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SUPERHARMONIC INTERPOLATION IN
SUBSPACES OF C/(X)

L. AsiMmow

Let E be a closed subset of the compact Hausdorff
X and let A be a closed separating subspace of C¢(X). Let
o be a dominator (strictly positive, l.s.c.) defined on XX T, T
the unit circle in C. Conditions, formulated in terms of
boundary measures, are discussed for approximate and exact
solutions to the problem of finding p-dominated extensions
in A of functions ge(Alz)” satisfying retg (x)=p(x,t) on
EXT. Various interpolation theorems of Rudin-Carleson
type for superharmonic dominators are incorporated into
this framework.

We do not assume that A contains the constant functions. We
denote M(X) = C(X)*, the space of regular Borel measures on X.

We consider N = M(E) as situated in M(X) as the range of
the projection =,¢t = p|; and denote the complementary projection
Tyt = ptlng. Thus (A|p)* is identified with the subspace A*N N in
M(X).

We call e M(X) a boundary measure if |p| is maximal with
respect to the Choquet ordering as a measure of X (embedded by
evaluation) in the w™ compact unit ball 4. If 1e¢ A then this is
the same as |z¢| being maximal on the state space S,, as XcS,, a
w* closed face of Af.

For brevity we denote the boundary measures by o,M(X), or
0M(X), if A is understood, and in general, adopt the convention of
writing 0,S for SNJ,M(X). Thus, 0,A* refers to the boundary
measures annihilating A. The space A* is the quotient space
M(X)/A* and images under the quotient map are denoted #Z for
preM(X). A subset SC M(X) is called A-stable if S = (8,S)".

We call E an interpolation set if A|; is closed in C(E). Gamelin
[8] shows that E is an interpolation set if and only if there is a
k; 0 <k < o, such that for each me A4+,

(L) llmm + A" N NI < kl|lzm]| .

The best value of k is called the extension constant, e(4, E).

In [10] Roth introduces a general framework for interpolation
problems by means of a dominator, p, defined as a strictly positive
l.s.c. extended real-valued function on X x T (T the unit circle in
C). We let

U= {feCX):retf (x)/o(x, t) <1 for all (z,t)e X X T}
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and write
| fllo = sup{retf(x)/o(=, t): (x, t)e X x T}

for the Minkowski functional of U. Thus ||f||, <1 if and only if
retf(x) < o(x, t), (¢, t)e X X T. Then ||p¢|l,, pe M(X), refers to the
polar functional given by

| £ll, = sup{re(f, p): fe U} .

Since o is l.s.c and positive there is a constant ¢ such that || f|[,<
cl| f1]| (the uniform norm corresponding to p = 1) and if p is bounded
above the two are equivalent.

We say E is an approvimate p-interpolation set for A if E is
an interpolation set and for each ge(4|;)” and & > 0 there is an
feA such that fl|. =g and || f|, <l|lgll, +e. We say E is an
exact p-interpolation set if f can be chosen with [|f|l, = llgll,- It
is shown in [5] that for bounded p, E is an approximate p-interpola-
tion set for A if and only if for each me 4+,

(2) lmm + A* N Nil, = [| —mm]], .

If, in addition, tAhe image U of U° under the quotient map is
decomposable by N then E is an exact p-interpolation set. If there
is an s, 0 < s < 1, such that for each me A-,

(3) lmm + A* N N||, = sl —mm||,

then the above holds and E is p-exact for A. Gamelin’s results
[8] can be phrased as follows: Let G be a compact set in X\E
and let

1 for (z,t)e E x T
oG, k)(x,t) = {k for (x,t)eG x T
1V k otherwise.

Then E is ‘an approximate p(G, k)-interpolation set for all such G
if and only if (1) holds and if, in addition, e(4, E) < 1 then E is an
exact p-interpolation set for any continuous T-invariant o such that
0>eA, E) on X x T. This was obtained in abstract form using
polar techniques by Ando [3].

