiΓ] ^ 2. Then
there exists a countable family {ζ*: i = 1, 2, •} of continuous linear
functionals ζ, such that given A e cc(ϋΓ) and xe[K — A], ί/̂ erβ ex-
ists a j e I+ such that ζ3 (x) & ζj(A).

Proof. The compact metric space K in the relative topology
has a countable base of convex sets Q = {FJΓ=i Define a family
F byF = {(Vlf Vt, •••, Vn)\nel+, V, e Q and cSdJίi1 ^ )Πcl [7J = 0}.
Given any (1^, V2, , VJ e F, by a (well known) separation theorem
there exists a continuous linear functional strictly separating
cόdJΓ^i1 Vt) and cl[VJ. For each member of F, select one such
functional thus obtaining a countable family {ζjΓ=i of functionals.
The proof is completed by noting that for x e K and A e cc(K) with
x £ A there exists a (VΊ, F2, , Vn) e F with A c cδίUtVi1 F<) and

(2.2) THEOREM. Lβί K be a compact convex subset of a metriz-
able locally convex real topological vector space L, dim[K] ^ 2. Then
cc(JSΓ) = Joo.

Proof. For each Aecc(iί), let ζt(A) = [aifbi\ where the ζt are
as in (2.1) such that, without loss of generality, sup{|ζ€(α?)|: x eK}<^l
for each i. Let F: cc(K) —> 1^ be defined by

F(A) = (aJ2, bJ2\ aJ2\ bJ2\ , α J 2 2 ^ , 6n/2» , - •) .

Since {ζ2}Γ=i is a separating family, JP is one-to-one. Furthermore,
for each j , the co-ordinate functions F2j_1 = a^5'1 and F2j = 6j /22i

are continuous since ζ, is continuous. Thus, F is continuous (we
are mapping into IJ). Let A1, A2 e CC(JBΓ), λe [0, 1], and jel+; then,
using the linearity of ζ i ?

1 + (1 - λ)A2) = λζ^A1) + (1 - λ)ζ,(A2)

- λ[αj, 6J] + (1 - λ)[α2-, δj]

= [λαj + (1 - λ)α), λ6} + (1 - λ)6J] ,

where [αj, 6J] = ζ, (A&) for A? = 1 and 2. Thus, ^(λA1 + (1 - λ)A2) =
XFtiA1) + (1 - λ)F,(A2) where ί = 1, 2, , . This says that the set
F(cc(K)) is convex. Now, since dim[iΓ] ^ 2 K contains a convex
2-cell, say D. Thus, for each n, K contains a regular w-sided
polygon Pn with sides sίf s2, •• ,sΛ which lies in the "interior" of
the 2-cell D. For each ί, let At be a convex arc which lies in the
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exterior of Pn along the perpendicular bisector of Si in D. For
each w-tuple (tl9 t2, , tn) in ΠΓ=i At let G((tlf t2, , tn)) = coίfo,
£2, ••*, *»})• It is clear that the mapping G is a homeomorphism of
the w-cell ΠΓ=i -A< into cc(JSΓ). Thus, cc(J5Γ) contains an w-cell for
every n and, tnerefore, is infinite dimensional. Thus, F(ce(K)) is a
compact and infinite dimensional convex subset of l2. Hence, by
Keller's theorem [10], F(cc(K)) ^ /«,. Therefore, cc(iΓ) = /„,.

We point out that the proof of Theorem 2.2 is a slight modi-
fication of a proof used by Klee [12] to generalize Keller's theorem.
Also Klee, in a conversation with the authors, has pointed out a
different proof of Theorem 2.2 in the case when L is a normed
linear space. This consists of using a theorem in [17] to embed
the compact convex subsets of a normed linear space into a normed
linear space, noting that for a fixed KaL,cc(K) is embedded
convexly, and then using Klee's generalization [12] of Keller's
theorem.

Let L be as in (2.2) and let F ccc(L). We say that the family
F is convex if and only if for all A,BeF and λ, 0 ^ X <Ξ 1,
(XA + (1 — X)B)eF (where XA means {λ α: αe A}).

(2.3) THEOREM. Let L be as in (2.2) and let Fczcc(L) he such
that F is compact, convex, and infinite dimensional. Then, F = 1^.

Proof. By (2.2) cc(L) and hence F can be affinely embedded
into ϊ2. But then F is a compact, convex, infinite dimensional subset
of l2 and Keller's theorem applies to give F = 1^ (see [10]).

As a consequence of (2.3) and the part of the proof of (2.2)
showing that cc(K) is infinite dimensional, we have the following
two corollaries.

(2.4) COROLLARY. Let K and L be as in (2.2). Let Q be a
given compact subset of K such that cδ[Q] Φ K. Then, {A 6 cc(K):
Q(zA} = I^

(2.5) COROLLARY. Let K and L be as in (2.2). Let Ko be a
given nonempty compact convex subset of K. Then {Aecc(iίΓ):
Af]KQΦ 0} ^ JTO.

It follows, in particular, from (2.3) or (2.4) that the space of
compact convex subsets of the unit disc in R2 which contain the
origin is homeomorphic to 1^.

3* A topological converse to (2*2) for the plane* In the
plane, (2.2) says that the cc-hyperspace of a convex 2-cell is homeo-
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morphic to the Hubert cube. The question arises as to which sub-
sets of the plane have their cc-hyperspaces homeomorphic to 7 .̂ A
complete answer to this problem will involve both topological and
geometric considerations. The topological considerations are the
subject of this section. Our result is

(3.1) THEOREM. If X is a continuum in R2 such that
cc(X) = Zoo, then X is a two cell.

To prove (3.1) we will make use of the following lemmas. The
first three lemmas are stated in more generality than explicitly
needed for proving (3.1).

(3.2) LEMMA. Let E be a Banach space which admits a topo-
logically equivalent norm that is strictly convex. Then there is a
continuous selection from cc(E) to E. Thus, for any separable
Banach space, there is such a selection.

Proof. Let || || denote a strictly convex norm on E and let
peE. Define η: cc(E) —> E by letting η(A) denote the unique point
aoeA such that inf{||p — α|| αe A} — \\p — aQ\\ (see [3, p. 19]). It is
easy to see that rj is continuous and is a selection. The second
part of (3.2) follows from the fact that any separable Banach space
admits an equivalent strictly convex norm [3, p. 18].

(3.3) LEMMA. Let X be a dendrίte. Then dim[cc(X)] ^ 2.

