HARMONIC MAJORATION OF QUASI-BOUNDED TYPE

SHIGEO SEGAWA

Let $O_{AL}(\text{resp. } O_{AS})$ be the class of open Riemann surfaces on which there exists no nonconstant analytic functions fsuch that $\log^+ |f|$ have harmonic (resp. quasi-bounded harmonic) majorant. It is shown that $O_{AL} = O_{AS}$ for surfaces of finite genus.

1. An analytic function f on an open Riemann surface R is said to be Lindelöfian if $\log^+ |f|$ has a harmonic majorant ([2]). Denote by AL(R) the class of Lindelöfian analytic functions on R. Relating to the class AL(R), consider the class AS(R) which consists of analytic functions f on R such that $\log^+ |f|$ has a quasi-bounded harmonic majorant. The class AS(R) is referred to as the Smirnov class ([4] and [4]). Denote by $O_{AL}(\text{resp. } O_{AS})$ the class of open Riemann surfaces R such that AL(R)(resp. AS(R)) consists of only constant functions. It is known that $O_G < O_{AL} < O_{AS}$ (strict inclusions) in general and that $O_G = O_{AL}$ for surfaces of finite genus ([2] and [5]). In this paper, it is shown that $O_G = O_{AS}$, and therefore $O_G = O_{AL} = O_{AS}$, for surfaces of finite genus (cf. [3]).

2. Let s be a superharmonic function on a hyperbolic Riemann surface R and e be a compact subset of R such that R - e is connected. Denote by $\Phi(s, e)$ the class of superharmonic functions v on R such that $v \ge s$ on e except for a polar set. Consider the function $(s, e)(p) = \inf_{v \in \Phi(s,e)} v(p)$ on R. Then (s, e) has following properties (see [1]):

LEMMA. (s, e) is superharmonic on R, (s, e) = H_s^{R-e} (the solution of the Dirichlet problem with boundary values s on ∂e and 0 on ∂R) on R - e, and (s, e) = s on e except for a polar set.

3. THEOREM. The relation $O_G = O_{AS}$ is valid for surfaces of finite genus.

Proof. We only have to show that $O_G \supset O_{AS}$. Let F be of finite genus not belonging to O_G and S be a compact surface such that $F \subset S$. In order to show that $F \notin O_{AS}$, we may assume that $K = F^{\circ} = S - F$ is totally disconnected. Hence we can decompose K into two compact sets E and e such that E and e have positive capacity. Set $R = E^{\circ} = S - E$ and choose a point $x \in e$ which is a regular boundary point for R - e. Let $e_n = e \cap \{z \in R; G_R(z, x) \leq n\} (n \in N)$, where $G_R(\cdot, x)$ is the Green's function on R with pole at x. Set $h_n =$

 $(G_{\mathbb{R}}(\cdot, x), e_n)$ for $n \in N$. Then it is easily seen that $\{h_n\}$ is increasing and $h_n \in HB(\mathbb{R} - e)$ (the class of bounded harmonic functions on $\mathbb{R} - e$). Here and hereafter, the lemma in no. 2 will be used repeatedly without referring to it. Let y be an arbitrarily fixed point in $\mathbb{R} - e$. Again, we set $u_n = (G_{\mathbb{R}}(\cdot, y), e_n)(n \in N)$ and $u = (G_{\mathbb{R}}(\cdot, y), e)$. Then, since $\{u_n\}$ is increasing and $u_n \leq u$, the limit function U of $\{u_n\}$ exists, is superharmonic on \mathbb{R} , and $U \leq u$. On the other hand, since $u_n \leq$ $U \leq G_{\mathbb{R}}(\cdot, y)$ and $u_n = G_{\mathbb{R}}(\cdot, y)$ on e_n except for a polar set for every $n \in N$, $U = G_{\mathbb{R}}(\cdot, y)$ on e except for a polar set by the fact that the union of countably many polar sets is also polar, and a fortiori $U \geq u$, which implies that U = u. Observe that

$$egin{aligned} h_n(y) &= H^{R-e_n}_{G_R(\cdot,x)}(y) = G_R(y,\,x) - G_{R-e_n}(y,\,x) \ &= G_R(x,\,y) - G_{R-e_n}(x,\,y) = H^{R-e_n}_{G_R(\cdot,y)}(x) \ &= u_n(x) \uparrow u(x) = (G_R(\cdot,\,y),\,e)(x) \quad (n \longrightarrow \infty) \ &= G_R(x,\,y) \;. \end{aligned}$$

Here the regularity of x is used in the last equality. Consequently we see that the increasing sequence $\{h_n\}$ with $h_n \in HB(R-e)$ converges to $G_R(\cdot, x)$, i.e., $G_R(\cdot, x)$ is quasi-bounded on R-e.

Consider a meromorphic function f on S with a single pole of order k at x. Then $\log^+ |f| \leq kG_R(\cdot, x) + C$ for a sufficiently large constant C. Therefore $f \in AS(R - e) = AS(F)$, i.e., $F \notin O_{AS}$. This completes the proof.

References

1. C. Constantinescu and A. Cornea, Ideale Ränder Riemannscher Flächen, Springer, 1963.

2. M. Heins, Lindelöfian maps, Ann. Math., 62 (1955), 418-446.

3. J. L. Schiff, On a class of analytic functions of Smirnov, Canad. J. Math., 31 (1979), 181-183.

4. V. I. Smirnov, Sur les formules de Cauchy et de Green et quelques problèmes qui s'y rattachent, Izv. AN SSSR, ser. fiz.-mat., 3 (1932), 337-372.

5. S. Yamashita, On some families of analytic functions on Riemann surfaces, Nagoya Math. J., **31** (1968), 57-68.

Received February 9, 1979.

DAIDO INSTITUTE OF TECHNOLOGY DAIDO, MINAMI, NAGOYA 457 JAPAN