In [6] Briem shows that if E is a subset of the Choquet
boundary, 0,X, then E is an interpolation set if and only if (1)
holds only for meo,A*. Further, if X is metrizable then (1) holds
for 0,A* if and only if E is an approximate po(@G, k)-interpolation
set for each compact G —9,X\E. The A-stability of the unit ball
M(X) (Hustad’s theorem [9]) and of N = M(E) (since Ecd,X) are
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essential here. If (1) holds for (4, E) <1 (again, ¢ is the smallest
k such that (1) holds for all medA*) then E is p(G, k) exact for
any GCd,X\E and k > €.

If (1) holds for all me o, A" with k = 0 this can be expressed as

(4) mec oAt imples tme A .

The set E is called an M-set if M(E) is A-stable and (4) holds. Roth
[10] shows that if E is an M-set and o is a bounded A-super-
harmonic (if 1€ A this means p(x,t) = Sp(-, t)dp for any pe MH(X)
and /£ = xe X C Af) dominator then E is an exact p-interpolation
set for A. This generalizes the Alfsen-Hirsberg theorem [2] which
deals with T-invariant o and Eco,X.

In this note we consolidate these results by showing that for
E an interpolation set with M(E) A-stable and p A-superharmonic
then F is an approximate p-interpolation set if and only if (2) holds
for med,A*. If in addition U is decomposable by N in A* then
the interpolation is exact. This is the case if o is bounded and (3)
holds for mead,A*. (If p is bounded and (2) or (3) holds then E is
already an interpolation set.) We give a measure theoretic condition
for the decomposability of U and show by means of simple examples
of A(K) spaces that exactness of interpolation can be deduced in
this way even though equality holds in (2) whieh, of course,
precludes the use of (3).

1. Hustad-Roth stability theorems. Let A be a closed separat-
ing subspace of C(X). Define ?:C(X)—»CX x T) by Of(x,t) =
tf(x). By separating we shall mean that the range of @], separates
the points of X X T. This assumption can be avoided, as is shown
in Fuhr-Phelps [7], but at the expense of additional technicalities.
If ye M(X x T) then the Hustad map is given by

p=0ve MX); p(f) = | tf@)dn(s, 1) .

If @ = @], has range BCC(X x T) and v is a maximal probability
measure on X x T'C B* representing I € B then Hustad’s theorem
says ¢ = ®@*p belongs to 0,M(X), with 2 = L = ¢*L. We combine
this with the following observations concerning T-invariant A-super-
harmonic dominators to obtain a general stability theorem due to
Roth [11].

Thus let p be a strictly positive [l.s.c. extended real-valued
function on X such that for each z€ X and pe M;*(X) with fZ=x¢

A*, we have p(x) = S edy, that is, p is A-superharmonic. If U =
X
{feC(X): reflo <1} then U° is a w* compact convex subset of the
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positive cone M*(X), and we let U be the quotient image in A*.
Take R+ to be the one-point-compactification of R* and

X,={, 8)eX x Rt: px) s < + o},
Y, = {(=, o(®)) € X p(x) < oo},
Y., = {(x, p(x)) € X;: p(x) = + oo} .

Since p is l.s.c., Y,U Y, and Y, are both G, subsets of X, so that
Y, is a Borel set. Define

¥ C(X) — C(Xo); vf(w, 8) = f(2)/s ,

and let 6§ = |, with (not necessarily closed) range B c C(X,). Since
o0 1is strictly positive + is bounded and #* is one-to-one from B*
into A*. Let

go: Xy — B*

be the evaluation map and let V = w* — cog,(X,).

PROPOSITION 1.1. Let p be a T-invariant A-superharmonic domi-
nator on X as above.

(1) ¢, is ome-to-one on X\(X X {=}), X X {ec} = ¢;%(0), and
6*V = 1.

(2) If v is a maximal probability measure on V then Y[o( Yo) U
{0}] =1 and v may be identified with the measure on Y, given by
Vog,.