Proof. Let X be a dendrite (in some real topological vector
space) and note that any member of cc(X) is either a (convex) arc
or a singleton. Hence, the barycenter map g: cc(X) —> X is contin-
uous where g is defined by: if a and b are the endpoints of a con-
vex arc A in X or if a = b, in which case let A = {a}, then
g(A) — (a + 6)/2. Let pe X. Since p belongs to arbitrarily small
open subsets of X with finite boundaries [21, p. 99], there are at
most countably many convex arcs A* = [aiy δt], ΐ = 1, 2, , maximal
with respect to the property that g(At) = p. For each p let
Di = {[su tilaAi'. g([sif tt]) = p}. Since the map 8t —> [sif fcj is a home-
omorphism of [ai9 p] onto Di9 Di ̂  [ait p] (note: Dt could be just {p})<
Also, it is clear that g~\p) = U?°=i A Hence, by III 2 of [9],
dim[g~\p)] <: 1. Therefore, from the statement on p. 92 of [9]
which is verified in order to prove VI 7 of [9], dim[cc(X)] ^ 1 +
dim[X] - 2.

(3.4) LEMMA. Let X be a continuum lying in a Banach space
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E. If cc(X) = 1^, then X is an absolute retract and dim[X] ^ 2.

Proof. Let F denote the closed linear span of X. Since X is
separable, F is a separable subspace of E. Hence, by (3.2), we
have a continuous selection η\ cc(F) —> ί7. Since the restriction of
?7 to cc(X) is a retraction of cc(X) onto X, the fact that X is an
AR now follows from the well known fact that [14, Vol. II, Th. 7,
p. 341] a retract of /«, is an AR. For the remainder of the proof,
suppose dim[X] <J 1. If dim[X] = 0, in which case X consists of
only one point, then cc(X) = X. So, for the purpose of proof, as-
sume dim[X] = 1. Then X is a one-dimensional AR and, hence, a
dendrite (cf. Brosuk's "Theory of Retracts" p. 138). By (3.3) this
implies dim[cc(X)] ^ 2 which contradicts the assumption that
cc(X) = 1^.

(3.5) Conjecture. If A is a dendrite, then cc(A) is embeddable
in the plane.

(3.6) LEMMA. The space of singletons and convex arcs in
Rn(n^2) denoted AS(Rn), is homeomorphic to J2nx([0, oo)χP»-γ
0xPn~x). In the special case that n = 2, AS(R2) = R\

Proof. We note that the space of lines through the origin in
Rn is homeomorphic to protective n — 1 space P*"1. For each con-
vex arc or point ab in Rn define F{ab) in Rnx([0, oo)χpn~1/θxpn'ί)
by F{ab) = (α + 6)/2, [(||6 - α||, s)] where s is the point of pn~ι de-
termined by the line parallel to ab if ab is nondegenerate and s is
the point of pn~x determined by the first axis if ab is a singleton.
In this proof we have used |>] to denote "equivalence class." It is
a straightforward matter to check that F is a homeomorphism. If
n = 2,then#2x([0, oo)χp'/0χpί)^R2χ([09 oo)xS

1/0xS1) = -B2xi22--β4.
The lemma is proved.

(3.7) LEMMA. If X is a continuum in R2 such that cc(X) = 1^
then int[X] Φ 0 and X = cl(int[X]).

Proof. Suppose there is a point p in X — cl(int(X)). Clearly,
we may then choose a neighborhood N in cc(X) about {p} such that
N consists only of singletons and convex arcs. Hence, N is embedd-
able in R* (by (3.6)) and, therefore, finite dimensional. This con-
tradicts the assumption that cc(X) ~ 1^.

(3.8) LEMMA. If X is a continuum in R2 such that cc(X) = /oo,
then int[X] is connected.
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Proof. Let p and q be distinct points of int[X]. We show
that there is an arc in int[X] from p to q. Let A = {A e cc(X) | A
is a singleton or a convex arc}. By virtue of (3.6), A is finite
dimensional. Therefore, since cc(X) ~ /TO and A is compact, cc(X) — A
is arcwise connected (that no finite dimensional continuum can
separate IJ) (arc separate is equivalent to separate for locally con-
nected continua) follows from the fact that, for each n9 In is a
Cantor manifold (see Corollary 2 on p. 48 of [9]) and the set of all
points of the form U»=i ί i * s dense in /„ (here I ί = Π?=i£x(l/2,
1/2, ...))• Let K,L 6 cc(X) be 2-cells with [K U L]czint[X] and
β(K) = p and /3(L) = # (where /9: cc(X) —> X is the barycenter map).
Now, let a be an arc in cc(X) — A with endpoints K and L. Since
<xc[cc(X) — A] each point of a is a 2-cell and thus, the restriction
of β to a is continuous. Thus, β(a) is a locally connected continu-
um and hence β(a) is arcwise connected. Since XaR2 and each
member M of a is a 2-cell, it follows that β(M) eint(Λf) czint[X].
Therefore, we now have that β(a) is arcwise connected and p, q e
/3(α:) c int[X]. The lemma follows.

Proof of Theorem 3.1. By (3.4), X is an absolute retract and
therefore R2 — X is connected [7, p. 364]. Therefore, (since X is
a locally connected continuum in R2)f Bd[J?2 — X] is a locally con-
nected continuum (see 2.2 of [21, p. 106]). Let N denote Bά[R2 - X].
Direct computation using only definitions yields

(*) R2 - N = [R2 - X] U int X .

Thus we have that N is a locally connected continuum and, by
(3.9), and (*) E2 - X and int[X] are the components of E2 - N. It
now follows from 2.51 of [21, p. 107] that there is a simple closed
curve JaN. Let G denote the bounded component of E2 — J. By
(3.8), int[X]cG, and hence, cl(int[X])c [GU J]. Therefore, by (3.7),
I c [ G U J ] . However, since E2 — X is connected and JaX, we
have G c X, i.e., [G U J ] c X . This proves X = G U J and, thus, X
is a 2-cell. This proves (3.1).

REMARK. The part of the proof of Theorem 3.1 which follows
the lemmas is devoted entirely to showing that if Z is a planar
compact absolute retract such that Z = cl(int[Z]) and int[Z] is con-
nected, then Z is a 2-cell. This characterization of 2-cells among
continua in the plane does not seem to be explicitly stated in the
literature.

