
PACIFIC JOURNAL OF MATHEMATICS
Vol. 84, No. 1, 1979

HOPF INVARIANTS, LOCALIZATION AND EMBEDDINGS

OF POINCARE COMPLEXES

BRUCE WILLIAMS

THEOREM 0.1. Let Pn and Qn be simply connected Poin-
care complexes such that P ( 2 ) = Q(2). Assume n ^ 2k — 2.
Then Pn Poincare embeds in Sn+k if and only if Qn Poincare
embeds in Sn+fc.

The Browder-Sullivan-Casson-Wall embedding theorem [see [23]
Chap. 12] then implies the analogous result for manifolds which has
also been proven by Rigdon [18] using entirely different methods.

The proof of (0.1) relies upon the following:

THEOREM 0.2. {Localize at odd primes.) Let X be a {q-l)-con-
nected space, and suppose X ™ X, X. Then for m^Zq — 2, Σ°°:
πm{X) —> τzs

m{X) has a right inverse.

This result is false if we do not localize at odd primes. For ex-
ample, Mahowald's ηs e π\j do not desuspend to 7i2.2j^(S2J~3) (see [14]).
The result is also false if X is not a suspension, e.g., X — S ί x S i

and m = 2i. Since π\ = Z/24 and 7Γ5(S
2) = Z/2, m ^ 3g - 2 is best

possible.

COROLLARY 0.3. {Localize at odd primes.) Let X be a {q-l)~
connected space. Then for i ^ l and m ^ 3g + 2ΐ — 2.

ff»+i(Σ* X) = ^m(X) θ ^m + ί + i(Σ' X Λ Σ'-Σ")^ ^ ^ ^ ^2 αcίs o^
Σ ' ^ Λ Σ ' Ϊ 3̂/ switching factors. The nonzero elements in the
πs

m{X) term are permanent in the sense that they desuspend to ΣX
and remain nonzero under the suspension homomorphism. The
nonzero elements in the TΓ^+^I^ 'X Λ ΣιX)Z2 term are just flashes
in the sense that they do not desuspend and die under a single
suspension.

If X is a sphere, then this corollary implies the well known
result that for r ^ 2n — 2

πs

r n odd

K 0 K-n+i n even

(see [16], [22], [21], and [7] Appendix 2).
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Elsewhere [13] in joint works with Ib Madsen and Larry Taylor
(0.2) is applied to the classification of P.L. manifolds.

I.

Q( ) = Ω~Σ~( ) .

Proof of (0.2). Consider the following commutative diagram

(1.1) ΩQΣX - QX —> QS°°κZ2ΪΛΪ

i
ΩQS~ x Z2ΣX ΛΣX-^* Q(S°° K ,2X A XIX A X)

where h2, h^, and hΌ* are Hopf invariant maps coming from stable
decompositions of ΩΣXf QX, and QΣX. (See [15] and [5].) i: XAX-^
S°°Ϊ<Z2X Λ X is the inclusion map, and j comes from the homotopy
equivalence

Σ(S~t<Z2XΛ X/XAX)-^Z? S~KZ2ΣXΛ ΣX (see 2.3 of [15]) .

Since Q sends cofibrations to fibrations, the right vertical edge of
(1.1) is a fibration sequence. Milgram's EHP sequence (see [15])
implies that ΩΣX is (3g — 3)-equivalent to the fibre of ΩhL. Since
Σ°°: πm(ΣX) —> πs

m(ΣX) is induced by Σΐ, we are done if we can show
Q(ί) has a right inverse when we localize at odd primes.

Consider the following commutative diagram

Ϊ Λ = Λ

I 7 I τ : d θ u b l e

j J j "-cover

where p pinches S°°/Z2x* to a point. Notice that Q(p){Oάά) is a homo-
topy equivalence. Let

t: Q(S°° x Z2X AX) > Q(S~ X Ϊ Λ Ϊ )

be the transfer for the double cover π. Then (Q(τr)oί)-1

dd) is a

homotopy equivalence, and t o (Q(π) o ί)^d d ) o Q(p)^dd) is a right inverse

for Q(ΐ)(odd).

REMARK. If X ^ I'X, m ^ 3g — 4, and we localize at odd primes;
then a right inverse to Σ™ can be derived from the following left
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inverse to Milgram's map d'.πJ^S00 K Z2X/\ X) ~^πm_x(X):

πm^(X) -^ πs

m(X A X)z* = πm(S~ K Z2X A X) .

Proof o/(0.3). (Localize at odd primes.) By considering diagram
(1.1) with X replaced by Σi~1X, one gets that when m + i 5* 3(g + i) — 2

πm+i(ΩQS~ K Z%Σ*X A ΣιX)

Λ J'-Γ) ,

where h2: πm+i(ΣιX) -> π ^ ^ Q J ^ X Λ ί ' " 1 ! ) is 1-1 on π^ + ί +

2^*X Λ Σ'X). Thus the nonzero elements in the 4 + m ( S M κ Z 2

J^X) term do not desuspend.
The double cover π: S^XΣ'XΛΣ'X-* S^XZ^'XAΣ'X induces an

isomorphism

π m+i+1(Σ<X A Σ'X)** ~ π'm+i+ι(Sβo\<ZιΣ
iXAΣtX) .