(8) If v is as in (2) and pt = "y then for any bounded Borel
function h on X

[ e = (@)fp@yint, o) -

In particular, pre U°.
(4) Let poe M¥(X) with i, = x,e X C A} and define fI, € M(X,)
by

Po(F') = (l/P(xo))SXF (x, p(@)o(x)d () .
Then for any bounded Borel function h on X

|, @iz, 5 = o)\ hdp, .

Ip particular fi,=0, f(X,) = (Y, £ 1, and fi, represents (x,, o(%,)) €
V.

(5) If v is mazimal on V then g = *v is maximal on K =
coX C A*.
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Proof. (1) The separation theorem shows U = w*co{z/s: (, s) €
X,}. Now

0*ogy(x, 8) = x/s€ A*

so the rest of (1) follows from the fact that A separates points in
X. For 2) let p =1 — X, on V and note that the lower envelope
0 is the Minkowski functional of V. Since v is maximal,

1 = ffe: p(@) = pl@)}] = vlla: p@) = 1 or 0}] .
Now X = 1 implies ¢,(x, n8) = (1/\)g(x, 8), so that
V[g(Yo) U{0}] =1.
It feCX) then ()= | (Fs)dvie, » = | (F@)/p@Ndxa, o)

and so (3) holds.
(4): If FeC(X,) and 0 < F' <1 then

0 = A(F) = (Lo pdm =1.

Thus 2, = 0, fi(X,) <1 and p{a: o(x) = + )] = 0. For F = h,
AF) = | @i, 9
= Wotw)| hdps, .

(5): Let f be a continquus convex function of K and denote the
upper envelope of f by f(K), where [1,1. 3.6]

FK)(x,) = sup{s(f): pe M (X) and £ = x,€ A*}.

If g =(flx) then ge C(X,) with ¢ =0 on X X {eo}. If ff, ==, and
fH, is asAin (4) then fi, represents (x,, o(x,)) € V and the upper envel-
ope, g(V), satisfies

GV )(wy, 0() Z supl{fi(9): flo =z = (/o) F (K )(x,)
by part (4). Thus, using part (3), and [1, I. 4.5],
\ [0 = riae = | 17K = fljpav=( (a(7) - glav = 0
since v is maximal. Hence, ¢ is maximal on K.

We now consider the case where p is defined on X X T. We
say such a p is A-superharmonic if for each (x,t)e X X T and pe
M(X x T); with
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‘ S”Tsf(y)dp(y, s) = tf(x) for all fe A

we have o(x, t) = g odge.
xXT

THEOREM 1.2 (Hustad-Roth). If p is an A-superharmonic domi-
nator then U° is A-stable.

Proof. Let 0:C(X)—-C(X x T); &f(x, t) = tf(x) and let
U'={FeCX x T):reF(x, t)/o(x, t) < 1}

and ¢ = @], with range B.

Let 7: C(X x T)— C(X,); TF(x,t,s) = F(zx, t)/s, where X, is the
closed epigraph of p in (XX T)xR*. Now @UcU* and ¢(ANU) =
BN U'. Given Le U, let Le(UY cB* and L'e V (as in Proposi-
tion 1.1) with ¢*L' = L and ¢*L = L. We have B} = w*co(X x T)
and the hypothesis says o on X X T is B-superharmonic. Hence
the results of Proposition 1.1 apply. Thus if ' is maximal on V
representing L’ then 1.1 (3) and (5) show » = ¥*Y is maximal on
B representing Le(U")". Then pg=g¢*velU® and fi=LeU.
Furthermore, Hustad’s theorem shows g is a boundary measure.

If 1e A then the condition for A-superharmonicity is somewhat
simpler.

PropoSITION 1.3. If 1€ A then o is A-superharmonic if and
only if for each pe M (X) with fi =z,

oz, &) = | o, tdp

Proof. If p is A-superharmonic and ze M,(X) with g =z we
can embed X as X X {t} c X X T so that the measure g satisfies
|, sfwadp = tf(@)
XxxT

and hence
ow = | 0@ dp = o, tdp.