4* Analogue to the 2-cell theorem for 3-sρace* In this section
we will establish
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(4.1) THEOREM. If X is a continuum in Rz such that cc(X) = /TO

and X is not contained in any 2-dimensional hyperplane, then
int[X] Φ 0 .

We use the following lemmas to prove (4.1).

(4.2) LEMMA. Let σ: [0, 1] —> cc(R2) be an arc of convex arcs in
R2. Suppose that L is a straight line in R2 such that, for 0 ̂  t ^ s
where s > 0, L Π σ(t) consists of only one point. Then the convex
segment with noncut points σ(0) Π L and σ(s) Π L is contained in
Uo^s σ(t).

(4.3) REMARK. It is easy using (4.2) to prove that if σ[0, 1] —>
cc(R2) is a one-to-one continuous mapping such that, for each x e
[0, 1], σ(s) is a convex arc and such that there exist sx and s2 such
that σ(sλ) and σ(s2) are not co-linear, then Use[0,i]

σ(s) contains a
2-cell.

Proof. Consider the mapping σ: [0, s] -> L defined by σ(t) =
σ(t)f)L. Using the single valuedness of σ, it is easy to show that
σ is continuous. Thus, σ([0, s]) is connected in L and the result
follows.

(4.4) LEMMA. Let σ: [0, 1] —> cc(i23) be an arc of convex 2-cells
in i?3 such that there is a sequence sr —> 0 such that σ(sr) and σ(0)
are not co-planar. Then, U«e[o,i] σ(s) contains a Z-cell.

Proof. Let Hi(i = 1,2, 3) be the standard projection onto the
ith factor of R3. Since σ(Q) is nondegenerate, there exist iι and i2

such that neither ILJ^CO)] nor Πi2[^(0)] is a single point. Without
loss of generality, we will assume that it = 1 and i2 = 2. Let
[a19 α2]cint[Πi(^(0))] Note that, for x e [a19 α2], ΠΓ1^) Π O(0) is a
nondegenerate arc. Let c be chosen so that ϊlϊXc) Π IlϊKi^ + αa)/2)Π
σ(0) is an interior point of the arc σ(0) Π ΠΓXC^I + α2)/2). Let
αx ^ α( < (^ — αa)/2 < a'z ^ α2 be chosen so that, for each x e [a[, ar

2],
Π2~1(c) Π ΐlϊKx) Π (7(0) is an interior point of the arc ΐ[r\x) Π (7(0).
Let ct < c < c2 be chosen so that, for y e [cίf c2] and x e [a[f a'2] it is
true that J\^\y) ΓΊ TίϊX%) Π (7(0) is an interior point of the arc
ILϊKx) Π (7(0). Let ί > 0 be chosen so that:

(1) f or s e [0, ί] and x e [a[, α2], Πf 1^) Π (7(S) cuts α(s), and
( 2 ) for 8 6 [0, t], a; e [a[, a2] and y e [cίf c2], UΛv) Π Πrι(a?) Π (7(«)

is an interior point of the arc Π Γ 1 ^ ) Γ) (7(S).

Let 0 < t' < t be chosen so that σ(0) and σ(t') arc not co-planar.
Note, since there can be at most one x in [a[, α'] for which α (O) Π
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ΐlϊL(x) and σ(t') ΓΊ Hz\x) are co-linear, we may assume without loss
of generality that, for x e [a[, a'2], ΠΓ1^) Π σ(0) and ΐlτ\x) Ω o(tr) are
not co-linear. Since, for each xe[a[, a'2], there can be at most one
y e [c19 c2] such that Π Γ W Π UzKx) Π σ(0) Π σ-(ί') Φ 0 , we may now
choose αί <£ αί' < a2 <; αg and cx <; cί < ^ 5£ c2 so that, for x e [αί', α^]
and 2/ 6 [d, c'2], (*) Π2~

1(l/) Π ϊlΓ1^) Π σ(0) Π σ(t') = 0 . Consider now the
set of points D - {Πί'teOΩ Uϊ\aϊ) Γi σ(z): i9 j = 1, 2, z - 0 or z = t'}.
We claim that cδ(D) d\Jse[Oy^σ(s). To see this, note first that if
A = {Π2-

1fe) ΓΊ TlϊKaϊ) n *(θj} where i, j = 1, 2} and Ό%, = {Π2-
1fe)n

Πr ι(»i) n σ(ί'): i, i = 1, 2} then co(Dz) c σ(2) c [U.β[o,i3 (̂β)] where « e
{0, t'}. Now, if peco(Z)) then, for some xe[aϊ, a/], we have that
P e IΪΓ1^)- Also, for some 7/ e [cί, Cg] we have that p e Jί^iy).
Since p e cό(D) we have that p is on the convex segment in J\j\y) Π
τiϊ\x) which joins Π 2"W Π Uϊ\x) Π σ(0) and Π Γ W Π Π Γ 1 ^ ) Π σ(ί').
This is true because co(D0) Π co(Dt) = 0 (otherwise we would con-
tradict (*)). Now, the mapping σx: [0, t'] —> ccdlΓ1^)) defined by
σx(s) = σ(s) Π ΠΓ1^) is easily seen to be continuous. Also, ^(0) and
σx(tr) are not co-linear and the line ΐli\y) Π IίT\x) in Hτ\x) cuts
each of the arcs σx(s) for s e [0, £']. It now follows from (4.2) that

p e U e[o,t']0"*(β). T h e l e m m a i s proved.

The following lemma is a simple consequence of (4.4).

(4.5) LEMMA. Let σ: [0, 1] —» cc(i?3) 6e α one-to-one continuous
mapping of [0, 1] mίo cc(Rz) such that σ(s) is a (convex) 2-cell for
each s and such that there exist sλ and s2 such that σ(sj and σ(s2)
are not co-planar. Then, U e[0,i]

 σ(s) contains a 3-cell. We are now
ready to establish (4.1).

Proof of (4.1). It can be seen that the space of convex arcs
and points in a compact subset of Rz is of dimension less than or
equal to 6 (see (3.6)). If X satisfies the conditions of (4.1) and
AS(X) denotes the space of arcs and singletons in cc(JC) then
cc(X) — AS(X) must be arcwise connected (see the remark in the
proof of (3.8)). Let p1 and p2 be points in X which lie in the
interior of two cells Px and P2, respectively, such that Px and P2

are not co-planar. Now, [cc(X) — AS(X)]ΊD{Plf P2) and, hence, there
is a one-to-one continuous mapping σ: [0, 1] —> [cc(X) — AS(X)] such
that σ(0) = Pt and σ(l) = P2. If σ(s) is not a 2-cell for some s, then
σ(s) is a 3-cell and we are done. Hence, without loss of generality,
we may assume σ(s) is a 2-cell for each s e [0, 1]. Thus, by virtue
of (4.5), Xz)\Jse[0Λlσ(s) contains a 3-cell. The theorem is proved.

