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ASYMPTOTIC STABILITY AND NON-EXISTENCE OF
GLOBAL SOLUTION FOR A SEMI-LINEAR
PARABOLIC EQUATION

C. V. Pao

The aim of this paper is to investigate the existence and
nonexistence of a nonnegative global solution for a semilinear
parabolic system in a bounded domain. It is shown that
for a certain class of initial functions the corresponding
solution of the initial boundary value problem has a finite
escape time, while for another class of initial functions a
unique solution exists for all time and diminishes to zero.
This result leads to an explicit estimate for the stability
and the instability regions of the trivial steady-state solution.
In the case of nonexistence of global solutions, an estimate
for the finite escape time is also given.

I. Introduction. The problem of nonexistence of global solution
for the semilinear parablic equation

1.1) U, — V- (D@Wu) = aut*(te(0, T|, xc Q)

has been given considerable attention in recent years (cf. [4-6, 13,
15]). In most of the above references the spatial domain 2 was
taken as the whole space R" so taat the system under consideration
by these authors is a Cauchy problem. In this paper, we consider
a bounded domain £ in R" together with the following boundary
and initial conditions:

(1.2) ,e%’;iJruzo (te(, T], x coQ)

(1.3) (0, ) = u(x) (xe®).

In the above system, 7 is the gradient operator, D is a positive
function on 2 = QU 02, a, @, B are constants with a > 0,8 =0, o2
is the boundary of 2 and v is the outward normal veector on /2.
This system arises from models of simultaneous diffusion and recom-
bination of electrons and irons as well as models of reactor dynamies
where positive feedback is allowed when a > 0 (cf. [1, 8, 15]). We
assume that £ is sufficiently smooth, D is continuously differentiable
in 2 and w, is continuous nonnegative on 2 and satisfies the boundary
condition (1.2). The constant, ¢, may assume positive or negative
values and its magnitude plays an important role in relation to the
stability region of the trivial steady state solution.
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The nonexistence of global solution to the Cauchy problem (1.1)
and (1.3) for the case a = D =1 in the whole space R™ has been
discussed by Fujita [4, 5], Hayakawa [6], Sugitani [16] and more
recently by Portnoy [13]. A similar problem for a bounded domain
2 has been investigated by Kaplan [7], Friedman [2] and Pao [11].
(See also Levine and Payne [9].) The purpose of this paper is to
investigate the existence and nonexistence of a nonnegative global
solution to the system (1.1)-(1.3) and to give a threshold result on
the asymptotic behavior of the solution. Specifically, we show that
for a certain class of initial functions %, a unique nonnegative solution
u(t, x) to (1.1)-(1.8) exists on some finite interval [0, T}) and

lim(max u(t, x)) = « as t— T, ;

and for another class of initial functions, the solution % exists on
[0, =) and lim u(t, ¢) = 0 on 2 as ¢ — . Moreover, we establish in
the first case an explicit upper bound for the finite escape time T,
while in the second case we give an estimate for the stability region
as well as the instability region of the zero solution. We also show
that when a < 0 the nonnegative solution % diminishes to zero for
every nonnegative initial function u,. Thus if we increase the value
of a from negative to positive then the zero steady state solution
changes form global asymptotic stability to regional asymptotic
stability; and for initial functions outside certain region the corre-
sponding solutions diverge to infinite in finite time. As is to be
expected our estimate demonstrates that larger initial function wu,
requires less time for the blowing-up property of the solution. Hence
the consideration of a bounded domain instead of the whole space
R" leads to more delicate asymptotic behavior of the solution. It
is interesting to note that this qualitative behavior also has a simple
and natural physical interpretation and the results can be extended
to more general systems (see the remarks in §2). In the present
paper, however, we limit our discussion to the system (1.1)-(1.3).

2. The main results. In order to obtain our main results on
the existence and nonexistence of a global solution we as in [10, 11]
use the notion of upper and lower solutions for parabolic systems.
By an upper solution we mean a smooth function 7#%(¢, ) satisfying
the inequalities

4, — 7-(D@Vi) = ai (te(0, T], z¢ Q)
@.1) 3%% Fa=0 (te(0, T], xcdQ),

w(0, 2) = uo(x) (xeQ)
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and a lower solution is a smooth function u(t, ) which satisfies all
the reversed inequalities in (2.1). Moreover we require that u < @
on [0, T] x 2. Here by a smooth function it meant a continuous
function w on [0, T] x £ which is continuously differentiable in te
(0, T, twice continuously differentiable in z ¢ 2 and oJu/oy exists on
0, T} x 0%2.