Conversely, if pge M (X x T) and represents tx then, since l€ A4,

we have tcoX = tS,(S, the state space of A) is a face of AF. Hence

suppp C X x {t} and the measure g (f) =S f(x)dpe represents w
XXT

so that



SUPERHARMONIC INTERPOLATION IN SUBSPACES OF Cc¢(X) 317
o, )= | pC, Odm= | odu.
X Xxr

2. Dominated interpolation. If E is a compact subset of X
we let

M={felX): fls=0)

and denote M N A by E*. It is well known that E is an interpola-
tion set for A if and only if A + M is closed in C(X) and this in
turn is equivalent to N being w* (or norm) closed in A*. The
following characterization of approximate p-interpolation sets follows
from results in [5;4.2]. We denote N = M(E)cC M(X).

THEOREM 2.1. Let o be a (strictly posttive l.s.c) dominator on
X such that either o is bounded or E is an interpolation set. The
Sollowing are equivalent:

(i) E is an approximate p-imterpolation set for A,

(ii) A+ M 1is closed in C(X) and

A+MNU+M)=ANU+ M),

(i) UnN=(UNnN),
(iv) |lg+ AN N, = ||z + A*||, for all £e N,
v) llmm + A* N N||, £ || —ym||, for all me A*.

For xe A* we write ||z||, for the Minkowski functional of U
so that if ft =

il = lee + Ao -

The set U’ is split, that is, [|¢]l, = 7]l + l[7.eell, [10, 5].

PROPOSITION 2.2. Let N and U° be A-stable sets in M(X).
Then for peo,M(X),

(1) e+ At =l + 04|, = | 2l

(2) HF‘ + N + Al”p = Hﬂ'zﬂ + 7‘L'23AJ'H(, (mopt = F‘|X\E);

(3) If [lell, = Hﬁ”ﬂ then

||7zi4u”p = ”(n'i,u)A“p (1=1,2).

Proof. If peoM(X) and |||, < r then gt = rv+m with ve U°
and me A*. The stability of U° shows we can assume vedU"’ so
that meoA*. Then (1) follows. If =17y + 79+ { with veoU",
nedN,{e A", then (e€dA* and mp=rry + nlecrm,U° + wdA".

Conversely, if w,pt = rv + w,{, vedlU’ {€0A* then
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p=rv+ @p—nl)+ LerU® + oN + 0A* .
For (3), we have

”77:1#”0 = ”(nlﬂ)AIIP = H”l/‘ + Al”p = H# — Tt + Al“p‘
2 H#”p - ”ﬁzﬂ + ALHP = ”/‘Hp - “77:2)“”9 = Hnliu“p .

Since we do not assume 1€ 4, we take the Choquet boundary,
0,X, to be X NextAF¥. There are two main instances where the
A-stability of N can be deduced.

ProprosITION 2.3. Let E be a closed subset of X such that
either

(a) EcoX or

(b) E=FnX, Faw* closed face of Af.
Then N is A-stable.

Proof. In the case (a) each probability measure on K is maximal
and so the result follows since coE spans N. In case (b) each
maximal probability measure g with fccoE has its support on
(ext F')”" C K.

THEOREM 2.4. Let E be a closed subset of X such that either
(a) EcoX, or
(b) E=FnNnX,F a closed face of AfF.
Let p be an A-superharmonic dominator such that either 0 s
bounded or E is an interpolation set. Then the following are equi-

valent:
(i) FE is an approximate p-interpolation set,
(i) llge+ A* N Nll, = ||t + 04", for all preaN,
(iii) |lzm + A* N N||, £ || —zym||, for all meoA*.

Proof. The hypotheses imply that U° and N are A-stable and
so 2.2. (1) shows for peolM,
llee + A, = [lpe + 044, .

Thus (i) = (ii) < (iii) follows from 2.1. If (i) holds and ze UN N
then choose pteoN with Z£ =2 and pre U’ + A*. Then

g+ AN N, =g+ 04", =g+ A ], =1

so that g =v +m; ve U’ me A* N N. Hence veN and fl=x=ve
(U°N N)". Thus 2.1 (iii) holds and hence (i) is shown.