(4.6) EXAMPLE. We show that the natural analogue to (4.1)
does not hold in Rn, n > 3. Let Y be the continuum in R* defined
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b y Γ = Y 1 \ J Y Λ w h e r e Y, = { ( x , y , z , w ) : \x\ ^ 1 , \y\ ^ 1 , \z\ ^ 1 , w = 0 }
and Γ2 - {(», 2/, 2, w): M ^ 1, | » | ^ 1, z = 0, |w | ^ 1}. Now, cc(Γ) =
cc( YJ U cc(Γ2) and cc(Y; n Γa) - cc( TO Π cc(Γ2) ^ /„. A theorem of
Anderson [20] asserts that the union of two Hubert cubes which
intersect in a Hubert cube is a Hubert cube provided the intersection
has property Z in each. We thus want to see that cc( Yx Π Y2) has
property Z in cc(Γi) and cc(F2).

To this end, let U be a homotopically trivial subset of cc(F1).
Let g: S^1 —> U — cc(i r

1Π F2) and let g: Bk —> U be an extension of g.
For each p e U let d(p) = inf{d(p, q):qecc(Yι) — U). For each
t e [0, 1] and each b in the sphere of radius t in I?/c, let G(b)~
co(ΛΓ((l - t)(d(gφ)))/2f g(h)))(N(ε, g(b))) = {x: for some α s ^(6), ||a? - a ||
<ε}). Clearly G(6) e Z7 for each beBk and, even more, since G(ί>) is
a 3-cell for each 6, we have G(6) 6 U - cc(Xn Γ2). Also GIS*"1 = gr.
We have established that cc( Yx) Π cc( Y2) has property Z in cc(Fi).
The proof for cc(F2) is the same. It now follows that cc(F) = /w .
This shows that the analogue to (4.1) does not hold in R\ Actu-
ally, it is clear that similar examples exist in dimensions n > 4 as
well.

This next example is of a 3-dimensional continuum in Rz which
is not a 3-cell but whose cc-hyperspace is homeomorphic to JTO.

(4.7) EXAMPLE. Let X be the continuum in R3 defined by
X = Xx U X2 where

Xι = {(x,V,z): \\(x,y,z)\\ ^ 1}

and

X* = {(x,V,0Y max{|x|

Now, cc(X) = cc(XJ U cc(X2) is a union of two convex Hubert cubes.
Also, CC(JSLΊ) Π CC(X2) = cc(Xi Π X2) is a convex Hubert cube. Using
the same techniques as were used in Example (4.6) one can easily
show that cc(XJ Π cc(X2) is a Z-set in cc(XJ. By Handel's result
[8], it follows that cc(Xx) Π cc(X2) = cc(X) is a Hubert cube.

5* Some geometric considerations. In view of Theorem (3.1),
it is natural to ask the question:

Which 2-cells X in R2 have the property that cc(X) = IJ
The following example shows that not every 2-cell in R2 has

this property.

(5.1) EXAMPLE. Let X be the 2-cell in R2 pictured below.
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:V Λ ' r
The three points α, b and c of local nonconvexity of X all lie

on the convex arc de. It is clear that any compact convex subset

of X which is within ε of the arc de (in the Hausdorff metric)

must be a subarc of de. Hence, it follows that de has small 2-cell

neighborhoods in cc(X). Therefore, cc(X) is 2-dimensional at de

and, thus, cc(X) g 1^.
The remainder of this section is devoted to proving two results

which can be used to establish that some rather wide classes of
2-cells do have the property that their hyperspaces of nonempty
compact convex subsets are topologically ITO. We begin with some
definitions.

(5.2) DEFINITION. Let K be a starshaphed subset of I2 and let
p6 Ker(iΓ). The point xeK will be called a p-relative interior
point of K if there exists an x*eK such that, for some λe(0, 1),
λ#* + (1 — X)p = x. A point in K which is not a p-relative interior
point will be called a p-relative extreme point of K.

(5.3) DEFINITION. Let K^K2 be two starshaped subsets of l2

such that KerίlQ n Ker(ίQ Φ ®. Let p e [Ker(^) n Ker(ίΓ2)]. Then
p is called a K2 inside point of Kt if, for every xeK2, {Xp + (1—X)x:
λe(0, l^nK.Φ 0 .

(5.4) THEOREM. Let Kλ Q K2 be two compact, starshaped sub-
sets of l2 and suppose that there exists a point p^Kγ such that:

( i ) p e KeτiKJ Π Ker(JBΓ8),

(ii) p is a K2-inside point of Klf

(iii) the set of all p-relative interior points of Kt (resp.f K2)
is an open subset of Kx (resp.f K2). Then, Kλ and K2 are homeo-
morphic.

Proof. Let the hypothesis of the theorem be satisfied. We
will assume without loss of generality that p = (0,0,0, •••)• For
each point x e K2 — {p} (clearly, the theorem is valid if K2 — {p} — 0 )
let x be that p-relative extreme point of K2 defined by x = axx
where ax = sup{αe (0, oo): ax eK2}. To each p-relative extreme
point y of K2, let Xy = sup{λ e [0, 1]: Xy e i Q . Let / : K2 -> K, be the
function defined by
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X2x, if xeK2- {p}

p, if x = p .