Furthermore, the commutativity of the following diagram

ix

) \

implies that the elements in the π^^^S00 KZ^
1X A Σ^yteτm die

after a single suspension.

Open Problems.
1. Conjecture. If α e ^ Γ and iΓα = 0, then Σka = 0 for

A ̂  [̂  + 2/2].
Surgery theory shows that this conjecture would imply the

Hirsh conjecture on embedding τr-manifolds. See [6] for a partial
converse when X = S\ The Corollary (0.3) implies this conjecture
is true when we localize at odd primes.

2. Compute the Hopf invariants of stably trivial elements. If
a 6 πn{ΣX) is stably trivial, then in the metastable range a = d(w)
for some element w eπn_n(S°°κZ2ΣX A ΣX).

Conjecture. H{a) = t(q(w)) in π&ΣX A ΣX), when t is the trans-
fer of the double cover S™ KΣXAΣX-* S00xZiΣXAΣXf and q comes
from the stable equivalence

5°°xZ9ΣX A ΣX - (S00xzf) V S M κ ^ X Λ ^X -
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The conjecture is equivalent to stably computing the map tt in
the cofibre sequence

ΣX A X > Σ(S~ K Z2X A X) > S°° K Z2ΣX A ΣX - ^ > ΣX A ΣX .

3. Conjecture. (Localize at odd primes.) If m ^ 3 (connectivity
X), then

πlX) -iu π\{X) - ^ π\(X A X)

is exact, where Δ is the reduced diagonal map.
Since 7Γ|(S°° ix ZzX Λ l ) - π\(X A XY2, there exists some map

k: π\{X) ~> πl(X A X) such that image Σ°° = kernel k. Furthermore,
an easy Postnikov decomposition argument shows the conjecture is
true when localized at 0.

REMARK. Even if we do not localize, there is a close connection
between the Hopf invariant and the reduced diagonal.

If X=ΣX, then the pinch map X—>XV X yields a trivializa-
tion Γx: cone I - > l Λ l o f JZ:X->XΛX.

PROPOSITION. If fe[X, Y], where X = ΣX and Y = ΣΫ, then
ΣH(f) e [ΣX, Y AY] is represented by

ΣX~ cone XUxcone X > Y AY

where c(f): cone X—> cone Y is the extension of f.

Proof. This is just a reinterpretation of the proof of Theorem
5.14 in [3].

II.

LEMMA 2.1. Let Zn be a simply connected finite CW complex
of dimension n, and let Φ be a Sfoύύ)-fibration over Zn(N> n + 1).
If n ^ 2q, then there exists a Sloaarfibration θq over Zn such that θq

has a cross section, and such that θq is stably equivalent to Φ.

Proof. Recall that for simply connected spaces stable S?odd)-
fibrations are classified by BSG{oάά) and £^<~idrfibrations with cross
section are classified by BSFq_Uodά). (See [20] §4.)

Thus we are done if we can show that the map which classifies
Φ lifts to BSFq_Uoάd). If q is odd we shall show the map in fact
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lifts to BSFq_2{oάd). It suffices to show π^SG/SF^^a) = 0 when k
is even and i <^ 2k + 1. Consider the exact sequence:

y o o

π ξi0M) >

* Jίi+k+2\£> /(odd) * "-ί-i(odd)

By studying the double suspension (see [7] Appendix 2) one gets
that J5T is an epimorphism, Σ°° is an isomorphism, and ̂ i{SGISFk_τ)mά) = 0
when i <ί 2& + 1.

The following result was proved in [10].

THEOREM 2.2. Let (W, A)m be an oriented, finite Poincare pair
of formal dimension m. Assume πtAτ5 π^W, m ^ 6, and
2m ^ Z(n + 1), where n = homotopy dimension of W. Then (W, A)
Poincare embeds in Sm if and only if πm( W/A) contains an element
of degree 1.

Although this is a purely homotopy theoretic result, the proof
in [10] consists of converting (W, A) to a manifold and then using
smooth embedding theory. In § III progress is made towards a
homotopy theoretic proof.

Proof of 0.1. Assume Q Poincare embeds in Sn+k. Let /: P(2)->
Q(2) be a homotopy equivalence. Let rf be the normal fibration for
the Poincare embedding of Q in Sn+k, and let deπn+k(T(η)) be the
associated normal invariant. ηk

2) is the S?2rfibration associated to ΎJ
(see Sullivan [20] for definition and properties). Let ξk = /*^?2>. Z"1

lifts to a map of Sf^-fίbrations b{fι): S(tf2)) -> S(ζϊ) which induces a
map of Thorn complexes Γ(/- 1): T(τj{2)) -> T(ξt). Notice that ct =
T(f~ι)(d{2)) is a unit in πn+k(T(ξt)), i.e. d e g ^ e ^ , is a unit.