The exactness of p-interpolation is characterized by the sum
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ANU+ E-(E* the ideal of functions in C(X) vanishing on K)
being closed in A4, a condition which is implied by the decompo-
sability of Uby N in A* [5; Theorem 3.2]. If F is an interpolation
set (so that N if w* closed in A*) then U is said to be decomposable
by N if there is an a = 1 such that each z e U is a convex combina-
tion of elements y,z with ye UNN,ze U and ||z]| < allz + N||
(dual uniform norm).

The condition for decomposability, and hence exact interpolation,
can be formulated in terms of representing measures in M(X). We
illustrate this for boundary measures in the case where p is super-
harmonic.

THEOREM 2.5. Let E be a closed subset of X and A a closed
separating subspace such that either

(a) EcodX, or

() E=FnX,F a clsed face of A},
and let o be an A-superharmonic dominator such that either p 1is
bounded or E is an interpolation set.

If for each we U there is a ped, U° with fi =« and

|7ope + 0A* || < al|mope + THA"||

(a a constant independent of ) then E is an exact p-interpolation
set.)

Proof. Given x¢€ U choose a boundary measure ¢ satisfying
g=uw, &l =Illgll, and |[[mp + 04| < a7t + wdA*||.  Now
el = Ilmptlle + |l woptll, shows that g is a convex combination of
11, e UN' N and p,e U° scalar multiples of 7w, mpt respectively.
Thus, ||g + 04| < a|lp, + w0A"|| and « is a convex combination
of ye(U°N N)" and ze U with (using 2.2 (1) and (2))

Nzl = |t + 0A" || < allp, + wdA" || = al|pt + N + A*|]
=allz + NJ| .

This shows that (U°N N)" = UN N and that U is decomposable by
N. Therefore E is an exact p-interpolation set.
If E is an M-set then w,0A* C0A* so that
7ot + TOA* || = |7t + 0A* ||

and the condition of 2.5 is automatically satisfied (for A-stable U°).
More generally, if U° and N are A- stable and, for some s <1

[lzm + AN N||, £ s|| —mym||, for all medA*
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then a computation based on [5; 4.8] shows the condition of Theorem
2.5 holds, so that £ is an exact p-interpolation set.

COROLLARY 2.6. If E is an M-set for the closed separating
subspace A C C(X) then E is an exact p-interpolation set for A for
any A-superharmonic dominator p.

Proof. If E is an M-set then N is the range of a projection in
A* so that E is an interpolation set for A. The conclusion then
follows from 2.5.

3. Examples. We illustrate the results of §2 with various
choices of p. First, let X be a compact metric space with E a
closed subset and M(E) A-stable for the closed separating subspace
Ac(C(X). Let G be the collection of compact subsets G cd, X\E
and let p = o(G, k) be the dominator mentioned in the introduction.

Then (for k& < o)
(1) l|mm + A* N N|| < k||zym|| for all meoA*

if and only if E is an approximate o(G, k)-interpolation set for all
GeZz. To see this we note that since Gco,X, U° is A-stable so
that the second property holds if and only if

(2) lzom + A* N N||, £ || —7m||, for all meodd*,Gc< .
It follows easily from [5;4.1] that if ¥ = X\(E N G) then
Heello = Nleelell + Bl gtlall + AV E) || 2] ]
so that
l|[mm + AN N|| = ||lz;m + AN N||,
and, since for boundary measures g, the metrizability of X gives
| |(X\E) = [¢£]|(0.X\E) = sup{|¢|(G): Ge &},
we have
kllzm|| = supf{||zm|l,: 0 = 0(G, k), Ge £} .

The equivalence of (1) and (2) is now immediate. If (1) holds for
ky <1 and %k, < k <1 then for o = po(G, k)

lmm + A* U N, = [[mm + A* N N|| < E(llmlg]] + l|m ] ]])
= (ko/k)(kl|m o]l + lImlrl)) = (ko/k) |||,
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so that ¥ is an exact o(G, k)-interpolation set for A.