It is easy to see that / is one-to-one. We wish now to show that
/ is onto and continuous. To see that / is onto, let x e Kλ. If
x = p, we are done since f{p) = p. If x Φ p, then l/λ2 <̂  ax.
Hence, y = x/X2eK2 and, clearly, f(y) = x. We have seen that / is
onto. To see that / is continuous, let {OJJΠ=I be a sequence in K2 such
that \imi->GoXi = xeK2. If x = p, it is clear that \imz_OQf(xί) = f(p) — p.
So, assume that x φ p. We may then assume that xiφ p for all ί.
We will first show that lim<_>0O^ί = ̂ . Since K2 is compact, we must
have that some subsequence {xιj}J=1 of the sequence {#JΓ=i converges
to an x0 6 if2. Without loss of generality, we may assume that the
sequence {xί}?=1 converges to xQ. Now, it follows from condition
(iii) that xQ must be a p-relative extreme point of K2. To see that
x0 = χf we need now only show that, for some λ > 0, Xx0 = x. Let
λ< be such that λ ^ = x% and consider xtx. Now, the λ/s are boun-
ded and since | | λ ^ — λ ^ H = jλ,J \\x — x j | we have that lim^.^ λ ^ = ̂ 0.
It is now not difficult to see that, for some λ0 > 0, lim,-^ X{ = λ0 and
χox = χ0 = x. To establish the continuity of /, we need now only
show that lim^ooλ^. —λ .̂ First consider {λ^xjΓ-i Since, for each ί,
Xx.Xi is a p-relative extreme point of K19 we have that some sub-
sequence converges to a p-relative extreme point of Kx. Without
loss of generality, we will assume that lim^co λ .̂x^ — xf where xr is a
p-relative extreme point of Kγ. But, ||λ^ά; — λ~.x|| = |λ^J ||x — xι\\^
| |x — xt\\. Hence, lim^coλ^^ = xf. But, the fact that the sequence
{λί.xK°=1 is Cauchy implies that {λj.}Γ=i is Cauchy and, hence, that
there exists a λ' such that lim* ̂ λ;.. = λ'. Thus, X'x = x' which says
that λ' = λ^. We have now established the continuity of /. Since
Kλ and K2 are compact, it follows that / is a homeomorphism.

(5.5) COROLLARY. Let X be a compact star shaped subset of Rn

such that int[Ker(X)] Φ 0 . Then, cc(X) ~ i^.

Proof. For simplicity, we will assume that the origin 0 e
int[Ker(X)J. Let ε > 0 be such that Bc = {xeRn: \\x\\ <> ε} is con-
tained in Ker(X). Since X is compact, there exists an r > 0 such
that X c Br. Let F be an affine embedding of cc(Br) into l2 such
that F(0) = 0 (as in the proof of (2.2)). Let K, = F(cc(Bs)) and let
K2 = F(ec(X)). Then, Kγ Q K2. Since we have already seen that
cc(Bc) = 1^ (Theorem (2.2)), the result will now follow provided
conditions (i), (ii) and (iii) of (4.4) are shown to be satisfied for
p — 0. It is easy to see that conditions (i) and (ii) are satisfied.
That condition (iii) is satisfied will follow if we can show that the
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p-relative extreme points of Kx (resp , K2) are precisely those ele-
ments of the form F(G) where Gf]Fi(Bε) Φ 0 (resp., GiΊFr(X) Φ 0 ) .
We will show this only for K2 since it is obvious for Kt. It is
clear that if Gecc(X) is such that GnFr(X) = 0 then F(G) is not
a ^-relative extreme point of K2. It remains only to show that if
Gecc(X) is such that GnFr(X) φ 0 then F(G) is a p-relative ex-
treme point of K2. Suppose not, then there exists a λ > 1 such
that XF(G) e K2. Let Gf e cc(X) be such that F(G') = XF(G). By
the one-to-oneness and the convexity of F, it follows that XG = G'.
If c e G n F r ( I ) , then XceX. But co(λc, Bε)dX and contains c as
an interior point. This contradicts the fact that c e Fr(X). The
corollary now follows. T. A. Chapman showed (see Theorem 10 of
[5]) that a compact Hubert cube manifold is homeomorphic to the
Hubert cube if and only if it is homotopically trivial. This enables
one to "localize" the problem of showing the cc-hyperspace of a
given 2-cell is homeomorphic to 1^.

(5.6) THEOREM. (1) If X is a contractible continuum lying
in a Banach space, then cc(X) is contractible.

(2) Thus, in particular, if X is a 2-cell {or n-cell), c^X)^/^
if and only if cc(X) is a Hίlbert cube manifold.

Proof. The closed linear span L of X is a separable Banach
space. By (3.2), there is a continuous selection η from cc(X) to X.
Define g: cc(X) x [0, 1] -• cc(X) by g(A, t) = t{η(A)} + (1 - t)A. It
follows using g and the contractibility of X that cc(X) is con-
tractible. This proves (1). The proof of (2) uses (1) and Theorem 10
of [5].

These next results will show that a fairly large class of 2-cells
have the property that their hyperspaces of compact convex subsets
are homeomorphic to 1^. We begin with a notational agreement
and a definition.

If A is a nondegenerate, convex arc in the plane then by A"
we will denote the unique line in R2 which contains A. If p e Rn

a n d ε > 0 t h e n B ( ε , p) = {x eRn: \\x - p\\ < ε}.

(5.7) DEFINITION. Let X be a 2-cell in R2 and let Aecc(X)
be an arc. Suppose that one complementary domain of A" has been
designated the right side of AT and the other the left side of AT.
A point p e LN(X) Π A will be said to lie on the left side (right
side) of A if, for every ε > 0, J5(ε, p) — X contains points on the
left side (right side) of A\ If for some ε > 0, B(ε, p) — X contains
no points on the right side (left side) of A~ then p will be said to
lie strictly on the left side (right side) of A.
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(5.8) LEMMA. Let X be an n-cell. If Aecc(X) is an n-cell
then A is contained in a closed starshaped subset N of X with
int[Ker(iSO] Φ 0 such that cc(i\Γ) is a neighborhood of A in cc(X).

Proof. Let A e cc(X) be an n-cell and let q e int[A]. Let ε > 0
be chosen so that cl(B(s, q))aint[A]. Let Γ = {Kecc(X): cl(5(ε, q))aK}
and let D = U Γ. It is not difficult to see that JO is a closed
starshaped subset of X and that Ker(D) 2 cl(i?(ε, q)). It is also not
difficult to see that CC(JD) is a neighborhood of A in cc(X). The
lemma is proved.

(5.9) LEMMA. If X is an n-cell in Rn then the following are
equivalent:

( i ) Every A e cc(X) lies in a starshaped subset of X whose
kernel has nonvoid interior.

(ii) Every maximal convex subset of X is an n-cell.

Proof. Suppose (i) is satisfied. Let A e cc(X) be maximal. By
(i) there exists an n-ball BczX such that cδ{B, A) c X. But, by
maximality of A, co{ί?, A] — A. Hence A is an ^-dimensional com-
pact convex subset of Rn and thus must be an n-cell. We have
that (i) implies (ii). Now, if (ii) holds and A e cc(X), then let M(A)
be a maximal convex subset of X which contains A. As M(A) is a
starshaped set whose kernel has nonvoid interior, we are done.