Suppose that upper and lower solutions u, # exist and u = .
Then by starting from the initial iteration % = # and u° =u,
respectively, we can construct two sequences from the recurence
relation

u — F(D@)Fu®) = a(u )+« (te(0, T], x€ )

ou'® .
B +u® =0 (te(0, T], x Q)
(2.2) oy
u™(0, x) = uy(x) (xeQ)
E=1,2---.

Denote these two sequences, respectively, by {#*} and {u*} (so that
@ = %, ' = u). Then by the properties of upper and lower solu-
tions one can easily show that (i) @®*+ < @™, (ii) #® < w** and
(i) u® < a® for every &k = 0, 1,2, - --. These inequalities imply that
the pointwise limits

lima® =4 and limu® =% as k— oo

exist and satisfy the relation u S <% <% on [0, T} x 2. In fact,
% coincides with # and is the unique solution of (1.1)-(1.3) (cf.
[10,12]). Therefore if we can find a pair of upper and lower solution
with u < %, then a unique solution u(t, ) to (1.1)-(1.3) exists and

(2.3) u(t,x) < u(t,x) <ut,x) on [0, T]x 2.

Since for u, = 0 the function u = 0 satisfies all the reversed inequa-
lities in (2.1), the existence of a nonnegative solution u satisfying
0 = u(t, x) < #(t, x) is insured if one can find an upper solution %
which is nonnegative. We shall do this for our global existence
problem.

In the proof of the theorems the construction of # is based on
the linear eigenvalue problem

V-(DxWe¢) + g =0 (xe )

(2.4) B2 L 5—0¢ (xedQ).
oy

It is well-known that the least eigenvalue )\, is positive and its cor-
responding eigenfunction () is positive in 2. In faect, if >0 the
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maximum principle implies that (x) >0 on 2. We normalize + so
that max +(x) = 1. For convenience we set +, = min(x). Notice
that 4, >0 when 8> 0. Our main results are stated in the follow-
ing two theorems.

THEOREM 1. Let 8> 0,a > 0 and n = (N/a)'*'. Then for any
Uo(%) = byr(x) with b > 7 there exists a constant T, < oo such that a
unique solution u(t, ) to (1.1)-(1.8) exists on [0, T,) X 2 and satisfies

(2.5) lim max u(t, ) = o .
Ty L
Moreover,
(2.6) T, = (an) ™ In [a(byrn)*/(@(byrm)® — o)l -

THEOREM 2. Let A€ (0, N,) and 0; = (M — N)/a)’* when a > 0.
Then for any u(x) < onp(x), a unique nonnegative solution w(t, x) to
(1.1)-(1.8) exists on [0, =) X 2 and satisfies

2.7 0 < ut,x) < pe™y(x) (£>0,2e2).

In the case of @« < 0 the above inequality holds for evéry 0 =
© < o whenever u,(x) < oy(x).

REMARK. (a) The results in Theorems 1 and 2 show that when
a > 0 a stability region of the zero solution is given by the set 4, =
{ue; 0 < u, < oy} while an instability region is 4, = {u,; u, = by}. By
choosing A sufficiently small the value of p, may be taken arbitrarily
close to (\,/a)”*. Since ), is directly related to the size (for a fixed
geometry) of the domain £ it follows that smaller domain tends
to stabilize the equilibrium solution % = 0 while large domain tends
to destabilize the zero solution. This is, of course, to be expected
physically since energy leaks faster in smaller domains than larger
ones.

(b) Theorems 1 and 2 remain true when the operator V- (D(x)F'w)
is replaced by a more general uniformly elliptic operator in the form

Lu= 3 0@t + 3 0@, -
i=1 i=1

In this situation the least eigenvalue )\, and its corresponding eigen-
function + should be with respect to the operator L (under the same
boundary condition). Notice that A, > 0 (or at least there exists a
eigenvalue A, which is real positive) and the corresponding eigen-
function +r is positive (cf. [14]).

The results in Theorems 1 and 2 can be given a physical inter-
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pretation such as in the process of diffusion or heat conduction.
When the spatial domain is bounded, energy (or heat) leaks through
the boundary surface 02. Thus for the class of initial functions
Uy = Ppfr, energy leaks away through the boundary surface before
it gets large so that the effect due to the feedback term au'** (which
acts as a source for a > 0) is diminishing. But when the initial
function w, is large to the extent of wu, > 74, the feedback term
dominates the leakage initially and its effect tends to grow and
eventually leads to the unboundedness of the solution in finite time.
It is interseting to note that our estimate indicates that the finite escape
time T, is larger for smaller values of ¢ and becomes smaller as a
gets larger. In fact, if we increases the value of a from a <0 to
a > 0 then the system (1.1)-(1.8) changes from global asymptotic
stability to regional asymptotic stability, and as a increases, the
stability region gets smaller while the instability region becomes
larger.