Suppose that we could construct a S^-fibration ξ over P such
that ξ{2) - & and a degree 1 map c: Sn+k -> Γ(£). Then (J9(ί), S(ί)) is
an oriented, finite Poincare pair of formal dimension n + k, and
Theorem 2.2 implies there exists a Poincare embedding of (D(ξ),
S(ξ)) in Snhk which determines a Poincare embedding of X in Sw+fc.

Lemma 2.X implies there exists a Sfolά)-fibration £0 such that ζ0

is stably equivalent to ΎP{Oάά) (where τ P = Spivak fibration of P) and
such that T(ξQ) is a suspension. If k is even, BGk[Q) ~> K{Q, k) is a
homotopy equivalence where the map is given by the Euler class;
and if k is odd, BGk{0) ^ K(Q, 2{k - 1)) (see [20] 4.12). Since ηk is
the normal fibration of an embedding in a sphere, the Euler class
of η and ξt are trivial. Since ξ0 has a cross section, it has trivial
Euler class. Thus ξt and ξ0 fit together to yield a Sfc-fibration ξk
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when k is even. If k is odd, BGf'* = *, and ζt and ξQ fit together
to yield a SMibration ξk.

Theorem 0.2 implies that 7ϋn+k(T(ξk){om) contains a unit. Further-
more, πn+k(T(ξk)l2)) = πn+k(T(ζ{2))) contains ct which is a unit. Thus
π

n+k(T(ξk)) contains an element of degree 1.

Ill* A Poincare embedding of (W, A)m in Sm consists of a
finite complex C (the complement) and a map a: A —> C such that
the double mapping cylinder M(c, a) is homotopy equivalent to
Sm, where c is the inclusion of i in If. A Poincare embedding
determines a deg 1 element a in πm(W/A) which is represented by
the composition

Sm ~ M{c, a) > M{c, a)/C _ I ^ Ϊ ^ ψ/A .

Notice that ΣC ^ (W/A)\Ja em+1.

In this section we give homotopy theoretic proofs that the hy-
pothesis of Theorem 2.2 imply that

(1) (W/A)\Jae
m+1 is a suspension

(2) There exists a map a': ΣA -> (W/A)\Jae
m+1 such that

M(Σc, a') ^ Sm+1.
If one could prove that the Hopf invariant H(a') were trivial,

then one would have a homotopy theoretic proof of Theorem 2.2.
Browder ([4]) has observed that the composition

b: I f x O U i x / U Wxl >WxO I) Axil) Wxl/W xO ~ W/A

>W/A\J«em+1

determines an embedding of (W, A)xI in Sm+1. In result (2) we are
showing Browder's map b factors through

TFxOU AxlUW xl/WxO U Wxl ~ ΣA .

PROPOSITION 3.1. Let (W, A)m be an oriented, finite Poincare
pair of formal dimension m. If πm(W/A) contains an element a
of degree 1, then the map j : W-+-W/A which pinches A to a point
is stably homotopic to a trivial map.

Proof. Let W+ = TFU{ + } with + as base point. Let j + = W+->
W/A be the map which sends + to the collapse point and which
equals j on W. Suppose e: Sn —> Dn(W+) A W+ is an ^-duality pair-
ing. Then the map : {W+

f W/A) -> {Sn, DnW
+ A W/A} which sends

/ to (IDnw+Af)°e is an isomorphism, and we are done if we can show
(Ij>nw+ Λ j+) o e is trivial.
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Let Δ: (W, A) - > (W, A)x W be the relative diagonal map. Δ in-
duces a map Δ: W/A -+ Wx W/A xW~ W/A A Wv. Since (W, A)
satisfies Poincare duality, e — Δoα is an ^-duality map. Notice that
the following diagram commutes:

Sn -^-> W/A -^-> W/A A W':'

(3.1.1) hs« \^Λ \lw/ΛAj+

Sn A Sn ~^-Λ—-, W/A A W/A

where Δsn and Δw/A are reduced diagonal maps. Since Sn is a sus-
pension, Δsn ~ * and j + is stably homotopy trivial.

LEMMA 3.2. {Jurca [9] Prop. 3.2.) // 3 <Lq, Z is a {q — ΐ)-con-
nected CW complex, and dim Z ^ Sq — 3, then Z desuspends if and
only if Δz ~ *.

Proof of (1). Poincare duality implies W/A is (m — n ~ ^-con-
nected. Δw/A = (IiF/iΛi+)oA which is stably trivial by Proposition
3.1. Since m = dim W/A ^ 2 (connectivity W/A A W/A) = 2{2{m-n)
— 1), JTΓ/^ is in fact unstably trivial and Lemma 3.3 implies W/A is
a suspension. Then W/A\Jae

mn = (W/^.)"1"1 is also a suspension.

Proof of (3). Consider the cofibration sequence A —> W-~> WIA—>
ΣA. Since j is homotopy trivial, I has a left inverse Γ. Let ar be

the composition ΣA —> W/A —> W/A(Jα β%+1 An easy homology and van
Kampen's argument shows, M(Σc, ar) = SmJrl.
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