(5.10) LEMMA. Let X be a 2-cell in R2. Let Aecc(X) be an
arc with noncut points p and q. Suppose there exists a closed ball
DdX and neighborhoods P of p and Q of q in X such that for
each de D we have P U Q c S(d). Then A is contained in a closed
starshaped subset Y of X with int[Ker(Y)] Φ 0 such that cc(Y) is
a neighborhood of A in cc(X).

Proof. We can assume that D lies in the interior of a convex
2-cell BCLX such that A is on the boundary of B. We may also
assume that A — (P U Q) Φ 0 (we would be done in this case any-
way as will become evident at the end of the proof). Let P' and
Qf be balls in R2 centered at p and q, respectively, which satisfy

(a) the radii of Pr and Q' are less than 1/2 min {radius of P,
radius of Q}, and

(b) for each a e [A - (P U Q)], r e cl(P'), s e cl(Q') and d e D, the

ray through a from d must intersect the segment rs in a cut point.

Now, for each ae A — (P U Q), choose a ball Ba about a such that

(**) if r 6 cl(P'), s 6 cl(Q'), t e Ba and deD, then the ray from
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d through t must intersect the segment rs in a cut point.

Let Σ be the collection of all convex sets C in X such that C inter
sects both P ' and Q' and is contained in the union of P, Q and the
balls Ba for a e A — (P U Q). It is clear that Σ is a neighborhood
of A in cc(X). We wish to show now that if de D, then d sees
each point of any C in Σ So, let C e Σ and let r e [ P ' n C ] and
s e [Q' n C]. Let a e C - ( P u Q ) (note, if α e [P U Q] we are done)
and let α e i - ( P u Q ) be such that aeBa. Since aeBa, by (**)
we have that the ray from d through a(d e D) must intersect rs.
By simple connectivity of X, it follows that the 2-cell (rds) and
(rsa)((rsa) may be an arc) lie in X. If the segment da intersects
rs then da = [da Π (rseZ)] U [da n (rsα)] c X. If the segment cto does
not intersect rs, then cte c (rsd) c X. Thus, da c X and we have
the desired conclusion. Now, let Γ = {Kecc(X): KZDD}. Let
7 = UΓ. We have just seen that the starshaped set Y has the
property that cc(F)z>Σ Also, we have that Ker[F] D int[D] and
hence int[Ker(F)] φ 0 . The lemma is proved.

(5.11) LEMMA. Let X be a polygonal 2-cell in R2 and let
A e cc(X) be an arc such that no two points in LN(X) Π A lie
strictly on opposite sides of A. Then there exists a closed starshap-
ed subset N of X with int[Ker(JV)] Φ 0 such that cc(ΛΓ) is a neigh-
borhood of A in cc(X).

Proof. Let A be an arc in cc(X) such that no two points of
LN(X) n A lie strictly on opposite sides of A. Consider the noncut
points, say p and q, of A. If at least one of p and q is not a
point in LN(X) which lies strictly on one side of A then it can be
seen that there is a closed ball D in X and neighborhoods
B(a, p)f]Xand B(Ύ, g ) ί l l such that, for any d eD, (B(a, p)UB(r, q))Π
XaS(d). The result now follows from (5.10). Suppose now that
both p and q are points in LN(X) which lie strictly on one side of
A. It is geometrically clear that, in this event, ono can obtain balls
P, Q and M such that

(a) peP,qeQ and cl(Λf) c int[X],
(b) cl(Λf) Π 4 = 0 , and
(c) if C is a convex set in X such that C Π P Φ 0 and

C n Q Φ 0 then C n (P U Q) c S(m) for every m e cl(Λf).
The proof from here proceeds as it did in the proof of (5.10).

(5.12) THEOREM. Let X be a polygonal 2-cell in R2. Then the
following are equivalent:
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( i ) Every maximal convex subset of X is a 2-cell.
(ii) Each Aecc(X) is contained in a closed starshaped subset

N of X for which int[Ker(i\O] Φ 0 and cc(N) is a neighborhood of
A in cc(JC).

Furthermore, if (i) or (ii) holds then cc(X) = 1 .̂

Proof. That condition (ii) implies condition (i) follows from
(5.9). Now, assume that (i) holds. If Aecc(X) is a singleton then
it is easy to see that A is contained in a closed starshaped neigh-
borhood N in X. But then CC(JV) is a neighborhood of A in cc(X)
and we are done in this case. If A e cc(X) is a 2-cell, then we are
done by virtue of (5.8). If A is an arc, then by (5.11) we will be
done if we can show that no two points in LN(X) Π A lie strictly
on opposite sides of A. Let p19 p2 e LN(X) Π A lie strictly on op-
posite sides of A. If both p1 and p2 are cut points of A then it is
clear that no convex 2-cell in X can contain A and this contradicts
(i). If one or more of px and p2 are noncut points of A then one
can obtain an arc A! z> A with A! e cc(X) for which both p1 and p2

are cut points. This again leads to a contradiction of condition (i).
Thus, no two points of LN(X) Π A can lie strictly on opposite sides
of A and we have the desired result. We have now established the
equivalence of (i) and (ii).

To complete the proof we need only see that if (ii) holds then
cc(X) = loo. So, suppose that (ii) holds. Let A e cc(X) by virtue
of (ii) there exists a closed starshaped subset N of X with
int[Ker(iV)] Φ 0 for which cc(N) is a neighborhood of A in cc(X).
But, cc(iV) = ITO by (5.5). Thus, cc(X) is homeomorphic to /«, by
virtue of (5.6). The theorem is proved.

(5.13) THEOREM. Let X be a 2-cell in R2 such that (*) when-
ever p, q e X are such that p e S(q) and N is a neighborhood of p in
X, then there exists an open set MaN and a neighborhood Q of q
such that for each point m in M we have S(m) Z) Q.

The following are equivalent:
( i ) Every maximal convex subset of X is a 2-cell.
(ii) Each Aecc(X) is contained in a starshaped subset N of

X for which int[Ker(jV)] Φ 0 and cc(iV) is a neighborhood of A in
cc(X).

Furthermore, if (i) or (ii) holds then cc(X) = I^.