It is to be noted that there remains a gap between the stability
region A, and the instability region 4, (by a factor of +,"). This gap
can be closed if one can show that for u, not in these two regions
the corresponding solution lies either in 4, or in A, after a finite
time.

3. Proofs of the main theorems.

Proof of Theorem 1. We first construct a function u satisfying
the reversed inequalities in (2.1). Let u = e **p(t)y(x) with p(0) < b,
where p(t) is a continuously differentiable function to be chosen.
Since u(0, ) = p(0)y (x) < u,(x) and by (2.4) 4-(Dpu) = —)u and
Bou/dy + u = 0 we see that u is a lower solution if

3.1 e R P! (O)y(x) = ale” " POy (x) " ,

where P’ = dP/dt. Clearly, the above inequality holds if
(3.2) P < aqpe R P,

It is easily seen that the function P(f) given by

(3.3) Pt) = [b7* + arn'yn(l — ey o (¢ el0, TY))

satisfies the requirement in (3.2) for ¢t [0, 7)), where T, is given by
the right side of (2.6). Hence the function u = e **P(t)y(x) with P({)
given by (3.3) is a lower solution on [0, T}] x 2 for every T.< T..
Using this function as the initial iteration in (2.2) with T < T, we
obtain a monotone nondecreasing sequence which converges to a
solution # of (1.1)-(1.8) on [0, T x 2 provided that this sequence is
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uniformly bounded from above. However, this may not be the case
for every T < T, unless u has the finite escape time exactly at T..
This is due to the fact that u is a lower bound of # when the solution
exists. To overcome this difficulty we take an arbitrarily large
constant M > u,(x) and define a funection f(u) by

(8.4) f(u) = au™ when w < M and f(u) = aM*** when uw > M .

Choose T, sufficiently close to 7, such that u(T,, ) = M for some
x €. Then by replacing the right-side of the first equation in (2.2)
by f(u*™) and using the initial iteration #® =u with T = T, we
again obtain a monotone nondecreasing sequence for the “modified”
system (1.1)-(1.83) (i.e., with au't* repalced by f(u)). We denote this
sequence also by {#*}. Now since f(u*) is uniformly bounded, an
application of the well-known estimate for linear parabolic systems
implies that {#*} is bounded (e.g., see [3] p. 146). It follows from
the monotone property that {u*} converges to a unique solution
u*(t, ) of the modified system (1.1)-(1.8) and

(3.5) wit, ¥) = ut, @) = e P PEE) (tel0, Ty x 2) .

But u(T,, ) = M for some x €2 and u,(x) < M, there exists T, < T
such that »*(, o) < M for (¢, 2)e[0, Ty] x 2 and uw*(T;, x) = M for
some xe€ 2. By the definition of f(u), u* is the solution of (1.1)-(1.3)
with 7 = T,. Since M can be chosen arbitrarily large the above
conelusion implies that the solution of (1.1)-(1.8) must be unbounded
on [0, T,] x @ for some T, < T.. For if it were bounded (say, by K)
on [0, T] x 2 for every T < T,, then by choosing M > K in the
definition of f(u) we obtain a solution u* of (1.1)-(1-3) such that
u*(t, *) = M at some point (¢, x) [0, T}] x 2 where T, < T,. Clearly
this is impossible. The proof of the theorem is completed.

Proof of Theorem 2. TFor the case a > 0 it suffices to show that
% = e *y(x) is an upper solution on [0, T] x 2 for every finite T.
In view of (2.1) and since the last two conditions are satisfied, this
will follow if

(3.6) (N — N2 (@) = a(oe™ (@) .

The above inequality is clearly satisfied for any p, satisfying pf =
(M — N)/a. This proves (2.7). When a < 0, the sequence obtained
from (2.2) with 4 = % = pe ¥ (x) is no longer monotone nonincre-
asing and thus we need to modify our construction. To achieve this,
we replace the first equation in (2.2) by

ul — V-(D@Fu®) + Qu™

3.7
@0 = a(u® 0y 4+ QuitY , (te(0, T, z€ Q)
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where @ is a constant satisfying @ = —e* while T' < - is arbitrary.
It is easily seen by using the initial iteration «'® = pe *4r(x) that the
sequence constructed from (8.7) together with the last two equations
in (2.2) is nonnegative and is monotone nonincreasing (cf. [10]).
Therefore it converges to a unique solution (¢, x) of the system
(1.1)-(1.8) such that 0 =< (¢, #) = pe “(x) on [0, T|< 2. This proves
the theorem.
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