The study of sufficient conditions for the A-convex hull of F
to be a generalized peak set (we now assume 1€ A) has been shown
[4] to be related to an ordering on C.(X) and M(X) induced by
choosing P to be a closed proper convex cone with nonempty interior
in C. Let a, 8 be the generators (of modulus one) of the dual cone
P* = {z:reaz = 0 for all a € P}. We denote by ¢ the element of P
such that 7reevy =1 (v=a,8). If feCy(X) we say f = 0P) if
JX)CP and p¢ = 0(P*) means y(B)e P* for all Borel sets B X.
Then the function e = ¢ becomes an order unit for C(X) in which
the order unit norm ||-||, (equivalent to the uniform norm) is given
by

lfort==%1v

ol ) = 1/c for t = + v, v=a s

where ¢ is a constant such that
cz| £ |reaz|V |refz] .

This provides an example of a p which is not T-invariant.
Let p* and p~ be strictly positive l.s.c. functions on X and

take

oF(x) on X x {1}
o(x, 1) = {p~(x) on X x {1}
+ oo otherwise.

Then U ={feCX): —p" <ref < p*}. If e U° and f is real then
Mif € U for all real A so that

1= rep(\if) = — Mimp(f)

and hence imyu(f) = 0. Thus g is a real measure and U°C reM(X).

If A, is a real subspace of C(X) then we can apply the results
of §2 to the self-adjoint space A4, + 14, = A. Then || fll, = ||refll,
and me A* if and only if m = m, + im, with m,, m, real measures
in A*. Also m is a boundary measure if and only if m,, m, are
boundary. Hence E is an approximate (exact) p-interpolation set
for A if and only if it is for A, = red, and the measure conditions
of §2 need only involve real measures in M(X). If X is a compact
convex subset of a locally convex space and A, = A(X) (real affine
continuous functions) then o is A-superharmonic if and only if
ot = (0o*)" and o~ = (07)", that is, if and only if po* and p~ are
concave on X.

Let X be a square in R* with vertices denoted {l, 2, 8, 4} with



322 L. ASIMOW

E = {1, 2} diagonally opposite and 4, = A(X), p*, 0~ = 1. Then 4"
is a one-dimensional subspace of the four-dimensional space M(X)
spanned by the point-masses {d;}i—,. A generator for 0A* is m=d,+
0, — 0, — 0,. Clearly AN N = {0} since coF is a simplex and so

llwm + A* N N = |lzm || = [|z;m]] .
This shows F is an approximate p-interpolation set for A(X).
Obviously E is in fact an exact interpolation set, but this cannot
be concluded from a condition such as (3) in the introduction.
Nevertheless, the condition of 2.5 holds, since if
© = I\,
then
el = 3N

and

|mopt + THA* || = inf{|Ng — M| + [N — N:NER} = [N, — Ng] .
If \, and )\, are opposite in sign then

ot + QAN || < [[mopel] = [Na] + NG| = [N = Ng| = [[mropt + w0 A" ]

If, say 0 < N\ <\, consider v = ¢¢ + A\ym. Then U = 2 and

Ivll = 2N = Nl = (0] + Rl 4+ 20 + [N = [Na] = [l 2]
and

Ty + 0A" ]| < ||| = M — N = ||t + THA*]] .

We conclude with an example of an approximate interpolation
set which is not exact. Let X be the unit ball of the sequence
space ['(w* topology) and let p = 1. Then take A = ¢, the pre-dual
of I, so that ||lall, = ||lall. = sup{la,.|}. Let E be the singleton
%, 20 =12, n=12,---. If (a,2) =1 then > ,a./2"=1 so
that some a, must be greater than one. Clearly we can find such
an a with |ja|| =<1+ ¢ for any ¢ > 0. Thus E is an approximate,
but not exact, p-interpolation set.
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