Proof. All aspects of the proof for this result are the same as
the proof of (5.12) with the exception of showing that condition (i)
implies condition (ii). So, suppose that condition (i) holds and let
Aecc(X). If A is a singleton, it is easy to use (*) to obtain the
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desired set N. If A is a 2-cell we are again done by virtue of (5.8).
Suppose, that A = [p, q] is an arc. Let B be a 2-cell in cc(X) which
contains A (condition (i) implies B exists). Let b e int(J3). Since
peS(b) there is by (*) a ball C c ΰ a n d a neighborhood P of p such
that for each meC we have S(m)i)P. Let m^C. Since mteB
we have S(m1)i)q. Thus, by (*), there exists a closed ball DaC
and a neighborhood Q of q such that, for any d eD. S(d)Z)Q. Now
application of (5.10) gives the existence of the star shaped subset N
of X with the desired properties. The result is established.

6* Some problems and examples* While at present we have
some large classes of nonconvex 2-cells whose cc-hyperspaces are
homeomorphic to !«,, we still do not know exactly which 2-cells
have their cc-hyperspaces homeomorphic to 1^. The following pro-
blems are connected with this.

(6.1) Problem. Let X be a 2-cell in R2. If every point of
cc(X) has arbitrarily small infinite dimensional neighborhoods, is it
true that cc(X) = IJ

(6.2) Problem. Let X be a 2-cell in R2. If every maximal
convex subset of X is either a point or a 2-cell, is it true that
cc(X) = IJ

(6.3) Problem. Let X be a 2-cell in R2. If every maximal
convex subset of X is a 2-cell, is it true that cc(X) = IJ

An affirmative answer to (6.1) would provide a satisfactory
characterization. This is true since it would then follow that
Example 5.1 is, in a sense, canonical. An affirmative answer to
(6.1) would imply an affirmative answer to (6.2) and an affirmative
answer to (6.2) would imply an affirmative answer to (6.3).

The following two examples give a bit more insight into the
above problems. The technique used in this next example is one
which has become standard in infinite dimensional topology. It was
first used by Schori and West in [18]. For the difinition of shape
see [4]. An onto map /: X—> Y where X and Y are homeomorphic
metric spaces, is a near homeomorphism if / can be uniformly ap-
proximated by homeomorphisms. For terminology related to inverse
limits it is suggested that the reader see [13] or [18]. In the dis-
cussion of the example we use a characterization by T. A. Chapman
of near homeomorphisms between Hubert cubes as being those con-
tinuous surjections for which point inverses have trivial shape.

(6.4) EXAMPLE. Consider the planar 2-cell X formed by inter-
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secting the planar regions A, B and C where A = {(a?, y): £^1/2, i/^0},
5 = {(«, 2/): (x + 1/2)2 + i/2 ̂  1/4} and C = {(a?, y): a;9 + ?/2 ̂  1} (see Fig.
6.6 below).

(-1,0) .1/2

FIGURE 6.6

FIGURE 6.7

Note that the point ( — 1, 0) is a maximal convex subset of X. Now,
for each 3τr/4 ^ Θ ̂  TΓ let I ^ I n {(r, <?): π/2 ^ φ ^ 5}. For each
pair (θ19 θ2) with ττ/2 ^θ^θ^π, let the mapping # M l : Xθ% -+ Xh

be defined by gh$ι(r, φ) = (r, ̂ ) for θx^φ^ θ2, and 0 V l ( r , ^) = (r, φ)
if π/2 ̂ φ ^ θx. Define, for (θlf θ2) as above, the retraction rθiθι:
ccίX^) -> cc(X^) by Tθ2θl(A) = co(flrtf2^(A)). Also, for a compact convex
subset A of X^ which intersects {(r, 0): r ^ 0} define p^A, θ) =
inf{r: (r, 0) e A}. For each n = 1, 2, . . , let θn = π - π/2n+1 and let
rn = r ^ + Λ and Xw = Xθ%. For A e c c ( X J , let YerΰXA) and define
0F - sup{0: rn(rθn+lθ(Y)) - A}. For each θ e [θnf θn+ι], let

θ) = if Θτ£θ£

if θ £ θγ

It is geometrically clear that H: r~\A) x [θn, θn+1] -• r~XA) is a
homotopy of the identity on r~\A) to a constant map. Thus, for
each A e cc(XJ, r-χ(A) is contractible and, hence [4, (5.5) p. 28], of
trivial shape. It now follows that rn is a near homeomorphism and,
hence, (since each Xn satisfies the conditions of Theorem 5.13) that
lim(cc(XJ, rn) = cc(Xx) = J^. Furthermore, the inverse sequence
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{(cc(XJ, rn)} also satisfies the conditions that
(a) cc(XJccc(X%+1) and U.cc(XJ - cc(X),
(b) Σ?=i d(rΛ, idcc(zn+1)) < °°,
(c) for each j , {rό ° o Ti: cc(Xi+1) —> cc(X, ) | ΐ ^ i}

is an equi-uniformly continuous family of functions.
That condition (a) holds is immediate. The fact that condition

(b) holds rests on the fact that if d(A, B) < ε and B is convex then
rf(co(il)f A) ^ ε.

To see that (c) holds, let, for each n, rn: X-* Xn be the retrac-
t ion gπθn.

Let j e I+ be given and let ε > 0. Choose j0 so that if
A ί cc(int[Xio+1]) then A Π Xj = 0. Choose δ1 > 0 so that if d(A, B)<δ,
then d(r\A), rn(B))<ε. Let <52>0 be chosen so that, if d(A, B)<δ2 and
A, Becc(Xio+1), then d ( r y o . . . oτh{A), rόo... o^(B)) < β. Let δ3 be
chosen so that, if A $ cc(int[X, 0+1]) and d(A, B)<δ3, then 5 f l l i = 0 .
Now, if δ = min{^, <52, δ3} and ώ(A, J?) < <5 then, either A, B e cc(XJQ+1)
in which case d(rό o. . . o rfe(A), r ^ - . o rfc(JB)) ^ d(r3- o.. . o r3 0(A),

r . o. . . o rSo(B)) <ε or A ίl I i = 0 and ΰ ί l l i = 0 in which case
ryo .o r*(A) = ry(A) and r, © © rA;(JB) = ry(J5) and, hence,
d(Tj ©. . o r*(il), r^ © o rΛ(jB)) < ε. We have established that condi-
tion (c) holds. Thus, by [13, Lemma B], cc(X) ^ lim^ccζ-X,), r<) and
thus cc(X) = /«,.

(6.5) EXAMPLE. Consider the 2-cell X in R2 which is the
closure of the bounded complementary domain of \Ji=1 Cif where

Ct = {(x, y): (x-1)2 + (2/-1)2 ^ 1} , C2 = {(», 2/): (a - I)2 + (2/ + I)2 ^ 1}

C3 = {(x, y): (x + iy + (y + lT^l} and C4 = {(x, y):

(Fig. 6.7.) Note, the convex segment with noncut points (0, —1)
and (0, 1) is a maximal convex subset of X and the kernel of X
consists only of the origin (0, 0). In spite of this, if one takes
Y = {(a?, y): x2 + y2 ^ 1/4} and sets Kx = cc(Γ), K2 - cc(X) and
p = (0, 0) then all the conditions of Theorem 4.4 are satisfied. It
follows that cc(X) = cc(F) = 1^.

The 2-cell of Example (6.4) illustrates the validity of (6.1) and
(6.2) for a specific 2-cell. The 2-cell of Example (6.5) illustrates
that though the hypotheses in (6.2) and (6.3) may be sufficient, they
are definitely not necessary.

7. The cc-hyperspaces of °Bn and Rn, n ^ 2. In this section
we show that cc(°Bn) and cc(J?%), n ^ 2, are homeomorphic to the
Hubert cube with a point removed. We also state some problems.

Let U be a nonempty proper open subset of cc(Bn). For each
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AeU let An = inf{d(A, D) \De [ec(X) - U]}, where d denotes the

Hausdorff metric. Note that 0 < An ^ 2.

(7.1) LEMMA. Let U be a proper open subset of cc(Bn). Let
AeU and let a be real, 0 < a ^ 1. Then (1 - aAu/2)A e [Uf] cc(°Bn)].

Proof. For any aeA and β > 0, β Φ 1, note that \\a — βa\\ =
\1 - β\\\a\\ ^\1 - β\ < 2 11 - £ | . Thus, setting β = 1 - aAu/2, it
follows that

d(A, (l- = aAu<ίAu,

which implies (1 - aAu/2)A e U. Note that (1 - aAu/2)A e cc(°Bn)
since (1 — aAu/2) < 1.

(7.2) THEOREM. If n ^ 2, ίftew cc(°J5") ^ /«, ~ {p} for p e 1^.

Proof. Let iΓ = {A ecc(Bn)\ A n S^"1 ̂  0}. We show ίΓ has
property Z in CC(JB%). Let U be a nonempty homotopically trivial
open subset of cc(I^). Let /: Sfc-1 -> U — K be continuous, and let
F: Bk —• ί7 be a continuous extension of /. Let h: [0, 1] —> [0, 1] be
a homeomorphism such that h(0) = 1 and fe(l) = 0. Define a func-
tion ί7* on Bfc by F*(x) = (l-[h(\\x\\F(x)uf2)])F(x). Note F * is
continuous and F * extends / since if | |g| | = 1, F*(x) = JP(^) = fix).
If | |g| | < 1 note that F*(x) e [ί7ncc(°JB%)] by (7.1), and hence JF*(aO 6
[ J 7 - U L ] . Thus, K has property Z in co,(Bn). Hence, by (2.2)
above and a theorem of Anderson [1], we assume without loss of
generality that Kail. For each te[O, 2] and AeK let #(A, ί) =
cl(JV(ί, A)nBn)(N(t, A) = Uαe^ί^lll^ — α|| < ί}). Note g is continuous
and that g(A, 0) = A and g(A, 2) = Bn. (See Borsuk [4].) By a re-
sult of Chapman [6] it follows that cc(Bn) - K = cc(.B%) - {M} for
Mecc(jB%). Hence, by (2.2) above, cc(°Bn) = !«, — {p}, and this com-
pletes the proof.

(7.3) THEOREM. If n ^ 2, cc(JBw) ^ !«, - {̂ } /or p 6ITO.

Proof. Using the proof of (5.4), it is easy to see that cc(iϋw) =
cc(°Bn). Therefore, by (7.2) cc(Rn) ^ /«, - {p}. Theorem 7.3 sug-
gests the following.

(7.4) Problem. If H is a separable Hubert space, is cc(iϊ) = fί?
We will now discuss and state two problems which arise out of

our previous work. Problem 7.5 is motivated in part by the result
of Schori and West [16] that 2τ ^ /„.
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Let D be the semidisc in R2 given by {(x, y)\x2 + y2 ^ 1, y ^ 0}
and let K be the semicircle D Π S1. Let R = {Aecc(D)\ext[A]aK}.
The mapping f:2K -^ R given by f(E) = cδ(2£) is a homeomorphism.
Let JB* = cc(D) — R. Note that R* is an open convex subset of
cc(Z>) and that 1^ ~ R = cc(D) - B*. This suggests the following
problem:

(7.5) Problem. Let Af be an open convex subset of a convex
Hubert cube Q. What are necessary and sufficient conditions on M
in order that !„ ^ Q - MΊ

Several times in our work we encountered infinite dimensional
compact convex subsets P of /«, such that P = ext[P] ^ /«,. The
countable product of semidiscs is such an example. This suggests
the following problem.

(7.6) Let Q be a convex Hubert cube. What are necessary and
sufficient conditions for Q to be homeomorphic with ext[Q]?

We remark that a theorem answering the above question may
by considered as a compact analogue of the theorem of Klee [11]
that in separable Hubert space the unit sphere is homeomorphic
with the closed unit ball.

REMARK. After this paper was written, certain developments
occurred which may be of interest to the reader. D. W. Curtis in
a forthcoming paper entitled "Growth hyperspaces" investigates,
among other things, subspaces G of the cc-hyperspace having the
property that if AeG and AaB then BeG. D. W. Curtis, J.
Quinn and R. M. Schori in a forthcoming paper entitled "On the
cc-hyperspace of a polyhedral two-cell" show that the cc-hyperspace
of a polyhedral two cell in R2 is /«, with perhaps a finite number
of two cell flanges. J. Quinn and R. Y. T. Wong in a forthcoming
paper entitled "Unions of convex Hubert cubes" show that the
union of finitely many convex Hubert cube manifolds each sub-
collection of which intersects vacuously or in a Hubert cube is a
Hubert cube manifold, and, as a corollary, obtain the result that
if A and B are infinite dimensional compact convex sets in l2 such
that Af] B is infinite dimensional then A U B ^ 2^. Reiter and
Stavrakas in a forthcoming paper entitled "On the compactness of
the hyperspace of faces" and Quinn and Stavrakas in a forthcoming
paper "Selections in the hyperspace of faces" investigate certain
topological aspects of the hyperspace of faces of a compact convex
set.
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